Decomposition algorithm in a nonlinear transport problem with storage

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Previously, a method was proposed for solving the classical transport problem in an integer formulation, based on the decomposition of the original problem into a sequence of two-dimensional problems with recalculation of the coefficients of the objective functions. The method was then extended to cover additional points of production and consumption. This paper considers the case when transportation costs for additional points are proportional to arbitrary powers of the transportation volume.

Толық мәтін

Введение. Известные алгоритмы решения транспортных задач основаны на методе улучшения плана в линейном программировании [1, 2]. Однако распространение на более широкие транспортные постановки сопровождается трудностями. В [3] предложен декомпозиционный метод решения классической транспортной задачи. Основой для этого метода являются подходы для оптимизации сетевых задач [4–6]. В [7] эти идеи используются для решения транспортной задачи с дополнительными пунктами производства и потребления (со складами), для которых установлены квадратичные штрафы. В настоящей работе указанные подходы распространяются на нелинейные зависимости.

1. Постановка задачи. Имеется, как и в классической транспортной задаче, m пунктов производства и n пунктов потребления. В каждом i-м пункте производства задан объем производства a i , i= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaaiilaiaaKdkacaWGPbGaeyypa0Zdamaanaaa baWdbiaaigdacaGGSaGaamyBaaaaaaa@3A2A@ , в каждом j-м – объем потребления b j , j= 1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeGaaiilaiaaKdkacaWGQbGaeyypa0Zdamaanaaa baWdbiaaigdacaGGSaGaamOBaaaaaaa@3A2E@ . Кроме того, существуют еще n дополнительных пунктов производства. Каждый j-й дополнительный пункт производства может поставлять свою продукцию только j-му пункту потребления. Объем производства в дополнительных пунктах производства не ограничен. Имеется также m дополнительных пунктов потребления. Каждому i-му дополнительному пункту потребления продукцию может поставлять только i-й обычный пункт производства. Объем потребления в дополнительных пунктах не ограничен. Указанные промежуточные пункты можно интерпретировать как склады.

Стоимость перевозки из j-го дополнительного пункта производства пропорциональна pj – степени от объема производства. Стоимость перевозки в i-й дополнительный пункт потребления пропорциональна ri – степени от объема перевозки. Необходимо минимизировать суммарные затраты на перевозки.

Формальная запись задачи имеет вид

j=1 n x ij + y i = a i ,  i= 1,m ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHRa WkcaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaa dggapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaiaaKdkaca a5GcGaamyAaiabg2da98aadaqdaaqaa8qacaaIXaGaaiilaiaad2ga aaGaaiilaaaa@4A4A@  (1.1)

i=1 m x ij + w j = b j ,  j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHRa WkcaWG3bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg2da9iaa dkgapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaaiilaiaaKdkaca a5GcGaamOAaiabg2da98aadaqdaaqaa8qacaaIXaGaaiilaiaad6ga aaGaaiilaaaa@4A4B@  (1.2)

i=1 m j=1 n c ij x ij + i=1 m d i y i r i + j=1 n e j w j p j  min, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGc daGfWbqabSWdaeaapeGaamOAaiabg2da9iaaigdaa8aabaWdbiaad6 gaa0WdaeaapeGaeyyeIuoaaOGaam4ya8aadaWgaaWcbaWdbiaadMga caWGQbaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaadMgacaWGQb aapaqabaGcpeGaey4kaSYaaybCaeqal8aabaWdbiaadMgacqGH9aqp caaIXaaapaqaa8qacaWGTbaan8aabaWdbiabggHiLdaakiaadsgapa WaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaamyEa8aadaqhaaWcbaWd biaadMgaa8aabaWdbiaadkhapaWaaSbaaWqaa8qacaWGPbaapaqaba aaaOWdbiabgUcaRmaawahabeWcpaqaa8qacaWGQbGaeyypa0JaaGym aaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGccaWGLbWdamaaBa aaleaapeGaamOAaaWdaeqaaOWdbiaadEhapaWaa0baaSqaa8qacaWG Qbaapaqaa8qacaWGWbWdamaaBaaameaapeGaamOAaaWdaeqaaaaak8 qacaa5GcGaeyOKH4QaciyBaiaacMgacaGGUbGaaiilaaaa@67AF@  (1.3)

xij0,  yi0,  wj0,  cij0,  di, ejцелые. (1.4)

Здесь xij – количество продукта, перевозимого из пункта j в пункт i; yi – количество продукта, доставляемого в дополнительный j-й пункт потребления; wj – количество продукта, вывозимого из дополнительного j-го пункта производства. Кроме того, будем считать cij четными числами, что не ограничивает общности рассмотрения.

2. Метод решения задачи. 2.1. П е р в ы й  э т а п. Сформируем m + n одномерных задач. Первые m одномерных задач имеют вид ( i= 1,m ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMgacqGH9aqppaWaa0aaae aapeGaaGymaiaacYcacaWGTbaaaaaa@35AC@  – фиксировано):

j=1 n x ij + y i =  a i , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHRa WkcaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaa KdkacaWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcaaa a@4393@  (2.1)

j=1 n c ij 1 x ij + d i y i r i min, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGJbWdamaaDaaaleaapeGaamyAaiaadQgaa8aabaWdbiaaigdaaa GccaWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGH RaWkcaWGKbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaadMhapa Waa0baaSqaa8qacaWGPbaapaqaa8qacaWGYbWdamaaBaaameaapeGa amyAaaWdaeqaaaaak8qacqGHsgIRcaqGTbGaaeyAaiaab6gacaGGSa aaaa@4C0A@  (2.2)

cij1=cij2,  0xijminai,bj,  xij,yi0целые. (2.3)

Вторые n оптимизационных задач с одним ограничением запишем как (j фиксировано):

i=1 m x ij + w j =  b j , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHRa WkcaWG3bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabg2da9iaa KdkacaWGIbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaacYcaaa a@4392@  (2.4)

i=1 m c ij 2 x ij + e j w j p j min, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGc caWGJbWdamaaDaaaleaapeGaamyAaiaadQgaa8aabaWdbiaaikdaaa GccaWG4bWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGH RaWkcaWGLbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaadEhapa Waa0baaSqaa8qacaWGQbaapaqaa8qacaWGWbWdamaaBaaameaapeGa amOAaaWdaeqaaaaak8qacqGHsgIRcaqGTbGaaeyAaiaab6gacaGGSa aaaa@4C09@  (2.5)

c ij 2 = c ij 2 ,  0 x ij min a i , b j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca WGPbGaamOAaaWdaeaapeGaaGOmaaaakiabg2da9maalaaapaqaa8qa caqGJbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaOqaa8qaca aIYaaaaiaacYcacaa5GcGaaqoOaiaaicdacqGHKjYOcaqG4bWdamaa BaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHKjYOcaqGTbGaae yAaiaab6gadaqadaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacaGGSaGaamOya8aadaWgaaWcbaWdbiaadQgaa8aabe aaaOWdbiaawIcacaGLPaaacaGGUaaaaa@4FDE@  (2.6)

Здесь x ij ,  w j 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaamOAaaWdaeqaaOWdbiaacYcacaa5GcGaam4Da8aadaWgaaWc baWdbiaadQgaa8aabeaak8qacqGHLjYScaaIWaaaaa@3B8E@  – целые.

Задачи (2.1)–(2.3) решаются следующим образом. Сравниваем di с c i j * 1 = min j c ij 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca WGPbGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qacaaI XaaaaOGaeyypa0ZdamaaxababaWdbiGac2gacaGGPbGaaiOBaaWcpa qaa8qacaWGQbaapaqabaGcpeGaam4ya8aadaqhaaWcbaWdbiaadMga caWGQbaapaqaa8qacaaIXaaaaaaa@3F78@  (i фиксировано). Если d i > c i j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyOpa4Jaam4ya8aadaqhaaWcbaWdbiaadMga caWGQbWdamaaCaaameqabaWdbiaacQcaaaaal8aabaWdbiaaigdaaa aaaa@396F@ , то полагаем x i j * =min( a i ,   b j * ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGcpeGa eyypa0JaciyBaiaacMgacaGGUbGaaiikaiaadggapaWaaSbaaSqaa8 qacaWGPbaapaqabaGcpeGaaiilaiaaKdkacaa5GcGaamOya8aadaWg aaWcbaWdbiaadQgapaWaaWbaaWqabeaapeGaaiOkaaaaaSWdaeqaaO WdbiaacMcaaaa@4404@ . При b j * < a i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGQbWdamaaCaaameqabaWdbiaacQcaaaaal8aabeaak8qacqGH8aap caWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@37AD@  сравниваем d i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335C@  с c i j ** 1 = min j j * c ij 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca WGPbGaamOAa8aadaahaaadbeqaa8qacaGGQaGaaiOkaaaaaSWdaeaa peGaaGymaaaakiabg2da98aadaWfqaqaa8qaciGGTbGaaiyAaiaac6 gaaSWdaeaapeGaamOAaiabgcMi5kaadQgapaWaaWbaaWqabeaapeGa aiOkaaaaaSWdaeqaaOWdbiaadogapaWaa0baaSqaa8qacaWGPbGaam OAaaWdaeaapeGaaGymaaaaaaa@43E2@ . Если d i > c i j ** 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyOpa4Jaam4ya8aadaqhaaWcbaWdbiaadMga caWGQbWdamaaCaaameqabaWdbiaacQcacaGGQaaaaaWcpaqaa8qaca aIXaaaaaaa@3A1D@ , то полагаем x i j ** =min( a i b j * ,   b j ** ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaamOAa8aadaahaaadbeqaa8qacaGGQaGaaiOkaaaaaSWdaeqa aOWdbiabg2da9iGac2gacaGGPbGaaiOBaiaacIcacaWGHbWdamaaBa aaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaadkgapaWaaSbaaSqa a8qacaWGQbWdamaaCaaameqabaWdbiaacQcaaaaal8aabeaak8qaca GGSaGaaqoOaiaaKdkacaWGIbWdamaaBaaaleaapeGaamOAa8aadaah aaadbeqaa8qacaGGQaGaaiOkaaaaaSWdaeqaaOWdbiaacMcaaaa@499D@ и т.д. Если имеет место неравенство d i c i j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaam4ya8aadaqhaaWcbaWdbiaadMga caWGQbWdamaaCaaameqabaWdbiaacQcaaaaal8aabaWdbiaaigdaaa aaaa@3A1C@  (сразу или после нескольких назначений линейных переменных), то ищется целочисленный минимум выражения d i y i r i + c i j * min( a i ,   b j * y i ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaamyEa8aadaqhaaWcbaWdbiaadMgaa8aabaWd biaadkhapaWaaSbaaWqaa8qacaWGPbaapaqabaaaaOWdbiabgUcaRi aadogapaWaaSbaaSqaa8qacaWGPbGaamOAa8aadaahaaadbeqaa8qa caGGQaaaaaWcpaqabaGcpeWaaeWaa8aabaWdbiGac2gacaGGPbGaai OBaiaacIcacaWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaa cYcacaa5GcGaaqoOaiaadkgapaWaaSbaaSqaa8qacaWGQbWdamaaCa aameqabaWdbiaacQcaaaaal8aabeaaaOWdbiaawIcacaGLPaaacqGH sislcaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcaaa a@4FBC@ .

Обозначим через y i * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca WGPbaapaqaa8qacaGGQaaaaaaa@3430@  оптимальное значение y i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@3371@ . Тогда, очевидно, x i j * =min( a i ,   b j * ) y i * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGcpeGa eyypa0JaciyBaiaacMgacaGGUbGaaiikaiaadggapaWaaSbaaSqaa8 qacaWGPbaapaqabaGcpeGaaiilaiaaKdkacaa5GcGaamOya8aadaWg aaWcbaWdbiaadQgapaWaaWbaaWqabeaapeGaaiOkaaaaaSWdaeqaaO WdbiaacMcacqGHsislcaWG5bWdamaaDaaaleaapeGaamyAaaWdaeaa peGaaiOkaaaaaaa@47F6@ . Если при этом (2.1) не является равенством, то далее задачи (2.1)–(2.3) решаются как линейные (см., например, [3]). Задачи вида (2.4)–(2.6) решаются вполне аналогичным образом.

Пусть все m+n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2gacqGHRaWkcaWGUbaaaa@33F2@  задач вида (2.1)–(2.3) и (2.4)–(2.6) решены. Если объединение оптимальных решений всех m+n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2gacqGHRaWkcaWGUbaaaa@33F2@  задач является допустимым решением исходной задачи (1.1)–(1.4), то, очевидно, тем самым получено оптимальное решение задачи (1.1)–(1.4). Если оптимальное решение задачи (1.1)–(1.4) не получено, то начинаем итерационный циклический процесс решения m x n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2gacaa5GcGaamiEaiaaKd kacaWGUbaaaa@3719@  оптимизационных задач с двумя ограничениями.

