УДК 538.913: 536.21

ОСОБЕННОСТИ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ СЕГНЕТОКЕРАМИКИ РbFe $_{0.5}$ Та $_{0.5}$ О $_3$ С НАНОПОЛЯРНОЙ СТРУКТУРОЙ

© 2024 г. С. Н. Каллаев^{1, *}, А. Г. Бакмаев¹, З. М. Омаров¹, К. Борманис²

¹Институт физики им. Х. И. Амирханова Дагестанского федерального исследовательского центра Российской академии наук, ул. М. Ярагского, 94, Махачкала, 367005 Россия

²Institute of Solid State Physics, University of Latvia, Kengaraga Street, 8, Riga, LV-1063 Latvia

*e-mail: kallaev-s@rambler.ru

Поступила в редакцию 21.06.2024 г. После доработки 11.09.2024 г. Принята к публикации 11.09.2024 г.

Исследованы теплофизические свойства релаксорного мультиферроика ${\rm PbFe_{0.5}Ta_{0.5}O_3}$ в интервале температур 150-800 К. Обнаружены аномалии теплоемкости, термодиффузии и теплопроводности в области размытого сегнетоэлектрического перехода при $T_C \approx 275$ К, температуры Бернса $T_B \approx 690$ К и промежуточной температуры $T^* \approx 380$ К. Установлено, что аномальное поведение теплоемкости в области температур 200-700 К обусловлено трехуровневыми состояниями (аномалия Шоттки). Рассмотрены доминирующие механизмы теплопереноса фононов мультиферроика с нанополярной структурой. Отмечено, что аномальное поведение теплофизических свойств в области температур $T_B > T > T_C$ обусловлено ростом и изменениями, происходящими в системе реориентируемых нанополярных областей. Показано, что исследования теплофизических свойств позволяют определить все характерные для сегнеторелаксоров температуры, связанные с возникновением и температурной эволюцией нанополярной структуры. Результаты исследований обсуждаются совместно со структурными данными.

Ключевые слова: теплоемкость, термодиффузия, теплопроводность, сегнеторелаксоры, мультиферроики, фазовые переходы

DOI: 10.31857/S0002337X24090102, EDN: LLJLXO

Релаксорные сегнетоэлектрики и мультиферроики на основе твердых растворов $PbB'_{0.5}B''_{0.5}O_3$ с перовскитной структурой привлекают большое внимание благодаря присущей им химической неоднородности и связанными с этим локальными структурными искажениями из-за разницы в ионных зарядах и радиусах между различными типами катионов В-позиции [1]. Одним из классических модельных объектов для изучения таких материалов является перовскит ферротанталат свинца $PbFe_0 {}_5Ta_0 {}_5O_3$ (PFT). Ферротанталат свинца представляет интерес как сегнетоэлектрик с размытым фазовым переходом и как объект, в котором возникает антифферомагнитное (ферромагнитное) упо-

ВВЕДЕНИЕ

рядочение. Сегнетомагнетики обладают одновременно магнитным и электрическим упорядочением и относятся к перспективным материалам для функциональной электроники.

При комнатной температуре PFT имеет кубическую симметрию Pm3m, а ионы Fe^{3+} и Ta^{5+} статистически распределены по положениям B-решетки перовскита [2, 3]. Изменение симметрии PFT в широком температурном диапазоне исследовалось в ряде работ методом рентгеновской и нейтронной дифракции [4—6]. Исследования показывают, что в PFT реализуется следующая последовательность фазовых переходов: из кубической (Pm3m) при $T_{C1} \approx 270$ К в тетрагональную сегнетофазу (P4mm), затем

при $T_{C2} \approx 220$ К в низкотемпературную моноклинную сегнетофазу (*Cm*) [4, 7] и в области температуры $T_N \approx 190$ К переход в антиферромагнитную фазу [2, 8, 9]. Такая же последовательность смены фаз — кубическая \rightarrow тетрагональная \rightarrow моноклинная — наблюдается и в изоструктурном соединении PbFe_{1/2}Nb_{1/2}O₃ (PFN) [10].

Как известно, характерными особенностями релаксоров [11, 12] являются размытие в широком интервале температур аномалии диэлектрической проницаемости є (и теплоемкости), существенная зависимость температуры ее максимума T_{max} от частоты измерительного поля и размытый фазовый переход. Диэлектрические исследования PFT демонстрируют типичное для релаксоров поведение с размытым частотно-зависимым максимумом диэлектрической проницаемости $\varepsilon(T)$ при $T_{max} \approx 243$ K и некоторые особенности в поведении зависимости $\varepsilon(T)$ при $T \approx 210$ K, что соответствует спонтанному переходу от релаксорного к нормальному сегнетоэлектрическому состоянию [2, 13-15].

Считается, что полярные нанообласти, являющиеся важной микроскопической чертой релаксоров, играют существенную роль в разных макроскопических свойствах. Температуру, при которой зарождаются динамические нанополярные области (которые нарушают дальний порядок), называют температурой Бернса T_R [16], она обычно выше на несколько десятков и даже сотен градусов T_{max} . Для известных сегнеторелаксоров на основе свинца T_R регистрировалась в интервале 600-750 К [17-19]. В процессе охлаждения при $T \le T_R$ нанополярные области начинают взаимодействовать между собой и при некоторой так называемой промежуточной температуре T^* происходит их объединение в более крупные (соответствующие локальному или наномасштабному фазовому переходу) и долгоживущие полярные области [18-21]. Дальнейшее охлаждение может приводить к замораживанию этих дипольных областей в неэргодическое состояние, т.е. к образованию кластерного стекла (которое в литературе также называют "стеклоподобной дипольной фазой") [12]. На основе анализа различных экспериментальных данных сегнеторелаксорной керамики $PbB'_{0.5}B''_{0.5}O_3$ можно построить следующую последовательность особых температурных точек (которые обусловлены изменениями структуры) $T_B > T^* > T_{max}$ и T_C .

Исследованию физических свойств мультиферроика PFT с помощью различных методов посвящено достаточно большое количество работ. Однако различные экспериментальные результаты и их интерпретация разными авторами далеко не всегда согласуются друг с другом. Более того, мало исследований этих материалов в области высоких температур. В частности, это может быть связано с их высокой проводимостью в области повышенных температур, когда эффекты структурных изменений не так заметны. Поэтому остается открытым вопрос об изменении физических и структурных характеристик, о существовании фазовых переходов в PFT при высоких температурах.

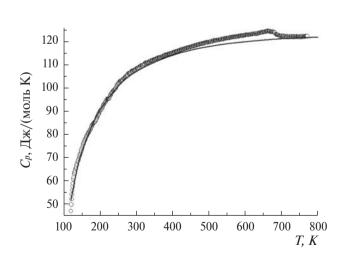
Исследования теплоемкости в широком температурном интервале позволяют регистрировать аномалии различной природы и получить важную информацию о природе физических явлений в исследуемых материалах. Процессы переноса тепла в РГТ в широком интервале температур до настоящего времени, насколько нам известно, не исследованы.

Цель данной работы — исследование теплофизических параметров (теплоемкости, теплопроводности, термодиффузии) $PbFe_{1/2}Ta_{1/2}O_3$ в широкой области температур 150-800~K для получения дополнительной информации о физических процессах в этих материалах.

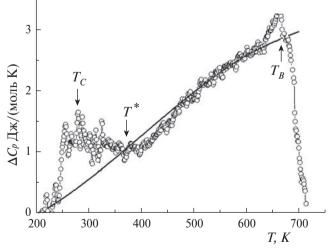
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Керамика PbFe_{1/2}Ta_{1/2}O₃ была получена с использованием обычной керамической технологии. Ферротанталат свинца в виде порошка синтезирован из соответствующих оксидов методом термохимической реакции в твердой фазе. Исходный материал с этанолом гомогенизировали в агатовых шаровых мельницах в течение 24 ч, высушивали и прокаливали при 1000°С в течение 1 ч, после чего повторно прокаливали в течение 4 ч

при той же температуре. Керамику спекали при 1150°С в течение 1 ч. Рентгенодифракционные измерения при комнатной температуре показали, что образцы являются однофазными и имеют кубическую (пр. гр. *Рт*3*m*) структуру перовскита [15].