2.2. В т о р о й  э т а п. Первая двумерная задача имеет вид:

j=1 n x 1j + y 1 =  a 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaaGymaiaadQgaa8aabeaak8qacqGHRa WkcaWG5bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa KdkacaWGHbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcaaa a@42FA@  (2.7)

i=1 m x i1 + w 1 =  b 1 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGc caWG4bWdamaaBaaaleaapeGaamyAaiaaigdaa8aabeaak8qacqGHRa WkcaWG3bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaa KdkacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcaaa a@42F6@  (2.8)

j=1 n c 1j 1 x 1j + i=1 m c i1 2 x i1 + e 1 w 1 p 1 + d 1 y 1 r 1 min, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGJbWdamaaDaaaleaapeGaaGymaiaadQgaa8aabaWdbiaaigdaaa GccaWG4bWdamaaBaaaleaapeGaaGymaiaadQgaa8aabeaak8qacqGH RaWkdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad2gaa0WdaeaapeGaeyyeIuoaaOGaam4ya8aadaqhaaWcbaWdbiaa dMgacaaIXaaapaqaa8qacaaIYaaaaOGaamiEa8aadaWgaaWcbaWdbi aadMgacaaIXaaapaqabaGcpeGaey4kaSIaamyza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qacaWG3bWdamaaDaaaleaapeGaaGymaaWdae aapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaey4k aSIaamiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG5bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaamOCa8aadaWgaaadbaWdbiaa igdaa8aabeaaaaGcpeGaeyOKH4QaaeyBaiaabMgacaqGUbGaaiilaa aa@605D@  (2.9)

0 x ij min a i , b j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacqGHKjYOcaqG4bWdam aaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGHKjYOcaqGTbGa aeyAaiaab6gadaqadaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaadM gaa8aabeaak8qacaGGSaGaamOya8aadaWgaaWcbaWdbiaadQgaa8aa beaaaOWdbiaawIcacaGLPaaacaGGUaaaaa@4304@  (2.10)

Здесь x ij ,  y i 0,  w 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaamOAaaWdaeqaaOWdbiaacYcacaa5GcGaamyEa8aadaWgaaWc baWdbiaadMgaa8aabeaak8qacqGHLjYScaaIWaGaaiilaiaaKdkaca WG3bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgwMiZkaaicda aaa@4270@  – целые.

Задача (2.7)–(2.10) решается следующим образом. Единственной общей переменной в (2.7) и (2.8) является x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@ . Поэтому решение задачи (2.7)–(2.10) зависит от соотношения между c 11 = c 11 1 + c 11 2   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaadogapaWaa0baaSqaa8qa caaIXaGaaGymaaWdaeaapeGaaGymaaaakiabgUcaRiaadogapaWaa0 baaSqaa8qacaaIXaGaaGymaaWdaeaapeGaaGOmaaaakiaaKdkaaaa@3E88@  и другими коэффициентами в целевой функции (2.9).

Пусть

c 11 < min i,j1 c 1j 1 + c i1 2 ,  c 1j 1 + e 1 , c i1 2 + d 1 ,  d 1 + e 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda88aadaWfqaqaa8qaciGGTbGa aiyAaiaac6gaaSWdaeaapeGaamyAaiaacYcacaWGQbGaeyiyIKRaaG ymaaWdaeqaaOWdbmaabmaapaqaa8qacaWGJbWdamaaDaaaleaapeGa aGymaiaadQgaa8aabaWdbiaaigdaaaGccqGHRaWkcaWGJbWdamaaDa aaleaapeGaamyAaiaaigdaa8aabaWdbiaaikdaaaGccaGGSaGaaqoO aiaadogapaWaa0baaSqaa8qacaaIXaGaamOAaaWdaeaapeGaaGymaa aakiabgUcaRiaadwgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa aiilaiaadogapaWaa0baaSqaa8qacaWGPbGaaGymaaWdaeaapeGaaG OmaaaakiabgUcaRiaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaaiilaiaaKdkacaWGKbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgUcaRiaadwgapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qa caGLOaGaayzkaaGaaiOlaaaa@5FEA@  (2.11)

Тогда, очевидно, что в оптимальном решении задачи (2.7)–(2.10) x 11 =min a 1 , b 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaab2gacaqGPbGaaeOBamaa bmaapaqaa8qacaWGHbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aacYcacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaaaa@3E68@ , после чего задача (2.7)–(2.10) распадается на две одномерные, рассмотренные выше.

Определим новые значения c 11 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaaaaa@34AF@  и c 11 2   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiaaKdkaaaa@3640@  следующим образом. Возьмем целочисленные значения c 11 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaaaaa@34AF@  и c 11 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaaaaa@34B0@ , подчиняющиеся условиям c 11 1 d 1 , c 11 2 e 1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabgsMiJkaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadogapaWaa0baaSqaa8 qacaaIXaGaaGymaaWdaeaapeGaaGOmaaaakiabgsMiJkaadwgapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiOlaaaa@4145@  Пусть c 11 < min i,j1 ( c 1j 1 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda88aadaWfqaqaa8qaciGGTbGa aiyAaiaac6gaaSWdaeaapeGaamyAaiaacYcacaWGQbGaeyiyIKRaaG ymaaWdaeqaaOWdbiaacIcacaWGJbWdamaaDaaaleaapeGaaGymaiaa dQgaa8aabaWdbiaaigdaaaGccqGHRaWkaaa@42D2@ + c i1 2 ,  c 1j 1 + e 1 , c i1 2 + d 1 ,  d 1 + e 1 )= d 1 + e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgUcaRiaadogapaWaa0baaS qaa8qacaWGPbGaaGymaaWdaeaapeGaaGOmaaaakiaacYcacaa5GcGa am4ya8aadaqhaaWcbaWdbiaaigdacaWGQbaapaqaa8qacaaIXaaaaO Gaey4kaSIaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaam4ya8aadaqhaaWcbaWdbiaadMgacaaIXaaapaqaa8qacaaIYa aaaOGaey4kaSIaamiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caGGSaGaaqoOaiaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe Gaey4kaSIaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG PaGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacq GHRaWkcaWGLbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@5423@ + c i1 2 ,  c 1j 1 + e 1 , c i1 2 + d 1 ,  d 1 + e 1 )= d 1 + e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgUcaRiaadogapaWaa0baaS qaa8qacaWGPbGaaGymaaWdaeaapeGaaGOmaaaakiaacYcacaa5GcGa am4ya8aadaqhaaWcbaWdbiaaigdacaWGQbaapaqaa8qacaaIXaaaaO Gaey4kaSIaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG SaGaam4ya8aadaqhaaWcbaWdbiaadMgacaaIXaaapaqaa8qacaaIYa aaaOGaey4kaSIaamiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa caGGSaGaaqoOaiaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe Gaey4kaSIaamyza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGG PaGaeyypa0Jaamiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacq GHRaWkcaWGLbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@5423@ . Очевидно, что тогда c 11 1 = d 1 , c 11 2 = e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabg2da9iaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaadogapaWaa0baaSqaa8 qacaaIXaGaaGymaaWdaeaapeGaaGOmaaaakiabg2da9iaadwgapaWa aSbaaSqaa8qacaaIXaaapaqabaaaaa@3F1B@ . При новых значениях c 11 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaaaaa@34AF@  и c 11 2   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiaaKdkaaaa@3640@  объединение оптимальных решений соответствующих одномерных задач будет совпадать с оптимальным решением задачи (2.7)–(2.10).

Допустим, что c 11 > min i,j1 c 1j 1 + c i1 2 ,  c 1j 1 + e 1 , c i1 2 + d 1 ,  d 1 + e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+8aadaWfqaqaa8qaciGGTbGa aiyAaiaac6gaaSWdaeaapeGaamyAaiaacYcacaWGQbGaeyiyIKRaaG ymaaWdaeqaaOWdbmaabmaapaqaa8qacaWGJbWdamaaDaaaleaapeGa aGymaiaadQgaa8aabaWdbiaaigdaaaGccqGHRaWkcaWGJbWdamaaDa aaleaapeGaamyAaiaaigdaa8aabaWdbiaaikdaaaGccaGGSaGaaqoO aiaadogapaWaa0baaSqaa8qacaaIXaGaamOAaaWdaeaapeGaaGymaa aakiabgUcaRiaadwgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa aiilaiaadogapaWaa0baaSqaa8qacaWGPbGaaGymaaWdaeaapeGaaG OmaaaakiabgUcaRiaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaaiilaiaaKdkacaWGKbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgUcaRiaadwgapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qa caGLOaGaayzkaaaaaa@5F3C@ . Тогда, исключив общую переменную, решаются две одномерные задачи. Далее вычисляются следующие величины:

Δ u 0 = d 1 y 1 * r 1 y 1 * 1 r 1 + e 1 w 1 * p 1 w 1 * 1 p 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaWadaWdaeaapeWaaeWaa8aabaWdbiaadM hapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaGGQaaaaaGccaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiaadkhapaWaaSbaaWqaa8qacaaIXa aapaqabaaaaOWdbiabgkHiTmaabmaapaqaa8qacaWG5bWdamaaDaaa leaapeGaaGymaaWdaeaapeGaaiOkaaaakiabgkHiTiaaigdaaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaamOCa8aadaWgaaadbaWdbiaa igdaa8aabeaaaaaak8qacaGLBbGaayzxaaGaey4kaSIaamyza8aada WgaaWcbaWdbiaaigdaa8aabeaak8qadaWadaWdaeaapeWaaeWaa8aa baWdbiaadEhapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaGGQaaaaa GccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadchapaWaaSbaaWqa a8qacaaIXaaapaqabaaaaOWdbiabgkHiTmaabmaapaqaa8qacaWG3b WdamaaDaaaleaapeGaaGymaaWdaeaapeGaaiOkaaaakiabgkHiTiaa igdaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamiCa8aadaWgaa adbaWdbiaaigdaa8aabeaaaaaak8qacaGLBbGaayzxaaaaaa@5FF2@ ,

Δ u 1 = d 1 y 1 * r 1 y 1 * 1 r 1 + c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0Jaamiza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaWadaWdaeaapeWaaeWaa8aabaWdbiaadM hapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaGGQaaaaaGccaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiaadkhapaWaaSbaaWqaa8qacaaIXa aapaqabaaaaOWdbiabgkHiTmaabmaapaqaa8qacaWG5bWdamaaDaaa leaapeGaaGymaaWdaeaapeGaaiOkaaaakiabgkHiTiaaigdaaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaamOCa8aadaWgaaadbaWdbiaa igdaa8aabeaaaaaak8qacaGLBbGaayzxaaGaey4kaSIaam4ya8aada qhaaWcbaWdbiaadMgapaWaaWbaaWqabeaapeGaaiOkaaaaliaaigda a8aabaWdbiaaikdaaaaaaa@500C@ ,

Δ u 2 = e 1 w 1 * p 1 w 1 * 1 p 1 + c 1 j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0Jaamyza8aadaWgaaWcbaWd biaaigdaa8aabeaak8qadaWadaWdaeaapeWaaeWaa8aabaWdbiaadE hapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaGGQaaaaaGccaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiaadchapaWaaSbaaWqaa8qacaaIXa aapaqabaaaaOWdbiabgkHiTmaabmaapaqaa8qacaWG3bWdamaaDaaa leaapeGaaGymaaWdaeaapeGaaiOkaaaakiabgkHiTiaaigdaaiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaamiCa8aadaWgaaadbaWdbiaa igdaa8aabeaaaaaak8qacaGLBbGaayzxaaGaey4kaSIaam4ya8aada qhaaWcbaWdbiaaigdacaWGQbWdamaaCaaameqabaWdbiaacQcaaaaa l8aabaWdbiaaigdaaaaaaa@5006@ ,

Δ u 3 = c 1 j * 1 + c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0Jaam4ya8aadaqhaaWcbaWd biaaigdacaWGQbWdamaaCaaameqabaWdbiaacQcaaaaal8aabaWdbi aaigdaaaGccqGHRaWkcaWGJbWdamaaDaaaleaapeGaamyAa8aadaah aaadbeqaa8qacaGGQaaaaSGaaGymaaWdaeaapeGaaGOmaaaaaaa@402A@ .