Исследования термодиффузии и теплопроводности проводили методом лазерной вспышки на установке LFA-457 MicroFlash фирмы NETZSCH (Германия). Образец представлял собой плоскопараллельную пластину диаметром 12.7 и толщиной 1 мм. Скорость изменения температуры 5К/мин. Теплопроводность рассчитывали по формуле $\lambda = \eta C_p \rho$, где η — термодиффузия (температуропроводность), ρ — плотность образца, C_p — теплоемкость. Теплоемкость измеряли на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix® фирмы NETZSCH. Образец для измерения теплоемкости представлял собой пластину диаметром 4 и толщиной 1 мм.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Результаты исследований теплоемкости C_p сегнетоэлектрика $PbFe_{1/2}Ta_{1/2}O_3$ в интервале температур 150-800 К представлены на рис. 1 и 2. Видно, что на температурных зависимостях теплоемкости PFT наблюдается характерная для сегнеторелаксоров размытая аномалия в области фазового

перехода при Т $\approx 200-380$ К. Температура максимума теплоемкости в области размытого перехода $T_{max} \approx 275$ К почти совпадает с температурой сегнетоэлектрического фазового перехода ($T_C \approx 270$ К), определенной на основании рентгеновской и нейтронной дифракции [4–6], и соответствует переходу из кубической Pm3m в тетрагональную фазу P4mm. Следует отметить, что температура максимума C_p , при которой реализуется состояние с образованием полярных доменов, не совпадает с температурой максимума диэлектрической проницаемости $T_{max} \approx 245$ К для этих же образцов [15].

При 690 К на зависимостях $C_p(T)$ мультиферроика PFT наблюдается слабая аномалия, характерная для фазовых превращений. Возможно, в этой области температур в релаксорной керамике PFT начинают возникать нанополярные области, т.е. при $T_R \approx 690$ K начинается фазовый переход, который приводит к ромбоэдрическому искажению решетки в локальных наноразмерных областях и появлению в них поляризации. Однако корреляционная длина таких областей очень мала, и макроскопическая поляризация не возникает. В нашем случае аномальное поведение теплоемкости PFT, которое экспериментально начинает наблюдаться в области 690 К, действительно совпадает с областью температур $T \approx 600-750 \text{ K}$,

Рис. 1. Температурная зависимость теплоемкости C_p сегнетоэлектрика PbFe $_{0.5}$ Ta $_{0.5}$ O $_3$ (сплошная линия — результат аппроксимация фононной теплоемкости функцией Дебая).

Рис. 2. Температурная зависимость аномальной составляющей теплоемкости ΔC_p сегнетоэлектрика $PbFe_{0.5}Ta_{0.5}O_3$ (сплошная линия — результат аппроксимации выражением (1)).

в которой регистрировалась температура Бернса T_B для сегнеторелаксорной керамики PbB' $_{0.5}$ B'' $_{0.5}$ O $_3$ на основе свинца [17—19].

При анализе экспериментальных данных по теплоемкости в широком интервале температур необходимо учитывать ангармонический вклад, который может приводить к различию изобарной C_p и изохорной C_V теплоемкостей в области высоких температур. Эту компоненту теплоемкости можно вычислить по экспериментальным данным сжимаемости (K_T) и коэффициента теплового расширения (α): $C_p - C_V = V\alpha^2 T / K_T$, где V – молярный объем. Данные по сжимаемости PFT, насколько нам известно, в литературе отсутствуют, поэтому для вычисления ангармонического вклада в фононную теплоемкость использовали значения коэффициента теплового расширения для PFN [23] и модуля объемной сжимаемости сегнетокерамики $PrZr_{0.5}Ti_{0.5}O_3$ [24], родственных PFT. Рассчитанный ангармонический вклад в фононную теплоемкость РГТ при 700 К составил примерно $1.0 \, \text{Дж/(моль K)}$, т.е. менее 1%от общей теплоемкости. Поэтому, в силу малости этой величины, при дальнейшем анализе температурной зависимости фононной теплоемкости различие между $C_{p,u} C_V$ можно не принимать во внимание. Малая величина ангармонического вклада обусловлена достаточно низким коэффициентом теплового расширения оксидной керамики.