Здесь y 1 * , w 1 *   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaGGQaaaaOGaaiilaiaadEhapaWaa0baaSqaa8qa caaIXaaapaqaa8qacaGGQaaaaOGaaqoOaaaa@3917@  – значения переменных y 1 , w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiilaiaadEhapaWaaSbaaSqaa8qacaaIXaaa paqabaaaaa@3619@  в оптимальных решениях одномерных задач без x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@ , а c 1 j * 1 ,  c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qacaaI XaaaaOGaaiilaiaaKdkacaWGJbWdamaaDaaaleaapeGaamyAa8aada ahaaadbeqaa8qacaGGQaaaaSGaaGymaaWdaeaapeGaaGOmaaaaaaa@3CE7@  – максимальные коэффициенты при положительных значениях переменных x 1j ,  x i1 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaamOAaaWdaeqaaOWdbiaacYcacaa5GcGaamiEa8aadaWgaaWc baWdbiaadMgacaaIXaaapaqabaGcpeGaaiOlaaaa@3A48@

Если max 0k3 Δ u k =Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aa beaaaaa@4292@  и c 11 > c 1 j * 1 +  c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iaadogapaWaa0baaSqaa8qa caaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qaca aIXaaaaOGaey4kaSIaaqoOaiaadogapaWaa0baaSqaa8qacaWGPbWd amaaCaaameqabaWdbiaacQcaaaWccaaIXaaapaqaa8qacaaIYaaaaa aa@40F3@ , то двумерная задача решена. При этом c 11 1 c 1 j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabgwMiZkaadogapaWaa0ba aSqaa8qacaaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpa qaa8qacaaIXaaaaaaa@3B3D@  и c 11 2 c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiabgwMiZkaadogapaWaa0ba aSqaa8qacaWGPbWdamaaCaaameqabaWdbiaacQcaaaWccaaIXaaapa qaa8qacaaIYaaaaaaa@3B3E@ . Если max 0k3 Δ u k =Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aa beaaaaa@4292@  и c 11 = c 1 j * 1 +  c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaadogapaWaa0baaSqaa8qa caaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qaca aIXaaaaOGaey4kaSIaaqoOaiaadogapaWaa0baaSqaa8qacaWGPbWd amaaCaaameqabaWdbiaacQcaaaWccaaIXaaapaqaa8qacaaIYaaaaa aa@40F1@ , то, обозначив через x 1 j * * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaSqaa8qaca aIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qacaGG Qaaaaaaa@35F1@  и x i * 1 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaSqaa8qaca WGPbWdamaaCaaameqabaWdbiaacQcaaaWccaaIXaaapaqaa8qacaGG Qaaaaaaa@35F0@  значения соответствующих переменных в оптимальных решениях одномерных задач, в двумерную задачу запишем ограничения

x 1 j * + x 11 = x 1 j * * ,  x i * 1 + x 11 = x i * 1 1 ,  c 11 1 = c 1 j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaGcpeGa ey4kaSIaamiEa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpe Gaeyypa0JaamiEa8aadaqhaaWcbaWdbiaaigdacaWGQbWdamaaCaaa meqabaWdbiaacQcaaaaal8aabaWdbiaacQcaaaGccaGGSaGaaqoOai aadIhapaWaaSbaaSqaa8qacaWGPbWdamaaCaaameqabaWdbiaacQca aaWccaaIXaaapaqabaGcpeGaey4kaSIaamiEa8aadaWgaaWcbaWdbi aaigdacaaIXaaapaqabaGcpeGaeyypa0JaamiEa8aadaqhaaWcbaWd biaadMgapaWaaWbaaWqabeaapeGaaiOkaaaaliaaigdaa8aabaWdbi aaigdaaaGccaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qacaaIXaGa aGymaaWdaeaapeGaaGymaaaakiabg2da9iaadogapaWaa0baaSqaa8 qacaaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qa caaIXaaaaaaa@5A74@  и c 11 2 = c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiabg2da9iaadogapaWaa0ba aSqaa8qacaWGPbWdamaaCaaameqabaWdbiaacQcaaaWccaaIXaaapa qaa8qacaaIYaaaaaaa@3A7E@ .

Если max 0k3 Δ u k =Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aa beaaaaa@4292@  и c 11 < c 1 j * 1 +  c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iaadogapaWaa0baaSqaa8qa caaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqaa8qaca aIXaaaaOGaey4kaSIaaqoOaiaadogapaWaa0baaSqaa8qacaWGPbWd amaaCaaameqabaWdbiaacQcaaaWccaaIXaaapaqaa8qacaaIYaaaaa aa@40EF@ , то x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@  увеличивается на min x 1 j * ,  x i * 1   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiGac2gacaGGPbGaaiOBamaabm aapaqaa8qacaWG4bWdamaaBaaaleaapeGaaGymaiaadQgapaWaaWba aWqabeaapeGaaiOkaaaaaSWdaeqaaOWdbiaacYcacaa5GcGaamiEa8 aadaWgaaWcbaWdbiaadMgapaWaaWbaaWqabeaapeGaaiOkaaaaliaa igdaa8aabeaaaOWdbiaawIcacaGLPaaacaa5Gcaaaa@41A2@  (или до своего максимума). Если при этом x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@  достигает максимума, то решение двумерной задачи окончено и c 11 1 c 1 j * 1 ,  c 11 2 c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabgsMiJkaadogapaWaa0ba aSqaa8qacaaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpa qaa8qacaaIXaaaaOGaaiilaiaaKdkacaWGJbWdamaaDaaaleaapeGa aGymaiaaigdaa8aabaWdbiaaikdaaaGccqGHKjYOcaWGJbWdamaaDa aaleaapeGaamyAa8aadaahaaadbeqaa8qacaGGQaaaaSGaaGymaaWd aeaapeGaaGOmaaaaaaa@476E@ . В противном случае пересчитываются Δ u k , k= 0, 3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaWGRbaapaqabaGcpeGaaiilaiaaKdkacaWGRbGaeyypa0Zd amaanaaabaWdbiaaicdacaGGSaGaaqoOaiaaiodaaaaaaa@3CF8@ , и процесс решения продолжается.

Если max 0k3 Δ u k =Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaikdaa8aa beaaaaa@4291@ , то при c 11 >Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@387B@  решение двумерной задачи окончено и c 11 1 c 1 j * 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabgwMiZkaadogapaWaa0ba aSqaa8qacaaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpa qaa8qacaaIXaaaaaaa@3B3D@ , c 11 2 e 1 w 1 * p 1 w 1 * 1 p 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiabgwMiZkaadwgapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeWaamWaa8aabaWdbmaabmaapaqaa8 qacaWG3bWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaiOkaaaaaOGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGWbWdamaaBaaameaape GaaGymaaWdaeqaaaaak8qacqGHsisldaqadaWdaeaapeGaam4Da8aa daqhaaWcbaWdbiaaigdaa8aabaWdbiaacQcaaaGccqGHsislcaaIXa aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadchapaWaaSbaaWqa a8qacaaIXaaapaqabaaaaaGcpeGaay5waiaaw2faaaaa@4B25@ . При c 11 =Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3879@  полагаем c 11 1 = c 1 j * 1 ,  c 11 2 = MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabg2da9iaadogapaWaa0ba aSqaa8qacaaIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpa qaa8qacaaIXaaaaOGaaiilaiaaKdkacaWGJbWdamaaDaaaleaapeGa aGymaiaaigdaa8aabaWdbiaaikdaaaGccqGH9aqpaaa@4152@ = e 1 w 1 * p 1 w 1 * 1 p 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabg2da9iaadwgapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeWaamWaa8aabaWdbmaabmaapaqaa8qa caWG3bWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaiOkaaaaaOGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaWGWbWdamaaBaaameaapeGa aGymaaWdaeqaaaaak8qacqGHsisldaqadaWdaeaapeGaam4Da8aada qhaaWcbaWdbiaaigdaa8aabaWdbiaacQcaaaGccqGHsislcaaIXaaa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadchapaWaaSbaaWqaa8 qacaaIXaaapaqabaaaaaGcpeGaay5waiaaw2faaaaa@46D6@ . При c 11 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3877@  увеличивается x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@ , а w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaaaaa@333C@  и x 1 j * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaamOAa8aadaahaaadbeqaa8qacaGGQaaaaaWcpaqabaaaaa@3532@  уменьшаются до момента, когда Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaaaaa@34A1@  перестает быть максимумом. Затем пересчитываются все Δ u k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaWGRbaapaqabaaaaa@34D5@  и процесс решения продолжается.

Если max 0k3 Δ u k =Δ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaigdaa8aa beaaaaa@4290@ , то при c 11 >Δ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@387A@  решение двумерной задачи окончено и c 11 1 d 1 y 1 * r 1 y 1 * 1 r 1 ,  c 11 2 c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabgwMiZkaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeWaamWaa8aabaWdbmaabmaapaqaa8 qacaWG5bWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaiOkaaaaaOGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbWdamaaBaaameaape GaaGymaaWdaeqaaaaak8qacqGHsisldaqadaWdaeaapeGaamyEa8aa daqhaaWcbaWdbiaaigdaa8aabaWdbiaacQcaaaGccqGHsislcaaIXa aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhapaWaaSbaaWqa a8qacaaIXaaapaqabaaaaaGcpeGaay5waiaaw2faaiaacYcacaa5Gc Gaam4ya8aadaqhaaWcbaWdbiaaigdacaaIXaaapaqaa8qacaaIYaaa aOGaeyyzImRaam4ya8aadaqhaaWcbaWdbiaadMgapaWaaWbaaWqabe aapeGaaiOkaaaaliaaigdaa8aabaWdbiaaikdaaaaaaa@5774@ . При c 11 =Δ u 1      c 11 1 = d 1 y 1 * r 1 y 1 * 1 r 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iabfs5aejaadwhapaWaaSba aSqaa8qacaaIXaaapaqabaGcpeGaaqoOaiaaKdkacaa5GcGaaqoOai aadogapaWaa0baaSqaa8qacaaIXaGaaGymaaWdaeaapeGaaGymaaaa kiabg2da9iaadsgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeWaam Waa8aabaWdbmaabmaapaqaa8qacaWG5bWdamaaDaaaleaapeGaaGym aaWdaeaapeGaaiOkaaaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8 qacaWGYbWdamaaBaaameaapeGaaGymaaWdaeqaaaaak8qacqGHsisl daqadaWdaeaapeGaamyEa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbi aacQcaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaadkhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaaGcpeGaay 5waiaaw2faaaaa@57EA@ ,   c 11 2 = c i * 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWGJbWdamaaDaaale aapeGaaGymaiaaigdaa8aabaWdbiaaikdaaaGccqGH9aqpcaWGJbWd amaaDaaaleaapeGaamyAa8aadaahaaadbeqaa8qacaGGQaaaaSGaaG ymaaWdaeaapeGaaGOmaaaaaaa@3C04@ . При c 11 <Δ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@3876@  все аналогично случаю c 11 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3877@ .

Если max 0k3 Δ u k =Δ u 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacggaca GG4baal8aabaWdbiaaicdacqGHKjYOcaWGRbGaeyizImQaaG4maaWd aeqaaOWdbiabfs5aejaadwhapaWaaSbaaSqaa8qacaWGRbaapaqaba GcpeGaeyypa0JaeuiLdqKaamyDa8aadaWgaaWcbaWdbiaaicdaa8aa beaaaaa@428F@  и c 11 <Δ u 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIWaaapaqabaaaaa@3875@ , то y 1 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaGGQaaaaaaa@33FD@  и w 1 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaGGQaaaaaaa@33FB@  уменьшаются, а x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@  увеличивается до потери Δ u 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaaaaa@349F@  статуса максимума. Далее все Δ u k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaWGRbaapaqabaaaaa@34D5@  пересчитываются и процесс решения продолжается.

Так же, как и в линейном случае [3], имеет место монотонное возрастание суммы значений целевых функций в оптимальных решениях всех m+n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad2gacqGHRaWkcaWGUbaaaa@33F2@  одномерных задач в циклическом процессе решения двумерных задач и их разъединения на одномерные задачи. Сумма эта, очевидно, ограничена сверху, процесс – целочисленен, следовательно, за конечное число шагов достигается предел. Точно так же, как и в линейном случае [3], если объединение оптимальных решений одномерных задач (в предельном состоянии) является допустимым решением исходной задачи (1.1)–(1.4), то оно выступает ее оптимальным решением. В противном случае, как и в [3], образуются обобщенные производители и потребители.

3. Пример. Рассмотрим транспортную задачу с дополнительными пунктами потребления и производства со степенной зависимостью от объема производства и потребления в дополнительных пунктах. Ограничения и целевую функцию запишем следующим образом:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

x 12 + x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@4136@ ,

x 13 + x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@413B@ ,

8 x 11 +12 x 12 +18 x 13 + y 1 2 +16 x 21 +20 x 22 +18 x 23 +2 y 2 3 +16 x 31 +18 x 32 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaIXaGaaGOmaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaigdacaaI4aGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqa baGcpeGaey4kaSIaamyEa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbi aaikdaaaGccqGHRaWkcaaIXaGaaGOnaiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaaikdacaaIWaGaamiEa8 aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaGym aiaaiIdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8 qacqGHRaWkcaaIYaGaamyEa8aadaqhaaWcbaWdbiaaikdaa8aabaWd biaaiodaaaGccqGHRaWkcaaIXaGaaGOnaiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaaigdacaaI4aGaamiE a8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqabaGcpeGaey4kaScaaa@62F3@

+20 x 33 +3 y 3 3 + w 1 2 +2 w 2 3 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgUcaRiaaikdacaaIWaGaam iEa8aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaGcpeGaey4kaSIa aG4maiaadMhapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIZaaaaO Gaey4kaSIaam4Da8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikda aaGccqGHRaWkcaaIYaGaam4Da8aadaqhaaWcbaWdbiaaikdaa8aaba WdbiaaiodaaaGccqGHRaWkcaaIZaGaam4Da8aadaqhaaWcbaWdbiaa iodaa8aabaWdbiaaiodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@4C90@ .

3.1. П е р в ы й  э т а п. 3. 1. 1. Первая одномерная задача:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

4 x 11 +6 x 12 +9 x 13 + y 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaisdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI2aGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGyoai aadIhapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabgUca RiaadMhapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaey OKH4QaaeyBaiaabMgacaqGUbaaaa@466E@ .

Здесь c 11 1 > d 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37BF@ , поэтому ищем целочисленный минимум выражения y 1 2 +4 10 y 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIYaaaaOGaey4kaSIaaGinamaabmaapaqaa8qa caaIXaGaaGimaiabgkHiTiaadMhapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaaaaa@3BEC@ :

min y 1 0 y 1 2 +4 10 y 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadMhapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaWG5bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaaisda daqadaWdaeaapeGaaGymaiaaicdacqGHsislcaWG5bWdamaaBaaale aapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5waiaaw2fa aaaa@45FF@ ,

f y 1 =2 y 1 4=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOmaiaadMhapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyOeI0IaaGinaiabg2da9iaaicdaaaa@3D70@ ,

y 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOmaaaa@351A@ ,

x 11 =6,  x 12 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaikdaaaa@3CB8@ .

3. 1. 2. Вторая одномерная задача:

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

8 x 21 +10 x 22 +9 x 23 +2 y 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGOmaiaaigdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiMdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8qa cqGHRaWkcaaIYaGaamyEa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbi aaiodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@47E8@ .

Здесь c 21 1 > d 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaGymaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@37C1@ , поэтому вычисляем целочисленный минимум 2 y 2 3 +8 20 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG5bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiIdadaqadaWd aeaapeGaaGOmaiaaicdacqGHsislcaWG5bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB0@ :

min y 2 0 2 y 2 3 +8 20 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadMhapaWaaSbaaWqaa8qacaaIYaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaaIYaGaam yEa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaGccqGHRaWk caaI4aWaaeWaa8aabaWdbiaaikdacaaIWaGaeyOeI0IaamyEa8aada WgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfa caGLDbaaaaa@46C4@ ,

f y 2 =6 y 2 2 8=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadMhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGioaiabg2da9iaaicdaaaa@3E37@ ,

y 2 = 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaikdaa8aabaWd bmaakaaapaqaa8qacaaIZaaaleqaaaaaaaa@3660@ .

Целочисленный минимум достигается при y 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaaaa@351A@ :

x 21 =6,  x 22 =13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da9i aaigdacaaIZaaaaa@3D76@ .

3. 1. 3. Третья одномерная задача:

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

8 x 31 +9 x 32 +10 x 33 +3 y 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaG4maiaaigdaa8aabeaak8qacqGHRaWkcaaI5aGaamiEa8aa daWgaaWcbaWdbiaaiodacaaIYaaapaqabaGcpeGaey4kaSIaaGymai aaicdacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qa cqGHRaWkcaaIZaGaamyEa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbi aaiodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@47ED@ .

Здесь c 31 1 > d 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaGymaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37C1@ , ищем целочисленный минимум:

min y 3 0 3 y 3 3 +8 30 y 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadMhapaWaaSbaaWqaa8qacaaIZaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaaIZaGaam yEa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaGccqGHRaWk caaI4aWaaeWaa8aabaWdbiaaiodacaaIWaGaeyOeI0IaamyEa8aada WgaaWcbaWdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfa caGLDbaaaaa@46C9@ ,

f y 3 =9 y 3 2 8=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadMhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGioaiabg2da9iaaicdaaaa@3E3C@ ,

y 3 = 2 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaikdadaGcaaWd aeaapeGaaGOmaaWcbeaaaOWdaeaapeGaaG4maaaaaaa@3727@ .

Целочисленный минимум достигается при y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@351B@ :

x 31 =6,  x 32 =22,  x 33 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiabg2da9i aaikdacaaIYaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaG4m aiaaiodaa8aabeaak8qacqGH9aqpcaaIXaaaaa@445A@ .

3. 1. 4. Четвертая одномерная задача:

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

4 x 11 +8 x 21 +8 x 31 + w 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaisdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI4aGaamiEa8aa daWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGioai aadIhapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaOWdbiabgUca RiaadEhapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaOGaey OKH4QaaeyBaiaabMgacaqGUbaaaa@466D@ .

Здесь c 11 2 > e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGOmaaaakiabg6da+iaadwgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37C1@ , находим минимум выражения w 1 2 +4 6 w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIYaaaaOGaey4kaSIaaGinamaabmaapaqaa8qa caaI2aGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO WdbiaawIcacaGLPaaaaaa@3B33@ :

min w 1 0 w 1 2 +4 6 w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadEhapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaWG3bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaaisda daqadaWdaeaapeGaaGOnaiabgkHiTiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4544@ ,

f w 1 =2 w 1 4=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOmaiaadEhapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyOeI0IaaGinaiabg2da9iaaicdaaaa@3D6C@ ,

w 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOmaaaa@3518@ ,

x 11 =4,  x 21 =0,  x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaisdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaGym aaWdaeqaaOWdbiabg2da9iaaicdaaaa@4393@ .

Далее решать одномерные задачи не имеет смысла, так как, например, в третьей задаче x 31 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdaaaa@35DA@ , а в четвертой x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdaaaa@35D4@ .

3.2. В т о р о й  э т а п. 3. 2. 1. Первая двумерная задача:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

8 x 11 +6 x 12 +9 x 13 +8 x 21 +8 x 31 + y 1 2 +  w 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI2aGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGyoai aadIhapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabgUca RiaaiIdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaigdaa8aabeaak8 qacqGHRaWkcaaI4aGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIXaaa paqabaGcpeGaey4kaSIaamyEa8aadaqhaaWcbaWdbiaaigdaa8aaba WdbiaaikdaaaGccqGHRaWkcaa5GcGaam4Da8aadaqhaaWcbaWdbiaa igdaa8aabaWdbiaaikdaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@54DB@ .

Здесь c 11 > d 1 + e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaey4kaSIaamyza8aadaWgaaWcbaWdbiaaig daa8aabeaaaaa@39FE@ , поэтому решаются две одномерные задачи.

3. 2. 1. 1. Первая одномерная задача:

x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@3D68@ ,

6 x 12 +9 x 13 + y 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiAdacaWG4bWdamaaBaaale aapeGaaGymaiaaikdaa8aabeaak8qacqGHRaWkcaaI5aGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaamyEa8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41E7@ .

Здесь c 12 1 > d 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGOmaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37C0@ , поэтому вычисляем минимум:

min y 1 0 y 1 2 +6 10 y 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadMhapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaWG5bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaaiAda daqadaWdaeaapeGaaGymaiaaicdacqGHsislcaWG5bWdamaaBaaale aapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5waiaaw2fa aaaa@4601@ ,

f y 1 =2 y 1 6=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOmaiaadMhapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyOeI0IaaGOnaiabg2da9iaaicdaaaa@3D72@ ,

y 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4maaaa@351B@ ,

x 12 =7,  x 13 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiEdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabg2da9i aaicdaaaa@3CB9@ .

3. 2. 1. 2. Вторая одномерная задача:

x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@3CB1@ ,

8 x 21 +8 x 31 + w 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGOmaiaaigdaa8aabeaak8qacqGHRaWkcaaI4aGaamiEa8aa daWgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaam4Da8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41E6@ .

Здесь c 21 2 > e 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaGymaaWdaeaapeGaaGOmaaaakiabg6da+iaadwgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37C2@ , ищем минимум:

min w 1 0 w 1 2 +8 6 w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaWfqaqaaabaaaaaaaaapeGaciyBaiaacMgaca GGUbaal8aabaWdbiaadEhapaWaaSbaaWqaa8qacaaIXaaapaqabaWc peGaeyyzImRaaGimaaWdaeqaaOWdbmaadmaapaqaa8qacaWG3bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaaiIda daqadaWdaeaapeGaaGOnaiabgkHiTiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4548@ ,

f w 1 =2 w 1 8=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOmaiaadEhapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyOeI0IaaGioaiabg2da9iaaicdaaaa@3D70@ ,

w 1 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGinaaaa@351A@ ,

x 21 +  x 31 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaaKdkacaWG4bWdamaaBaaa leaapeGaaG4maiaaigdaa8aabeaak8qacqGH9aqpcaaIYaaaaa@3B26@ ,

Δ u 0 =1 94 +1 169 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaI5aGaeyOeI0IaaGinaaGaayjkaiaawMcaaiabgUcaRiaaigdada qadaWdaeaapeGaaGymaiaaiAdacqGHsislcaaI5aaacaGLOaGaayzk aaGaeyypa0JaaGymaiaaikdaaaa@437D@ ,

Δ u 1 =5+8=13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaiIda cqGH9aqpcaaIXaGaaG4maaaa@3AA1@ ,

Δ u 2 =7+6=13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4naiabgUcaRiaaiAda cqGH9aqpcaaIXaGaaG4maaaa@3AA2@ ,

Δ u 3 =6+8=14 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaiIda cqGH9aqpcaaIXaGaaGinaaaa@3AA5@ .

Здесь c 11 <Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@3878@ , поэтому x 11 =2,  x 21 =0,  x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaikdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaGym aaWdaeqaaOWdbiabg2da9iaaicdaaaa@4391@ , x 12 =5,  y 1 =3,  w 1 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiwdacaGGSaGaaqoOaiaa dMhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaG4mai aacYcacaa5GcGaam4Da8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qa cqGH9aqpcaaI0aaaaa@4223@ :

Δ u 0 =1 94 +1 169 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaI5aGaeyOeI0IaaGinaaGaayjkaiaawMcaaiabgUcaRiaaigdada qadaWdaeaapeGaaGymaiaaiAdacqGHsislcaaI5aaacaGLOaGaayzk aaGaeyypa0JaaGymaiaaikdaaaa@437D@ ,

Δ u 1 =5+0=5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaicda cqGH9aqpcaaI1aaaaa@39E0@ ,

Δ u 2 =7+6=13 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4naiabgUcaRiaaiAda cqGH9aqpcaaIXaGaaG4maaaa@3AA1@ ,

Δ u 3 =6+0=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaicda cqGH9aqpcaaI2aaaaa@39E4@ .

Здесь c 11 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3877@ , поэтому x 11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaaaa@33F8@  увеличивается за счет x 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaaaa@33F9@  и w 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaaaaa@333C@ :

x 11 =3,  x 12 =4,  w 1 =3,  y 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiodacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaisdacaGGSaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaG4maiaacYcacaa5GcGaamyEa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGH9aqpcaaIZaaaaa@4901@ ,

Δ u 0 =1 94 +1 94 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaI5aGaeyOeI0IaaGinaaGaayjkaiaawMcaaiabgUcaRiaaigdada qadaWdaeaapeGaaGyoaiabgkHiTiaaisdaaiaawIcacaGLPaaacqGH 9aqpcaaIXaGaaGimaaaa@42BE@ ,

Δ u 1 =5+0=5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaicda cqGH9aqpcaaI1aaaaa@39E0@ ,

Δ u 2 =5+6=11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaiAda cqGH9aqpcaaIXaGaaGymaaaa@3A9E@ ,

Δ u 3 =6+0=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaicda cqGH9aqpcaaI2aaaaa@39E4@ .

Снова c 11 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3877@ , поэтому x 11 =4,  x 12 =3,  w 1 =2,  y 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaisdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaiodacaGGSaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaGOmaiaacYcacaa5GcGaamyEa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGH9aqpcaaIZaaaaa@4900@ :

Δ u 0 =5+3=8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaioda cqGH9aqpcaaI4aaaaa@39E5@ ,

Δ u 1 =5+0=5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaicda cqGH9aqpcaaI1aaaaa@39E0@ ,

Δ u 2 =3+6=9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4maiabgUcaRiaaiAda cqGH9aqpcaaI5aaaaa@39E9@ ,

Δ u 3 =6+0=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaicda cqGH9aqpcaaI2aaaaa@39E4@ .

Снова c 11 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3877@ , поэтому x 11 =5,  x 12 =2,  w 1 =1,  y 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiwdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaikdacaGGSaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaGymaiaacYcacaa5GcGaamyEa8aadaWgaaWcba Wdbiaaigdaa8aabeaak8qacqGH9aqpcaaIZaaaaa@48FF@ :

Δ u 0 =5+1=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaigda cqGH9aqpcaaI2aaaaa@39E1@ ,

Δ u 1 =5+0=5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGynaiabgUcaRiaaicda cqGH9aqpcaaI1aaaaa@39E0@ ,

Δ u 2 =1+6=7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiabgUcaRiaaiAda cqGH9aqpcaaI3aaaaa@39E5@ ,

Δ u 3 =6+0=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaicda cqGH9aqpcaaI2aaaaa@39E4@ .

Здесь c 11 >Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@387B@ , поэтому решение второй одномерной задачи окончено.

3. 2. 2. Вторая двумерная задача:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

x 12 + x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@4136@ ,

6 x 11 +12 x 12 +9 x 13 +10 x 22 +9 x 32 + y 1 2 + 2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiAdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaIXaGaaGOmaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiMdacaWG4bWdamaaBaaaleaapeGaaGymaiaaiodaa8aabeaak8qa cqGHRaWkcaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG OmaaWdaeqaaOWdbiabgUcaRiaaiMdacaWG4bWdamaaBaaaleaapeGa aG4maiaaikdaa8aabeaak8qacqGHRaWkcaWG5bWdamaaDaaaleaape GaaGymaaWdaeaapeGaaGOmaaaakiabgUcaRiaaKdkacaaIYaGaam4D a8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaGccqGHsgIRca qGTbGaaeyAaiaab6gaaaa@5704@ .