Для количественного анализа температурной зависимости теплоемкости и разделения фононного и аномального вкладов использована простая модель, описывающая фононную теплоемкость РГТ функцией Дебая $C_0 \sim D(\Theta_D/T)$, где Θ_D — характеристическая дебаевская температура [7]. Анализ данных по теплоемкости PFT при низких температурах дает величину $\Theta_D \approx 520 \text{ K}.$ Результаты обработки решеточной лоемкости функцией Дебая показаны на рис. 1 сплошной линией. Сравнение экспериментальных значений теплоемкости с рассчитанной по модели Дебая показывает, что имеет место отклонение, которое свидетельствует о наличии избыточной теплоемкости в РГТ. Температурная зависимость аномальной теплоемкости $\Delta C(T)$ показана на рис. 2.

Избыточная составляющая теплоемкости определялась как разность между измеренной и рассчитанной фононной теплоемкостью $\Delta C_p = C_p - C_0$. Характер выделенной таким образом теплоемкости позволяет интерпретировать ее как аномалию Шоттки для трехуровневых состояний, разделенных энергетическими барьерами ΔE_1 и ΔE_2 . Это могут быть атомы одного типа или группа атомов, разделенных барьерами ΔE_1 , ΔE_2 и имеющих три структурно-эквивалентные позиции [25]. В общем случае выражение для теплоемкости Шоттки можно получить, дифференцируя среднюю энергию частиц на энергетических уровнях [26]

$$\Delta C_p = (kT^2)^{-1}(\langle \Delta E_i^2 \rangle - \langle \Delta E_i \rangle^2).$$

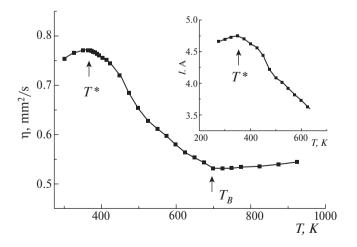
Выражение для теплоемкости Шоттки для трехуровневой модели (для произвольной массы вещества) имеет вид [27]:

$$\Delta C_p = vR[D_1(\Delta E_1 / kT)^2 \exp(-\Delta E_1 / kT) + D_2(\Delta E_2 / kT)^2 \exp(-\Delta E_2 / kT)]/[1 + D_3 \exp(-\Delta E_1 / kT) + D_2 \exp(-\Delta E_2 / kT)]^2, (1)$$

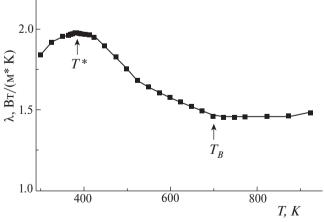
где v — число молей вещества, R — универсальная газовая постоянная, D_1 и D_2 — отношение кратностей вырождения уровней. Путем сравнения теплоемкости, рассчитанной по формуле (2), и экспериментально выделенной аномальной теплоемкости ΔC получены модельные параметры: D_1 = 1.257, D_2 = 29.435 и ΔE_1 = 0.324, ΔE_2 = 0.933 эВ. Согласие экспериментально полученной теплоемкости $\Delta C(T)$ с расчетной кривой зависимости аномальной теплоемкости от температуры по формуле (2) достаточно хорошее (рис. 2).

Таким образом, анализ температурной зависимости теплоемкости и ее избыточной части для мультиферроика PFT позволяет заключить, что в PbFe_{0.5}Ta_{0.5}O₃ в интервале температур 200—690 К наблюдается размытый сегнетоэлектрический фазовый переход, а дополнительный вклад в теплоемкость в области 200—690 К можно интерпретировать как аномалию Шоттки для трехуровневых состояний.

На рис. 3 и 4 приведены температурные зависимости термодиффузии η и теплопро-


водности λ образцов PFT в интервале температур 290—800 К. На зависимостях $\eta(T)$ и $\lambda(T)$ наблюдается аномальное поведение в областях $T \approx 380$ К и $T_B \approx 690$ К. Возможно, при $T^* \approx 380$ К происходит объединение нанополярных областей в более крупные и долгоживущие дипольные области, поскольку во всех известных релаксорных сегнетоэлектриках на основе Pb температура T^* находится выше T_C ($T_B > T^* > T_C$) в интервале 350-570 К (в ряде работ изменения при T^* называют "наномасштабным фазовым переходом") [17—19, 28].

Для анализа температурных зависимостей теплопроводности и термодиффузии рассчитаем длину свободного пробега фонона l_{nh} , используя известное соотношение $\eta = (1/3)v_sl_{ph}$ и выражение Дебая для теплопроводности фононов $\lambda_{ph} = (1/3)C_Vv_sl_{ph}$ (где λ_{ph} — теплопроводность, C_V — теплоемкость единицы объема, v_s _ скорость звука). Величины η , λ_{ph} и $C_p(C_p \approx C_V)$ определяются из эксперимента, данные скорости звука взяты из работы [29]. Независимые оценки l_{nh} из измерений теплопроводности и термодиффузии для PFN приводят к одной и той же величине $l_{ph} \sim 3.5-4.5 \text{Å}$ (см. вставку на рис. 3). Таким образом, можно пренебречь рассеянием фононов на границах кристаллитов, размеры которых составляют порядка нескольких микрон, т.к. $l_{ph} << d$, где d — средний размер гранул. Отсюда можно предположить, что структурные искажения


(т.е. центры рассеяния), ограничивающие длину свободного пробега фононов в РFТ, имеют величину порядка постоянной решетки. В качестве таких центров рассеяния могут выступать дефекты, локальные искажения решетки, которые существенно изменяются при фазовых превращениях. Такие искажения могут сыграть существенную роль в ограничении фононного теплопереноса в этих материалах.

Как видно из рис. 3, 4, в области температур размытого сегнетоэлектрического перехода $T_{\text{комн}} < T < T^* \ (T^* > T_C)$ при нагревании PFT наблюдается небольшое увеличение термодиффузии и теплопроводности, которое обычно характерно для аморфных и стеклообразных тел. Можно предположить, что такое поведение коэффициента теплопроводности в области 275-380 К объясняется распадом сегнетоэлектрических доменов на разупорядоченные диполи, которые можно рассматривать как дефекты кристаллической решетки и на которых происходит рассеяние фононов, участвующих в процессе переноса тепла. При приближении к T^* их число и размеры уменьшаются, что приводит к увеличению длины свободного пробега фонона и, соответственно, увеличению теплопроводности и термодиффузии.

Как видно из рис. 3, в области температур $T^* < T < T_B$ при нагревании PFT наблюдается заметное уменьшение коэффициен-

Рис. 3. Температурная зависимость термодиффузии $\acute{\eta}$ сегнетоэлектрика PbFe_{0.5}Ta_{0.5}O₃; на вставке — температурная зависимость длины свободного пробега фонона.

Рис. 4. Температурная зависимость теплопроводности λ сегнетоэлектрика PbFe $_{0.5}$ Ta $_{0.5}$ O $_{3}$.

тов термодиффузии и теплопроводности до температуры T_R , которое может быть обусловлено усилением распада выше T^* долгоживущих статических полярных областей на более мелкие динамические нанополярные области с ростом температуры. Электростатическое взаимодействие таких случайным образом ориентированных локальных поляризованных наноразмерных областей создает в окружающей параэлектрической среде сложную картину механических напряжений [30], что приводит к искажениям структуры и, соответственно, к увеличению количества центров рассеяния фононов. Согласно структурным данным [19, 31, 32], этими центрами могут быть искажения параметров решетки (и изменения объема элементарной ячейки), вызванные полярными сдвигами сегнетоактивных катионов Pb²⁺ и Та⁵⁺, и смещения атомов кислорода от своих исходных позиций в области температур $T^* < T < T_B$. При $T > T_B \approx 690$ K нанополярные области (полярные сдвиги сегнетоактивных катионов Рb и Та) исчезают, что приводит к существенному уменьшению искажений решетки, т.е. центров рассеяния, и, соответственно, к росту длины свободного пробега фононов и увеличению термодиффузии и теплопроводности в области $T > T_R$ (см. рис. 3, 4).