Имеем c 12 =12> d 1 + e 2 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaGaeyOpa4Ja amiza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaWGLb WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaiodaaaa@3E5A@ , поэтому сначала x 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaaaa@33F9@  исключается и решаются две одномерные задачи.

3. 2. 2. 1. Первая одномерная задача:

x 11 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@3D67@ ,

6 x 11 +9 x 13 + y 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiAdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI5aGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaamyEa8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41E6@ .

Здесь c 11 1 > d 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGymaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@37BF@ , поэтому находим минимум:

y 1 3 +6 10 y 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIZaaaaOGaey4kaSIaaGOnamaabmaapaqaa8qa caaIXaGaaGimaiabgkHiTiaadMhapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaaaaa@3BEF@ ,

f y 1 =3 y 1 2 6=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaG4maiaadMhapaWaa0baaSqaa8qacaaIXa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGOnaiabg2da9iaaicdaaaa@3E30@ ,

y 1 2 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGOmaaaa@35D7@ ,

y 1 = 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaaikdaaSqabaaa aa@3554@ .

Целочисленный минимум достигается при y 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGymaaaa@3519@ . При этом x 11 =6,  x 13 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabg2da9i aaiodaaaa@3CBA@ .

3. 2. 2. 2. Вторая одномерная задача:

x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6C@ ,

10 x 22 +9 x 32 +2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaGyoaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaikdacaWG3bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@435A@ .

Имеем c 32 > e 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg6da+iaadwgapaWaaSbaaSqaa8qa caaIYaaapaqabaaaaa@3708@ , поэтому отыскиваем целочисленный минимум:

2 w 2 3 +9 22 w 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG3bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGOmaiaaikdacqGHsislcaWG3bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CAF@ ,

f w 2 =6 w 2 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadEhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E34@ ,

w 2 2 =1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGymaiaac6cacaaI1aaa aa@3746@ ,

w 2 = 1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaaigdacaGGUaGa aGynaaWcbeaaaaa@36C3@ .

Целочисленный минимум достигается при w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaaaa@3518@ . При этом x 32 =21,   x 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaikdacaaIXaGaaiilaiaa Kdkacaa5GcGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqaba GcpeGaeyypa0JaaGimaaaa@3EF7@ :

Δ u 0 =1 10 +2 10 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaikdada qadaWdaeaapeGaaGymaiabgkHiTiaaicdaaiaawIcacaGLPaaacqGH 9aqpcaaIZaaaaa@41EF@ ,

Δ u 1 =1 10 +9=10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiMdacq GH9aqpcaaIXaGaaGimaaaa@3EA5@ ,

Δ u 2 =2 10 +9=11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiMdacq GH9aqpcaaIXaGaaGymaaaa@3EA8@ ,

Δ u 3 =9+9=18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGyoaiabgUcaRiaaiMda cqGH9aqpcaaIXaGaaGioaaaa@3AAD@ .

Здесь 12= c 12 <Δ u 3 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyipaWJa euiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpcaaIXaGaaGioaaaa@3D93@ , поэтому x 12 =min 21, 3 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iGac2gacaGGPbGaaiOBamaa bmaapaqaa8qacaaIYaGaaGymaiaacYcacaa5GcGaaG4maaGaayjkai aawMcaaiabg2da9iaaiodaaaa@3FC0@ . Имеем x 12 =3,  x 11 =6,   x 13 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiodacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabg2da9i aaiAdacaGGSaGaaqoOaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaiodaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaaaa@45CE@     y 1 =1,   x 22 =0,   x 32 =18,   w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG5bWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaaqoOaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaa5GcGaamiEa8aadaWgaaWcbaWd biaaiodacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdacaGGSa GaaqoOaiaaKdkacaWG3bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd biabg2da9iaaigdaaaa@4FD6@     y 1 =1,   x 22 =0,   x 32 =18,   w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG5bWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaaqoOaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaa5GcGaamiEa8aadaWgaaWcbaWd biaaiodacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdacaGGSa GaaqoOaiaaKdkacaWG3bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd biabg2da9iaaigdaaaa@4FD6@ :

Δ u 0 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaG4maaaa@367C@ ,

Δ u 1 =1+9=10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiabgUcaRiaaiMda cqGH9aqpcaaIXaGaaGimaaaa@3A9B@ ,

Δ u 2 =2+6=8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiabgUcaRiaaiAda cqGH9aqpcaaI4aaaaa@39E7@ ,

Δ u 3 =9+6=15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGyoaiabgUcaRiaaiAda cqGH9aqpcaaIXaGaaGynaaaa@3AA7@ .

Здесь 12= c 12 <Δ u 3 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyipaWJa euiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpcaaIXaGaaGynaaaa@3D90@ , поэтому x 12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaaaa@33F9@  увеличивается на min 9, 6 =6;  x 12 =9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiGac2gacaGGPbGaaiOBamaabm aapaqaa8qacaaI5aGaaiilaiaaKdkacaaI2aaacaGLOaGaayzkaaGa eyypa0JaaGOnaiaacUdacaa5GcGaamiEa8aadaWgaaWcbaWdbiaaig dacaaIYaaapaqabaGcpeGaeyypa0JaaGyoaaaa@421A@ . Имеем x 12 =9,  x 11 =0,   x 13 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiMdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaiodaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaaaa@45CE@   x 12 =9,  x 11 =0,   x 13 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiMdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaiodaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaaaa@45CE@   y 1 =1,   x 22 =0,   x 32 =12,   w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG5bWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaaqoOaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaa5GcGaamiEa8aadaWgaaWcbaWd biaaiodacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaikdacaGGSa GaaqoOaiaaKdkacaWG3bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWd biabg2da9iaaigdaaaa@4FD0@ :

Δ u 0 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaG4maaaa@367C@ ,

Δ u 1 =1 10 +9=10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiMdacq GH9aqpcaaIXaGaaGimaaaa@3EA5@ ,

Δ u 2 =2+0=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiabgUcaRiaaicda cqGH9aqpcaaIYaaaaa@39DB@ ,

Δ u 3 =0+9=9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGimaiabgUcaRiaaiMda cqGH9aqpcaaI5aaaaa@39EA@ .

Здесь 12= c 12 >Δ u 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyOpa4Ja euiLdqKaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9a qpcaaIXaGaaGimaaaa@3D8D@ . Решение двумерной задачи окончено. При этом c 12 1 =3,   c 12 2 =9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaGOmaaWdaeaapeGaaGymaaaakiabg2da9iaaiodacaGGSaGa aqoOaiaaKdkacaWGJbWdamaaDaaaleaapeGaaGymaiaaikdaa8aaba WdbiaaikdaaaGccqGH9aqpcaaI5aaaaa@3F92@ .

3. 2. 3. Третья двумерная задача:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

x 13 + x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@413B@ ,

6 x 11 +3 x 12 +18 x 13 +9 x 23 +10 x 33 + y 1 3 + 3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiAdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaIZaGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGymai aaiIdacaWG4bWdamaaBaaaleaapeGaaGymaiaaiodaa8aabeaak8qa cqGHRaWkcaaI5aGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIZaaapa qabaGcpeGaey4kaSIaaGymaiaaicdacaWG4bWdamaaBaaaleaapeGa aG4maiaaiodaa8aabeaak8qacqGHRaWkcaWG5bWdamaaDaaaleaape GaaGymaaWdaeaapeGaaG4maaaakiabgUcaRiaaKdkacaaIZaGaam4D a8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaGccqGHsgIRca qGTbGaaeyAaiaab6gaaaa@5709@ .

Здесь c 13 > d 1 + e 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaey4kaSIaamyza8aadaWgaaWcbaWdbiaaio daa8aabeaaaaa@3A02@ , поэтому решаются две одномерные задачи.

3. 2. 3. 1. Первая одномерная задача:

x 11 + x 12 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@3D66@ ,

6 x 11 +3 x 12 + y 1 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiAdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaIZaGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaamyEa8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41E0@ .

Здесь c 12 > d 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIXaaapaqabaaaaa@3704@ , поэтому находим минимум:

y 1 3 +3 10 y 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIZaaaaOGaey4kaSIaaG4mamaabmaapaqaa8qa caaIXaGaaGimaiabgkHiTiaadMhapaWaaSbaaSqaa8qacaaIXaaapa qabaaak8qacaGLOaGaayzkaaaaaa@3BEC@ ,

f y 1 =3 y 1 2 3=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaG4maiaadMhapaWaa0baaSqaa8qacaaIXa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaG4maiabg2da9iaaicdaaaa@3E2D@ ,

y 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGymaaaa@3519@ .

Тогда x 12 =9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaiMdaaaa@35DC@ . Первая одномерная задача решена.

3. 2. 3. 2. Вторая одномерная задача:

x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@3D70@ ,

9 x 23 +10 x 33 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiMdacaWG4bWdamaaBaaale aapeGaaGOmaiaaiodaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRi aaiodacaWG3bWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@435E@ .

Здесь c 23 > e 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg6da+iaadwgapaWaaSbaaSqaa8qa caaIZaaapaqabaaaaa@3709@ , поэтому вычисляем минимум:

3 w 3 3 +9 30 w 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG3bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaG4maiaaicdacqGHsislcaWG3bWdamaaBaaaleaapeGaaG 4maaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB1@ ,

f w 3 =9 w 3 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadEhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E39@ ,

w 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@3519@ ,

x 23 =20,   x 33 =11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaikdacaaIWaGaaiilaiaa Kdkacaa5GcGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIZaaapaqaba GcpeGaeyypa0JaaGymaiaaigdaaaa@3FB4@ ,

Δ u 0 =1 10 +3 10 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiodada qadaWdaeaapeGaaGymaiabgkHiTiaaicdaaiaawIcacaGLPaaacqGH 9aqpcaaI0aaaaa@41F1@ ,

Δ u 1 =1 10 +10=11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaigdaca aIWaGaeyypa0JaaGymaiaaigdaaaa@3F58@ ,

Δ u 2 =3 10 +3=6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiodacq GH9aqpcaaI2aaaaa@3DED@ ,

Δ u 3 =6+11=17 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGOnaiabgUcaRiaaigda caaIXaGaeyypa0JaaGymaiaaiEdaaaa@3B5C@ .

Здесь 18= c 13 >Δ u 3 =17 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI4aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyOpa4Ja euiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpcaaIXaGaaG4naaaa@3D9D@ , поэтому двумерная задача решена: c 13 1 =7,  c 13 2 =11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIXaGaaG4maaWdaeaapeGaaGymaaaakiabg2da9iaaiEdacaGGSaGa aqoOaiaadogapaWaa0baaSqaa8qacaaIXaGaaG4maaWdaeaapeGaaG Omaaaakiabg2da9iaaigdacaaIXaaaaa@3EC5@ .

3. 2. 4. Четвертая двумерная задача:

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

0 x 11 +16 x 21 +10 x 22 +9 x 23 +8 x 31 +2 y 2 3 +  w 1 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaIXaGaaGOnaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabgUcaRi aaigdacaaIWaGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqa baGcpeGaey4kaSIaaGyoaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG 4maaWdaeqaaOWdbiabgUcaRiaaiIdacaWG4bWdamaaBaaaleaapeGa aG4maiaaigdaa8aabeaak8qacqGHRaWkcaaIYaGaamyEa8aadaqhaa WcbaWdbiaaikdaa8aabaWdbiaaiodaaaGccqGHRaWkcaa5GcGaam4D a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaGccqGHsgIRca qGTbGaaeyAaiaab6gaaaa@5702@ .

Здесь 16= c 21 > d 2 + e 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI2aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyOpa4Ja amiza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaWGLb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaiodaaaa@3E5E@ , поэтому решаются две одномерные задачи.

3. 2. 4. 1. Первая одномерная задача:

x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@3D6C@ ,

10 x 22 +9 x 23 +2 y 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaGyoaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRi aaikdacaWG5bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@435C@ .

Здесь c 23 > d 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIYaaapaqabaaaaa@3707@ , поэтому ищем минимум:

2 y 2 3 +9 20 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG5bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGOmaiaaicdacqGHsislcaWG5bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB1@ ,

f y 2 =6 y 2 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadMhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E38@ ,

y 2 2 =1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGymaiaac6cacaaI1aaa aa@3748@ ,

y 2 = 1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaaigdacaGGUaGa aGynaaWcbeaaaaa@36C5@ .

Целочисленный минимум достигается при y 2 =1,  x 23 =19,  x 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyypa0JaaGymai aaiMdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabg2da9iaaicdaaaa@439D@ .

3. 2. 4. 2. Вторая одномерная задача:

x 11 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@3CB0@ ,

0 x 11 +8 x 31 + w 1 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI4aGaamiEa8aa daWgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaam4Da8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41DE@ .