ЗАКЛЮЧЕНИЕ

В результате проведенных теплофизических исследований обнаружены характерные для сегнеторелаксоров аномалии теплофизических свойств в области размытого сегнетоэлектрического фазового перехода при температурах: Бернса $T_B \approx 690~\mathrm{K}$, "наномасштабного" перехода $T^* \approx 380~\mathrm{K}$ и $T_C \approx 275~\mathrm{K}$.

Установлено, что аномальное поведение теплоемкости в области температур 200—700 К обусловлено трехуровневыми состояниями (аномалия Шоттки). Анализ проведенных исследований совместно с литературными данными структурных исследований позволяет предположить, что в качестве основного механизма рассеяния фононов в релаксорном РFТ выступают локальные искажения кристаллической

решетки, вызванные полярными сдвигами катионов Pb^{2+} и Ta^{5+} , смещения атомов кислорода от своих исходных позиций и возникающие вследствие этого нанополярные области.

Показано, что исследования теплофизических свойств позволяют определить все характерные для сегнеторелаксоров температуры, связанные с возникновением и температурной эволюцией нанополярной структуры.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bokov A.A.*, *Ye Z.-G*. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure // J. Mater. Sci. 2006. V. 41. № 1. P. 31–52. https://doi.org/10.1007 / s10853-005-5915-7
- 2. *Nomura S.*, *Takabayashi H.*, *Nakagawa T.* Dielectric and Magnetic Properties of Pb(Fe_{1/2}Ta_{1/2})O₃ // Jpn. J. Appl. Phys. 1968. V. 7. № 6. P. 600. https://doi.org/10.1143/JJAP.7.600
- 3. *Martinez R., Palai R., Huhtinen H., Liu J., Scott J.F., Katiyar R.S.* Nanoscale Ordering and Multiferroic Behavior in Pb(Fe_{1/2}Ta_{1/2})O₃ // Phys. Rev. B. 2010. V. 82. P. 134104. https://doi.org/10.1103/PhysRevB.82.134104
- 4. *Lampis N., Sciau Ph., Lehmann A.G.* Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe_{0.5}Ta_{0.5}O₃ // J. Phys. Condens. Matter. 2000. V. 12. № 11. P. 2367–2378. https://doi.org/10.1088/0953-8984/12/11/303
- 5. *Lehmann A.G., Kubel F., Schmid H.* The Disordered Structure of the Complex Perovskite Pb(Fe_{0.5}Ta_{0.5})O₃ // J. Phys. Condens. Matter. 1997. V. 9. № 39. P. 8201-8212. https://doi.org/10.1088/0953-8984/9/39/006
- 6. *Lehmann A.G., Sciau Ph.* Ferroelastic Symmetry Changes in the Perovskite PbFeY_{0.5}Ta_{0.5}O₃ // J. Phys. Condens. Matter. 1999. V. 11. № 5. P. 1235. https://doi.org/10.1088/0953-8984/11/5/011
- 7. Raevski I.P., Molokeev M.S., Misyul S.V., Eremin E.V., Lazhevich A.V., Kubrin S.P., Sarichev D.A., Titov V.V., Chen H., Chou C.C.,

- Raevskaya S.I., Malitskaya M.A. Studies of Ferroelectric and Magnetic Phase Transitions in Multiferroic PbFe_{0.5}Ta_{0.5}O₃ // Ferroelectrics. 2015. V. 475. P. 52–60.
- https://doi.org/10.1080/00150193.2015.995009
- 8. *Shvorneva L.I., Venevtsev N. Y.* Perovskites with Ferroelectric–Magnetic PropertieS // Sov. Phys. JETP. 1966. V. 22. № 4. P. 722–724.
- 9. *Kubrin S.P., Raevskaya S.I., Kuropatkina S.A., Sarychev D.A., Raevski I.P.* Dielectric and Mossbauer Studies of B-Cation Order-Disorder Effect on the Properties of Pb(Fe_{1/2}Ta_{1/2})O₃ Relaxor Ferroelectric // Ferroelectrics. 2006. V. 340. № 1. P. 155–159. https://doi.org/10.1080/00150190802408945
- 10. Bonny W., Bonin M., Sciau Ph., Schenk K.J., Chapuis G. Phase Transitions in Disordered Lead Iron Niobate X-Ray and Synchrotron Radiation Diffraction Experiments // Solid State Commun. 1997. V. 102. P. 347—352. https://doi.org/10.1016/S0038-1098(97)00022-7
- Cross L.E. Relaxor Ferroelectrics // Ferroelectrics. 1987. V. 76. P. 241–267. https://doi.org/10.1007/978-3-540-68683-5_5
- 12. *Bokov A.A.*, *Shpak L.A.*, *Rayevsky I.P.* Diffuse Phase Transition in Pb(Fe_{0.5}Nb_{0.5})O₃-Based Solid Solutions // J. Phys. Chem. Solids. 1993. V. 54. P. 495–499. https://doi.org/10.1016/0022-3697(93)90333-M
- 13. Zhu W.Z., Kholkin A., Mantas P.Q., Baptista J.L., Preparation and Characterisation of Pb(Fe_{1/2}Ta_{1/2})O₃ Relaxor Ferroelectric // J. Eur. Ceram. Soc. 2000. V. 20. P. 2029–2034. https://doi.org/10.1134/1.1523518
- 14. Raevski I.P., Eremkin V.V., Smotrakov V.G., Malitskaya M.A., Bogatina S.A., Shilkina L.A. Growth and Study of PbFe_{1/2}Ta_{1/2}O₃ Single Crystals // Crystallogr. Rep. 2002. V. 47. P. 1076–1081. https://doi.org/10.1134/1.1523518
- Bormanis K., Burkhanov A.I., Waingolts A.I., Kalvane A. Electrical Properties of Lead Ferrotantalate Ceramics // Integr. Ferroelectr. 2009. V. 108. P. 134–139. https://doi.org/10.1080/00150193.2019.1569980
- 16. *Burns G., Dacol F.H.* Glassy Polarization Behavior in Ferroelectric Compounds Pb(Mg_{1/3}Nb_{2/3})O₃ and Pb(Zn_{1/3}Nb_{2/3})O₃ // Solid State Commun. 1983. V. 48. № 10. P. 853–856. https://doi.org/10.1016/0038-1098(83)90132-1