Здесь 0= c 11 2 < e 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacqGH9aqpcaWGJbWdam aaDaaaleaapeGaaGymaiaaigdaa8aabaWdbiaaikdaaaGccqGH8aap caWGLbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaig daaaa@3B58@ , поэтому x 11 =6,  x 31 =0,  w 1 =0: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaGimaiaacQdaaaa@4396@ :

Δ u 0 =2 10 +0=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaicdacq GH9aqpcaaIYaaaaa@3DE3@ ,

Δ u 1 =2 10 +0=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaicdacq GH9aqpcaaIYaaaaa@3DE4@ ,

Δ u 2 =0+9=9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGimaiabgUcaRiaaiMda cqGH9aqpcaaI5aaaaa@39E9@ ,

Δ u 3 =0+9=9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGimaiabgUcaRiaaiMda cqGH9aqpcaaI5aaaaa@39EA@ .

Здесь 16= c 21 >Δ u 3 =9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI2aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyOpa4Ja euiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpcaaI5aaaaa@3CE1@ , поэтому двумерная задача решена:

x 21 =0,  x 22 =0,  x 23 =19,  y 2 =1,  x 11 =6,  x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG4m aaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaaKdkacaWG5b WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaGG SaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaO Wdbiabg2da9iaaiAdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdaaaa@583D@ ,

w 1 =0,  c 21 1 =12,  c 21 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGimaiaacYcacaa5GcGaam4ya8aa daqhaaWcbaWdbiaaikdacaaIXaaapaqaa8qacaaIXaaaaOGaeyypa0 JaaGymaiaaikdacaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qacaaI YaGaaGymaaWdaeaapeGaaGOmaaaakiabg2da9iaaisdaaaa@44E2@ .

3. 2. 5. Пятая двумерная задача:

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

x 12 + x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@4136@ ,

12 x 21 +20 x 22 +9 x 23 +9 x 12 +9 x 32 +2 y 2 3 + 2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGOmaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaI5aGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqa baGcpeGaey4kaSIaaGyoaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaG OmaaWdaeqaaOWdbiabgUcaRiaaiMdacaWG4bWdamaaBaaaleaapeGa aG4maiaaikdaa8aabeaak8qacqGHRaWkcaaIYaGaamyEa8aadaqhaa WcbaWdbiaaikdaa8aabaWdbiaaiodaaaGccqGHRaWkcaa5GcGaaGOm aiaadEhapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIZaaaaOGaey OKH4QaaeyBaiaabMgacaqGUbaaaa@57C8@ .

Здесь c 22 > d 2 + e 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaey4kaSIaamyza8aadaWgaaWcbaWdbiaaik daa8aabeaaaaa@3A02@ , поэтому решаются две одномерные задачи.

3. 2. 5. 1. Первая одномерная задача:

x 21 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@3D6B@ ,

12 x 21 +9 x 23 +2 y 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGyoaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRi aaikdacaWG5bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@435D@ .

Здесь c 23 1 > d 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaG4maaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@37C3@ , поэтому отыскиваем минимум:

2 y 2 3 +9 20 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG5bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGOmaiaaicdacqGHsislcaWG5bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB1@ ,

f y 2 =6 y 2 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadMhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E38@ ,

y 2 2 =1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGymaiaac6cacaaI1aaa aa@3748@ ,

y 2 = 1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaaigdacaGGUaGa aGynaaWcbeaaaaa@36C5@ .

Целочисленный минимум достигается при y 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaaaa@351A@ :

x 23 =19,  x 21 = 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaigdaa8aabeaak8qacq GH9aqpcaa5GcGaaGimaaaa@3EFD@ .

3. 2. 5. 2. Вторая одномерная задача:

x 12 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6B@ ,

9 x 12 +9 x 32 +2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiMdacaWG4bWdamaaBaaale aapeGaaGymaiaaikdaa8aabeaak8qacqGHRaWkcaaI5aGaamiEa8aa daWgaaWcbaWdbiaaiodacaaIYaaapaqabaGcpeGaey4kaSIaaGOmai aadEhapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIZaaaaOGaeyOK H4QaaeyBaiaabMgacaqGUbaaaa@42A7@ .

Здесь c 12 = c 32 > e 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaadogapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabg6da+iaadwgapaWaaSbaaSqaa8 qacaaIYaaapaqabaaaaa@3AE1@ , поэтому находим минимум:

2 w 2 3 +9 10 w 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG3bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGymaiaaicdacqGHsislcaWG3bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CAC@ ,

f w 2 =6 w 2 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadEhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E34@ ,

w 2 2 =1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGymaiaac6cacaaI1aaa aa@3746@ ,

w 2 = 1.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbiaaigdacaGGUaGa aGynaaWcbeaaaaa@36C3@ .

Целочисленный минимум достигается при w 2 =1: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaiaacQdaaaa@35D6@ :

x 12 =10,  x 32 =11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaIWaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaak8qacq GH9aqpcaaIXaGaaGymaaaa@3E2A@ ,

Δ u 0 =2 10 +2 10 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaikdada qadaWdaeaapeGaaGymaiabgkHiTiaaicdaaiaawIcacaGLPaaacqGH 9aqpcaaI0aaaaa@41F1@ ,

Δ u 1 =2 10 +9=11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiMdacq GH9aqpcaaIXaGaaGymaaaa@3EA7@ ,

Δ u 2 =2 10 +9=11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaiMdacq GH9aqpcaaIXaGaaGymaaaa@3EA8@ ,

Δ u 3 =9+9=18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGyoaiabgUcaRiaaiMda cqGH9aqpcaaIXaGaaGioaaaa@3AAD@ .

Здесь 20= c 22 >Δ u 3 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIWaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaeyOpa4Ja euiLdqKaamyDa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9a qpcaaIXaGaaGioaaaa@3D97@ , поэтому пятая двумерная задача решена:

x 21 =0,  x 22 =0,  x 23 =19,  y 2 =1,  x 12 =10,  x 32 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG4m aaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaaKdkacaWG5b WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaGG SaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaO Wdbiabg2da9iaaigdacaaIWaGaaiilaiaaKdkacaWG4bWdamaaBaaa leaapeGaaG4maiaaikdaa8aabeaak8qacqGH9aqpcaaIXaaaaa@58F5@ ,

w 2 =1,  c 22 1 =10,  c 22 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaiaacYcacaa5GcGaam4ya8aa daqhaaWcbaWdbiaaikdacaaIYaaapaqaa8qacaaIXaaaaOGaeyypa0 JaaGymaiaaicdacaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qacaaI YaGaaGOmaaWdaeaapeGaaGOmaaaakiabg2da9iaaigdacaaIWaaaaa@459B@ .

3. 2. 6. Шестая двумерная задача:

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

x 13 + x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@413B@ ,

12 x 21 +10 x 22 +18 x 23 +11 x 13 +10 x 33 +2 y 2 3 + 3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaIXaGaaGioaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG4m aaWdaeqaaOWdbiabgUcaRiaaigdacaaIXaGaamiEa8aadaWgaaWcba WdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaaGymaiaaicdacaWG 4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacqGHRaWkca aIYaGaamyEa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaaiodaaaGc cqGHRaWkcaa5GcGaaG4maiaadEhapaWaa0baaSqaa8qacaaIZaaapa qaa8qacaaIZaaaaOGaeyOKH4QaaeyBaiaabMgacaqGUbaaaa@59EA@ .

Здесь 18= c 23 > d 2 + e 3 =5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI4aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaeyOpa4Ja amiza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaWGLb WdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaiwdaaaa@3E66@ , поэтому решаются две одномерные задачи.

3. 2. 6. 1. Первая одномерная задача:

x 21 + x 22 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@3D6A@ ,

12 x 21 +10 x 22 +2 y 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaIYaGaamyEa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaa iodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@440E@ .

Здесь c 22 1 > d 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaGOmaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@37C2@ , поэтому отыскиваем минимум:

2 y 2 3 +10 20 y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG5bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaigdacaaIWaWa aeWaa8aabaWdbiaaikdacaaIWaGaeyOeI0IaamyEa8aadaWgaaWcba Wdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@3D63@ ,

f y 2 =6 y 2 2 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadMhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaaicdacqGH9aqpcaaI Waaaaa@3EEA@ ,

y 2 2 = 5 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaiwda a8aabaWdbiaaiodaaaaaaa@36E6@ ,

y 2 = 5 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qa caaI1aaapaqaa8qacaaIZaaaaaWcbeaaaaa@3663@ .

Целочисленный минимум достигается при y 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaaaa@351A@ :

x 22 =19,  x 21 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaigdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D76@ .

3. 2. 6. 2. Вторая одномерная задача:

x 13 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@3D6F@ ,

11 x 13 +10 x 33 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GHRaWkcaaIZaGaam4Da8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaa iodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@4410@ .

Здесь c 32 2 > e 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaGOmaaWdaeaapeGaaGOmaaaakiabg6da+iaadwgapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@37C6@ , поэтому ищем минимум:

3 w 3 3 +10 30 w 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG3bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaigdacaaIWaWa aeWaa8aabaWdbiaaiodacaaIWaGaeyOeI0Iaam4Da8aadaWgaaWcba Wdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@3D63@ ,

f w 3 =9 w 3 2 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadEhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaaicdacqGH9aqpcaaI Waaaaa@3EEB@ ,

w 3 2 = 10 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIZaaapaqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaigda caaIWaaapaqaa8qacaaI5aaaaaaa@37A1@ ,

w 3 = 10 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qa caaIXaGaaGimaaWdaeaapeGaaGyoaaaaaSqabaaaaa@371E@ .

Целочисленный минимум достигается при w 3 =1: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaiaacQdaaaa@35D7@

x 33 =30,  x 13 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabg2da9iaaiodacaaIWaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGymaiaaiodaa8aabeaak8qacq GH9aqpcaaIXaaaaa@3D73@ ,

u0=210+310=5,

u1=210+11=13,

u2=310+10=13,

u3=10+11=21.

Здесь c23<u3, следовательно x 23 =1,  x 22 =18,  x 13 =0,  x 33 =30: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da9i aaigdacaaI4aGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaiodaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaiaaKdkacaWG4b WdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacqGH9aqpcaaI ZaGaaGimaiaacQdaaaa@4CB3@ :

u0=5,

u1=210+10=12,

u2=310+10=13,

u3=10+10=20.

Снова c23<u3, следовательно x 23 =19,  x 22 =0,  x 13 =0,  x 33 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaiodaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaiaaKdkacaWG4b WdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacqGH9aqpcaaI XaGaaGOmaaaa@4BF5@ . Здесь x 23 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaaaa@33FB@  достигло максимума, поэтому шестая двумерная задача решена:

x 21 =0,  x 22 =0,  x 23 =19,  y 2 =1,  x 13 =0,  x 33 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaG4m aaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaaKdkacaWG5b WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaGG SaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaO Wdbiabg2da9iaaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaIYaaaaa@58F8@ ,

w 3 =1,  c 23 1 =9,  c 23 2 =9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaiaacYcacaa5GcGaam4ya8aa daqhaaWcbaWdbiaaikdacaaIZaaapaqaa8qacaaIXaaaaOGaeyypa0 JaaGyoaiaacYcacaa5GcGaam4ya8aadaqhaaWcbaWdbiaaikdacaaI Zaaapaqaa8qacaaIYaaaaOGaeyypa0JaaGyoaaaa@443A@ .

3. 2. 7. Седьмая двумерная задача:

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

16 x 31 +9 x 32 +10 x 33 +0 x 11 +4 x 21 +3 y 3 3 +  w 1 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI2aGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGyoaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaigdacaaIWaGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIZaaapaqa baGcpeGaey4kaSIaaGimaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaG ymaaWdaeqaaOWdbiabgUcaRiaaisdacaWG4bWdamaaBaaaleaapeGa aGOmaiaaigdaa8aabeaak8qacqGHRaWkcaaIZaGaamyEa8aadaqhaa WcbaWdbiaaiodaa8aabaWdbiaaiodaaaGccqGHRaWkcaa5GcGaam4D a8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaGccqGHsgIRca qGTbGaaeyAaiaab6gaaaa@5702@ .

Здесь 16= c 31 > d 3 + e 1 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI2aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaeyOpa4Ja amiza8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaWGLb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaisdaaaa@3E61@ , поэтому решаются две одномерные задачи.

3. 2. 7. 1. Первая одномерная задача:

x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@3D70@ ,

9 x 32 +10 x 33 +3 y 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiMdacaWG4bWdamaaBaaale aapeGaaG4maiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRi aaiodacaWG5bWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@4360@ .

Здесь c 32 > d 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIZaaapaqabaaaaa@3708@ , поэтому вычисляем минимум:

3 y 3 3 +9 30 y 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG5bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaG4maiaaicdacqGHsislcaWG5bWdamaaBaaaleaapeGaaG 4maaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB5@ ,

f y 3 =9 y 3 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadMhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E3D@ ,

y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@351B@ ,

x 32 =22,  x 33 =7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaikdacaaIYaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GH9aqpcaaI3aaaaa@3D7B@ .

3. 2. 7. 2. Вторая одномерная задача:

x 11 + x 21 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@3CAF@ ,

0 x 11 +4 x 21 + w 1 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaWG4bWdamaaBaaale aapeGaaGymaiaaigdaa8aabeaak8qacqGHRaWkcaaI0aGaamiEa8aa daWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaam4Da8 aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaiodaaaGccqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@41D9@ .