- 17. *Dul'kin E., Roth M., Janolin P.-E., Dkhil B.* Acoustic Emission Study of Phase Transitions and Polar Nanoregions in Relaxor-based Systems: Application to the PbZn_{1/3}Nb_{2/3}O₃ Family of Single Crystals // Phys. Rev. B. 2006. V. 73. № 1. P. 012102.
 - https://doi.org/10.1103/PhysRevB.73.012102
- 18. *Mihailova B., Maier B., Paulmann C., Malcherek T., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U.* High-temperature Structural Transformations in the Relaxor Ferroelectrics PbSc_{0.5}Ta_{0.5}O₃ and Pb_{0.78}Ba_{0.22}Sc_{0.5}Ta_{0.5}O₃ // Phys. Rev. B. 2008. V. 77. P. 174106. https://doi.org/10.1103/PHYSREVB.77.174106
- Dkhil B., Gemeiner P., Al-Barakaty A., Bellaiche L., Dul'kin E., Mojaev E., Roth M. Intermediate Temperature Scale T in Lead-based Relaxor Systems // Phys. Rev. B. 2009. V. 80. P. 064103. https://doi.org/10.1103/PhysRevB.80.064103
- 20. *Roth M., Mojaev E., Dul'kin E., Gemeiner P., Dkhil B.* Phase Transition at a Nanometer Scale Detected by Acoustic Emission within the Cubic Phase Pb(Zn_{1/3}Nb_{2/3})O₃-_xPbTiO₃ Relaxor Ferroelectrics // Phys. Rev. Lett. 2007. V. 98. № 26. P. 265701. https://doi.org/10.1103/PhysRevLett.98.265701
- 21. *Toulouse J*. The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning //
 - Ferroelectrics. 2008. V. 369. № 13. P. 203–213. https://doi.org/10.1080/08838150802378160
- 22. Gorev M.V., Flerov I.N., Sciau Ph., Bondarev V.S., Geddo-Lehmann A. Heat Capacity and Thermal Expansion Studies of Relaxors // Ferroelectrics. 2004. V. 307. P. 127–136. https://doi.org/10.1080/00150190490492240
- 23. *Dul'kin E.A.*, *Raevski I.P.*, *Emel'yanov S.M.* Acoustic Emission and Thermal Expansion of PbFe_{0.5}Nb_{0.5}O₃Crystals near Phase Transitions // Phys. Solid State. 1997. V. 39. P.363—364. https://doi.org/10.1080/00150190490492240
- 24. *Ronguette J., Haines J., Bornand V.* Transition to a Cubic Phase with Symmetry-breaking Disorder in PbZr_{0.52}Ti_{0.48}O₃ at High Pressure // Phys. Rev. B. 2002. V. 65. P. 214102-1–214102-4. https://doi.org/10.1103/PhysRevB.65.214102
- 25. *Kallaev S.N.*, *Omarov Z.M.*, *Bakmaev A.G.*, *Mitarov R.G.*, *Reznichenko L.A.*, *Bormanis K.* Thermal Properties of Multiferroic $Bi_{1-x}Eu_xFeO_3$

- (x = 0-0.40) Ceramics // J. Alloys Compd. 2017. V. 695. P. 3044–3047.
- https://doi.org/10.1016/j.jallcom.2016.11.347
- 26. *Жузе В.П.* Физические свойства халькогенидов редкоземельных элементов. Л.: Наука, 1973. 304 с.
- 27. *Mitarov R.G., Tikhonov V.V., Vasilev L.N., Golub-kov A.V., Smirnov I.A.* Schottky Effect in the Pr₃Te₄–Pr₂Te₃ System // Phys. Status Solidi A. 1975. V. 30. № 2. P. 457–467. https://doi.org/10.1002/pssa.2210300204
- 28. *Nuzhnyy D., Petzelt J., Bovtun V., Kamba S., Hlinka J.* Soft Mode Driven Local Ferroelectric Transition in Lead-based Relaxors // Appl. Phys. Lett. 2019. V. 114. № 18. P. 182901. https://doi.org/10.1063/1.5090468
- 29. Smirnova E., Sotnikov A., Zaitseva N., Schmidt H., Weihnacht M. Acoustic Properties of Multiferroic

- PbFe_{1/2}Ta_{1/2}O₃ // Phys. Lett. A. 2010. V. 374. № 41. P. 4256–4259. https://doi.org/10.1016/j.physleta.2010.08.039
- 30. *Isupov V.A.* New Approach to Phase Transition in Relaxor Ferroelectrics // Phys. Status Solidi B. 1999. V. 213. P. 211–218. https://doi.org/10.1002/(SICI)1521-3951 (199905)213:1<211::AID-PSSB211>3.0.CO;2-L
- 31. *Kolesova R., Kupriyanov M.* Structural Study of PbFe_{0.5}Nb_{0.5}O₃ Crystal in the Paraelectric Phase // Phase Transitions. 1993. V. 45. № 4. P. 271–276. https://doi.org/10.1080/01411599308213210
- 32. Lampis N., Sciau Ph., Lehmann A.G. Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe_{0.5}Nb_{0.5}O₃ // J. Phys.: Condens. Matter. 1999. V. 11. № 17. P. 3489—3501.
 - https://doi.org/10.1088/0953-8984/12/11/303