Здесь, очевидно, x 11 =6,  x 21 =0,  w 1 =0: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaGimaiaacQdaaaa@4395@

u0=310+0=3,

u1=310+0=3,

u2=0+10=10,

u3=10+0=10.

Здесь c32>u3, следовательно двумерная задача решена:

x 11 =6,  x 21 =0,  x 31 =0,  x 32 =22,  x 33 =7,  y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabg2da9i aaicdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaGym aaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaadIhapaWaaS baaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaikdacaaI YaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8 aabeaak8qacqGH9aqpcaaI3aGaaiilaiaaKdkacaWG5bWdamaaBaaa leaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaigdaaaa@5841@ ,

w 1 =0,  c 31 1 =11,  c 31 2 =5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGimaiaacYcacaa5GcGaam4ya8aa daqhaaWcbaWdbiaaiodacaaIXaaapaqaa8qacaaIXaaaaOGaeyypa0 JaaGymaiaaigdacaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qacaaI ZaGaaGymaaWdaeaapeGaaGOmaaaakiabg2da9iaaiwdaaaa@44E4@ .

3. 2. 8. Восьмая двумерная задача:

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

x 12 + x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@4136@ ,

11 x 31 +18 x 32 +10 x 33 +9 x 12 +10 x 22 +3 y 3 3 +2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa iIdacaWG4bWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaak8qacq GHRaWkcaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaG4m aaWdaeqaaOWdbiabgUcaRiaaiMdacaWG4bWdamaaBaaaleaapeGaaG ymaiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaadIhapaWa aSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaaiodaca WG5bWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaakiabgUca RiaaikdacaWG3bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maa aakiabgkziUkaab2gacaqGPbGaaeOBaaaa@57B0@ .

Здесь 18= c 32 > d 3 + e 2 =5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI4aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqabaGcpeGaeyOpa4Ja amiza8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaWGLb WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaiwdaaaa@3E66@ , поэтому решаются две одномерные задачи.

3. 2. 8. 1. Первая одномерная задача:

x 31 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@3D6F@ ,

11 x 31 +10 x 33 +3 y 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GHRaWkcaaIZaGaamyEa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaa iodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@4412@ .

Здесь c 33 1 > d 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaG4maaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@37C5@ , поэтому находим минимум:

3 y 3 3 +10 30 y 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG5bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaigdacaaIWaWa aeWaa8aabaWdbiaaiodacaaIWaGaeyOeI0IaamyEa8aadaWgaaWcba Wdbiaaiodaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@3D67@ ,

f y 3 =9 y 3 2 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadMhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGymaiaaicdacqGH9aqpcaaI Waaaaa@3EEF@ ,

y 3 2 = 10 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIZaaapaqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaigda caaIWaaapaqaa8qacaaI5aaaaaaa@37A3@ ,

y 3 = 10 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qa caaIXaGaaGimaaWdaeaapeGaaGyoaaaaaSqabaaaaa@3720@ .

Целочисленный минимум достигается при y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@351B@ :

x 33 =29,  x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabg2da9iaaikdacaaI5aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaigdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D7A@ .

3. 2. 8. 2. Вторая одномерная задача:

x 12 + x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6A@ ,

9 x 12 +10 x 22 +2 w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiMdacaWG4bWdamaaBaaale aapeGaaGymaiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaikdacaWG3bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@4358@ .

Здесь c 12 > e 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg6da+iaadwgapaWaaSbaaSqaa8qa caaIYaaapaqabaaaaa@3706@ , поэтому отыскиваем минимум:

2 w 2 3 +9 10 w 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG3bWdamaaDaaale aapeGaaGOmaaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGymaiaaicdacqGHsislcaWG3bWdamaaBaaaleaapeGaaG OmaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CAC@ ,

f w 2 =6 w 2 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGOnaiaadEhapaWaa0baaSqaa8qacaaIYa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E34@ ,

w 2 2 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaa0baaSqaa8qaca aIYaaapaqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaioda a8aabaWdbiaaikdaaaaaaa@36E1@ ,

w 2 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qa caaIZaaapaqaa8qacaaIYaaaaaWcbeaaaaa@365E@ .

Целочисленный минимум достигается при w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGymaaaa@3518@ :

x 12 =10,  x 22 =11 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaIWaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIXaGaaGymaaaa@3E29@ ,

u0=310+210=5,

u1=310+10=13,

u2=210+10=12,

u3=10+10=20.

Здесь c32<u3, поэтому x 32 =11,  x 33 =18,  x 12 =10,  x 22 =0, x 31 =0,  y 3 =1,  w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaIXaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GH9aqpcaaIXaGaaGioaiaacYcacaa5GcGaamiEa8aadaWgaaWcbaWd biaaigdacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaicdacaGGSa GaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWd biabg2da9iaaicdacaGGSaGaamiEa8aadaWgaaWcbaWdbiaaiodaca aIXaaapaqabaGcpeGaeyypa0JaaGimaiaacYcacaa5GcGaamyEa8aa daWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpcaaIXaGaaiilai aaKdkacaWG3bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da 9iaaigdaaaa@5E4F@ :

 u0=5,

 u1=3+9=12,

 u2=2+10=12,

 u3=9+10=19.

Здесь c32<u3, поэтому x 32 =21,  x 33 =8,  x 12 =0,  x 22 =0,  x 31 =0,  y 3 =1,  w 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaikdacaaIXaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GH9aqpcaaI4aGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaikdaa8aabeaak8qacqGH9aqpcaaIWaGaaiilaiaaKdkacaWG4b WdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacqGH9aqpcaaI WaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaigdaa8 aabeaak8qacqGH9aqpcaaIWaGaaiilaiaaKdkacaWG5bWdamaaBaaa leaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaaqoOai aadEhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGym aaaa@5E60@ :

u0=5,

u1=3+0=3 3,

u2=2+8=10,

u3=8+0=8.

Здесь c32>u3, поэтому восьмая двумерная задача решена:

c 32 1 =9.5,  c 32 2 =8.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaGOmaaWdaeaapeGaaGymaaaakiabg2da9iaaiMdacaGGUaGa aGynaiaacYcacaa5GcGaam4ya8aadaqhaaWcbaWdbiaaiodacaaIYa aapaqaa8qacaaIYaaaaOGaeyypa0JaaGioaiaac6cacaaI1aaaaa@40F7@ .

3. 2. 9. Девятая двумерная задача:

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

x 13 + x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@413B@ ,

11 x 31 +9.5 x 32 +20 x 33 +11 x 13 +9 x 23 +3 y 3 3 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGyoaiaa c6cacaaI1aGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqaba GcpeGaey4kaSIaaGOmaiaaicdacaWG4bWdamaaBaaaleaapeGaaG4m aiaaiodaa8aabeaak8qacqGHRaWkcaaIXaGaaGymaiaadIhapaWaaS baaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaaiMdacaWG 4bWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8qacqGHRaWkca aIZaGaamyEa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaiodaaaGc cqGHRaWkcaaIZaGaam4Da8aadaqhaaWcbaWdbiaaiodaa8aabaWdbi aaiodaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@586D@ .

Здесь c 33 > d 3 + e 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabg6da+iaadsgapaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeGaey4kaSIaamyza8aadaWgaaWcbaWdbiaaio daa8aabeaaaaa@3A06@ , поэтому решаются две одномерные задачи.

3. 2. 9. 1. Первая одномерная задача:

x 31 + x 32 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@3D6E@ ,

11 x 31 +9.5 x 32 +3 y 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGyoaiaa c6cacaaI1aGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqaba GcpeGaey4kaSIaaG4maiaadMhapaWaa0baaSqaa8qacaaIZaaapaqa a8qacaaIZaaaaOGaeyOKH4QaaeyBaiaabMgacaqGUbaaaa@44D0@ .

Здесь c 32 1 > d 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaGOmaaWdaeaapeGaaGymaaaakiabg6da+iaadsgapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@37C4@ , поэтому вычисляем минимум:

3 y 3 3 +9.5 22 y 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG5bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdacaGGUaGa aGynamaabmaapaqaa8qacaaIYaGaaGOmaiabgkHiTiaadMhapaWaaS baaSqaa8qacaaIZaaapaqabaaak8qacaGLOaGaayzkaaaaaa@3E27@ ,

f y 3 =9 y 3 2 9.5=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadMhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadMhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiaac6cacaaI1aGaeyyp a0JaaGimaaaa@3FAE@ ,

y 3 2 = 9.5 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaa0baaSqaa8qaca aIZaaapaqaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaiMda caGGUaGaaGynaaWdaeaapeGaaGyoaaaaaaa@3862@ ,

y 3 = 9.5 9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qa caaI5aGaaiOlaiaaiwdaa8aabaWdbiaaiMdaaaaaleqaaaaa@37DF@ .

Целочисленный минимум достигается при y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@351B@ :

x 32 =22,  x 31 =7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaikdacaaIYaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaigdaa8aabeaak8qacq GH9aqpcaaI3aaaaa@3D79@ .

3. 2. 9. 2. Вторая одномерная задача:

x 13 + x 23 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@3D6E@ ,

11 x 13 +9 x 23 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaaGyoaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRi aaiodacaWG3bWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaG4maaaa kiabgkziUkaab2gacaqGPbGaaeOBaaaa@435D@ .

Здесь c 23 2 > e 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaG4maaWdaeaapeGaaGOmaaaakiabg6da+iaadwgapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@37C6@ , поэтому находим минимум:

3 w 3 3 +9 20 w 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaWG3bWdamaaDaaale aapeGaaG4maaWdaeaapeGaaG4maaaakiabgUcaRiaaiMdadaqadaWd aeaapeGaaGOmaiaaicdacqGHsislcaWG3bWdamaaBaaaleaapeGaaG 4maaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3CB0@ ,

f w 3 =9 w 3 2 9=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadAgapaGbauaapeWaaeWaa8 aabaWdbiaadEhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaeyypa0JaaGyoaiaadEhapaWaa0baaSqaa8qacaaIZa aapaqaa8qacaaIYaaaaOGaeyOeI0IaaGyoaiabg2da9iaaicdaaaa@3E39@ ,

w 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyypa0JaaGymaaaa@3519@ ,

x 13 =10,  x 23 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaIWaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8qacq GH9aqpcaaIYaGaaGimaaaa@3E2B@ ,

Δ u 0 =3 10 +3 10 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaykW7cqqHuoarcaWG1bWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaaiodadaqadaWd aeaapeGaaGymaiabgkHiTiaaicdaaiaawIcacaGLPaaacqGHRaWkca aIZaWaaeWaa8aabaWdbiaaigdacqGHsislcaaIWaaacaGLOaGaayzk aaGaeyypa0JaaGOnaaaa@4380@ ,

Δ u 1 =3 10 +11=14 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaigdaca aIXaGaeyypa0JaaGymaiaaisdaaaa@3F5E@ ,

Δ u 2 =3 10 +11=14 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caaIXaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgUcaRiaaigdaca aIXaGaeyypa0JaaGymaiaaisdaaaa@3F5F@ ,

Δ u 3 =11+11=22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaigdacqGHRaWk caaIXaGaaGymaiabg2da9iaaikdacaaIYaaaaa@3C0E@ .

Здесь c 33 <Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@387C@ , поэтому x 33 =7,  x 32 =22,  x 23 =20,  x 13 =4,  y 3 =1,  w 3 =1, x 31 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabg2da9iaaiEdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiabg2da9i aaikdacaaIYaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGOm aiaaiodaa8aabeaak8qacqGH9aqpcaaIYaGaaGimaiaacYcacaa5Gc GaamiEa8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaeyyp a0JaaGinaiaacYcacaa5GcGaamyEa8aadaWgaaWcbaWdbiaaiodaa8 aabeaak8qacqGH9aqpcaaIXaGaaiilaiaaKdkacaWG3bWdamaaBaaa leaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaGGSaGaamiEa8 aadaWgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaeyypa0JaaGim aaaa@5D9D@ :

Δ u 0 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGOnaaaa@367F@ ,

Δ u 1 =3+9=12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaG4maiabgUcaRiaaiMda cqGH9aqpcaaIXaGaaGOmaaaa@3A9F@ ,

Δ u 2 =3+9.5=12.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4maiabgUcaRiaaiMda caGGUaGaaGynaiabg2da9iaaigdacaaIYaGaaiOlaiaaiwdaaaa@3D82@ ,

Δ u 3 =9+9.5=18.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGyoaiabgUcaRiaaiMda caGGUaGaaGynaiabg2da9iaaigdacaaI4aGaaiOlaiaaiwdaaaa@3D8F@ .

Здесь c 33 >Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIZaGaaG4maaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@3880@ , поэтому c 33 1 =10,  c 33 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIZaGaaG4maaWdaeaapeGaaGymaaaakiabg2da9iaaigdacaaIWaGa aiilaiaaKdkacaWGJbWdamaaDaaaleaapeGaaG4maiaaiodaa8aaba WdbiaaikdaaaGccqGH9aqpcaaIXaGaaGimaaaa@3F7C@ . Решение девятой двумерной задачи окончено.

По итогам первого цикла допустимое решение исходной задачи не получено. Всего потребовалось для получения оптимального решения провести шесть циклов вычислений. Ниже приведено оптимальное решение примера как объединение оптимальных решений всех шести одномерных задач с найденными коэффициентами целевых функций.

3.3. Р е ш е н и е  и с х о д н о й  з а д а ч и. Рассматривается как объединение решений одномерных задач:

x 11 + x 12 + x 13 + y 1 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaicdaaaa@4131@ ,

3.6 x 11 +4 x 12 +6 x 13 + y 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodacaGGUaGaaGOnaiaadI hapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaa isdacaWG4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacq GHRaWkcaaI2aGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqa baGcpeGaey4kaSIaamyEa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbi aaikdaaaGccqGHsgIRcaqGTbGaaeyAaiaab6gaaaa@47DA@ ,

x 11 =4,  x 12 =4,  y 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaisdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaisdacaGGSaGaaqoOaiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaGOmaaaa@42DD@ ,

x 11 + x 21 + x 31 + w 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@407A@ ,

4.4 x 11 +4.5 x 21 +5 x 31 + w 1 2 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaisdacaGGUaGaaGinaiaadI hapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaa isdacaGGUaGaaGynaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGymaa WdaeqaaOWdbiabgUcaRiaaiwdacaWG4bWdamaaBaaaleaapeGaaG4m aiaaigdaa8aabeaak8qacqGHRaWkcaWG3bWdamaaDaaaleaapeGaaG ymaaWdaeaapeGaaGOmaaaakiabgkziUkaab2gacaqGPbGaaeOBaaaa @4947@ ,

x 11 =4,  w 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaisdacaGGSaGaaqoOaiaa dEhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaa aa@3BF9@ ,

x 21 + x 22 + x 23 + y 2 =20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdaaaa@4136@ ,

11 x 21 +10 x 22 +8 x 23 +2 y 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaI4aGaamiEa8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqa baGcpeGaey4kaSIaaGOmaiaadMhapaWaa0baaSqaa8qacaaIYaaapa qaa8qacaaIZaaaaOGaeyOKH4QaaeyBaiaabMgacaqGUbaaaa@489B@ ,

x 23 =19,  y 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaa KdkacaWG5bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9i aaigdaaaa@3CBE@ ,

x 12 + x 22 + x 32 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@4136@ ,

8 x 12 +10 x 22 +8 x 32 + w 2 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGymaiaaikdaa8aabeaak8qacqGHRaWkcaaIXaGaaGimaiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiIdacaWG4bWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaak8qa cqGHRaWkcaWG3bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaG4maa aakiabgkziUkaab2gacaqGPbGaaeOBaaaa@4729@ ,

x 12 =4,  w 2 =1,  x 32 =17 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaisdacaGGSaGaaqoOaiaa dEhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGymai aacYcacaa5GcGaamiEa8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqa baGcpeGaeyypa0JaaGymaiaaiEdaaaa@439C@ ,

x 31 + x 32 + x 33 + y 3 =30 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIZaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaicdaaaa@413B@ ,

11 x 31 +10 x 32 +10 x 33 +3 y 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaak8qacq GHRaWkcaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaG4m aaWdaeqaaOWdbiabgUcaRiaaiodacaWG5bWdamaaDaaaleaapeGaaG 4maaWdaeaapeGaaG4maaaakiabgkziUkaab2gacaqGPbGaaeOBaaaa @4953@ ,

x 32 =17,  x 33 =12,  y 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI3aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GH9aqpcaaIXaGaaGOmaiaacYcacaa5GcGaamyEa8aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGH9aqpcaaIXaaaaa@445B@ ,

x 13 + x 23 + x 33 + w 3 =32 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaG4maaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8 qacaaIZaGaaG4maaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaeyypa0JaaG4maiaaikdaaaa@413B@ ,

12 x 13 +10 x 23 +10 x 33 +3 w 3 3 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8qacq GHRaWkcaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8qacaaIZaGaaG4m aaWdaeqaaOWdbiabgUcaRiaaiodacaWG3bWdamaaDaaaleaapeGaaG 4maaWdaeaapeGaaG4maaaakiabgkziUkaab2gacaqGPbGaaeOBaaaa @4952@ ,

x 23 =19,  x 33 =12,  w 3 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaG4maaWdaeqaaOWdbiabg2da9iaaigdacaaI5aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaak8qacq GH9aqpcaaIXaGaaGOmaiaacYcacaa5GcGaam4Da8aadaWgaaWcbaWd biaaiodaa8aabeaak8qacqGH9aqpcaaIXaaaaa@445B@ .

4. Численные расчеты. Была осуществлена программная реализация предложенного метода. Проведен счет с различным количеством ограничений (до 300). Время счета было пропорционально n 4.6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6gapaWaaWbaaSqabeaape GaaGinaiaac6cacaaI2aaaaaaa@349A@ .

5. Расширение класса решаемых задач. Анализ шагов алгоритма решения задач показывает, что нелинейные слагаемые в целевой функции должны удовлетворять следующим ограничениями:

1) при y i =0, 1im MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyypa0JaaGimaiaacYcacaa5GcGaaGymaiab gsMiJkaadMgacqGHKjYOcaWGTbaaaa@3D86@  и w j =0, 1jn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeGaeyypa0JaaGimaiaacYcacaa5GcGaaGymaiab gsMiJkaadQgacqGHKjYOcaWGUbaaaa@3D87@  соответствующие слагаемые равны нулю,

2) при y i >0, 1im MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyOpa4JaaGimaiaacYcacaa5GcGaaGymaiab gsMiJkaadMgacqGHKjYOcaWGTbaaaa@3D88@  и w j >0, 1jn MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeGaeyOpa4JaaGimaiaacYcacaa5GcGaaGymaiab gsMiJkaadQgacqGHKjYOcaWGUbaaaa@3D89@  все соответствующие слагаемые положительны,

3) первые производные всех нелинейных слагаемых целевой функции являются строго возрастающими функциями.

Выполнение этих ограничений обеспечивает монотонность итерационного процесса. Таким образом, предлагаемым подходом можно решать обширный класс задач. Для примера решим следующую небольшую задачу:

x 11 + x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@3D6B@ ,

x 21 + x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@3D6F@ ,

x 11 + x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@3D6C@ ,

x 12 + x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6A@ ,

24 x 11 +20 x 12 +22 x 21 +28 x 22 +2 e 0.4 y 1 1 +3 e 0.5 y 2 1 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaI0aGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGOmaiaa icdacaWG4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacq GHRaWkcaaIYaGaaGOmaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGym aaWdaeqaaOWdbiabgUcaRiaaikdacaaI4aGaamiEa8aadaWgaaWcba WdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaGOmamaabmaapaqa a8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiaadM hapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgkHiTiaaigda aiaawIcacaGLPaaacqGHRaWkcaaIZaWaaeWaa8aabaWdbiaadwgapa WaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaamyEa8aadaWgaaad baWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawM caaiabgUcaRaaa@5B34@

+ 4 e 0.6 w 1 1 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgUcaRiaaKdkacaaI0aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaiwdadaqadaWdaeaapeGa amyza8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiodacaWG3bWdam aaBaaameaapeGaaGOmaaWdaeqaaaaak8qacqGHsislcaaIXaaacaGL OaGaayzkaaGaeyOKH4QaaeyBaiaabMgacaqGUbaaaa@4C66@ .

5.1. П е р в ы й  э т а п. 5. 1. 1. Первая одномерная задача:

x 11 + x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@3D6B@ ,

12 x 11 +10 x 12 +2 e 0.4 y 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacq GHRaWkcaaIYaWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaI0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@49FE@ ,

2 e 0.4 y 1 1 +10 24 y 1 ' =0.8 e 0.4 y 1 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIYaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIWaWaaeWaa8aa baWdbiaaikdacaaI0aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaicdacaGGUaGaaGioaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI0aGaamyEa8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaicdacq GH9aqpcaaIWaaaaa@534E@ ,

e 0.4 y 1 =12.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGymaiaaikdacaGGUaGaaGynaaaa@3AA7@ ,

0.4 y 1 =ln 12.5 =2.5257 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGinaiaadM hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGymaiaaikdacaGGUaGaaGynaaGaayjkai aawMcaaiabg2da9iaaikdacaGGUaGaaGynaiaaikdacaaI1aGaaG4n aaaa@426B@ ,

y 1 =6.314 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaiaac6cacaaIZaGaaGymaiaa isdaaaa@3806@ .

Целочисленный минимум достигается при y 1 =6: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaiaacQdaaaa@35DC@ :

x 12 =18,  x 11 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI4aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D73@ .

5. 1. 2. Вторая одномерная задача:

x 21 + x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@3D6F@ ,

11 x 21 +14 x 22 +3 e 0.5 y 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa isdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaIZaWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaI1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@4A06@ ,

3 e 0.5 y 2 1 +11 16 y 2 ' =1.5 e 0.5 y 2 11=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIZaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIXaWaaeWaa8aa baWdbiaaigdacaaI2aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaigdacaGGUaGaaGynaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaamyEa8aadaWg aaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaigdacq GH9aqpcaaIWaaaaa@5355@ ,

e 0.5 y 2 =7.3333 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aa beaaaaGcpeGaeyypa0JaaG4naiaac6cacaaIZaGaaG4maiaaiodaca aIZaaaaa@3C28@ ,

0.5 y 2 =ln 7.3333 =1.9924 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGynaiaadM hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaG4naiaac6cacaaIZaGaaG4maiaaiodaca aIZaaacaGLOaGaayzkaaGaeyypa0JaaGymaiaac6cacaaI5aGaaGyo aiaaikdacaaI0aaaaa@43F0@ ,

y 2 =3.9849 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaG4maiaac6cacaaI5aGaaGioaiaa isdacaaI5aaaaa@38D4@ .

Целочисленный минимум достигается при y 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGinaaaa@351D@ :

x 21 =12,  x 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D6F@ .

5. 1. 3. Третья одномерная задача:

x 11 + x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@3D6C@ ,

12 x 11 +11 x 21 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa igdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaigdaa8aabeaak8qacq GHRaWkcaaI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaI2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@4A01@ ,

4 e 0.6 w 1 1 +11 18 w 1 ' =2.4 e 0.6 w 1 11=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaI0aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIXaWaaeWaa8aa baWdbiaaigdacaaI4aGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaikdacaGGUaGaaGinaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI2aGaam4Da8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaigdacq GH9aqpcaaIWaaaaa@5351@ ,

e 0.6 w 1 =4.5833 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGinaiaac6cacaaI1aGaaGioaiaaiodaca aIZaaaaa@3C2A@ ,

0.6 w 1 =ln 4.5833 =1.5224 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGOnaiaadE hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGinaiaac6cacaaI1aGaaGioaiaaiodaca aIZaaacaGLOaGaayzkaaGaeyypa0JaaGymaiaac6cacaaI1aGaaGOm aiaaikdacaaI0aaaaa@43E7@ ,

w 1 =2.5374 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOmaiaac6cacaaI1aGaaG4maiaa iEdacaaI0aaaaa@38C5@ .

Целочисленный минимум достигается при w 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4maaaa@3519@ :

x 21 =15,  x 11 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D70@ .

Четвертую одномерную задачу решать не имеет смысла, так как во второй задаче x 21 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaaaaa@3690@ , а в третьей x 21 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aaaaa@3693@ .

5.2. В т о р о й  э т а п. 5. 2. 1. Первая двумерная задача:

x 11 + x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@3D6B@ ,

x 11 + x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@3D6C@ ,

24 x 11 +10 x 12 +11 x 21 +2 e 0.4 y 1 1 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaI0aGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacq GHRaWkcaaIXaGaaGymaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGym aaWdaeqaaOWdbiabgUcaRiaaikdadaqadaWdaeaapeGaamyza8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaisdacaWG5bWdamaaBaaameaa peGaaGymaaWdaeqaaaaak8qacqGHsislcaaIXaaacaGLOaGaayzkaa Gaey4kaSIaaGinamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWd biaaicdacaGGUaGaaGOnaiaadEhapaWaaSbaaWqaa8qacaaIXaaapa qabaaaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@59BF@ .

Здесь 24= c 11 >2 e 0.4 1 +4 e 0.6 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaI0aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaeyOpa4Ja aGOmamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdaca GGUaGaaGinaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWk caaI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimai aac6cacaaI2aaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@4757@ , поэтому решаются две одномерные задачи.

5.2.1.1. Первая одномерная задача:

x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@39A2@ ,

10 x 12 +2 e 0.4 y 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGOmamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG inaiaadMhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44BE@ ,

2 e 0.4 y 1 1 +10 24 y 1 ' =0.8 e 0.4 y 1 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIYaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIWaWaaeWaa8aa baWdbiaaikdacaaI0aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaicdacaGGUaGaaGioaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI0aGaamyEa8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaicdacq GH9aqpcaaIWaaaaa@534E@ ,

e 0.4 y 1 =12.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGymaiaaikdacaGGUaGaaGynaaaa@3AA7@ ,

0.4 y 1 =ln 12.5 =2.5257 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGinaiaadM hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGymaiaaikdacaGGUaGaaGynaaGaayjkai aawMcaaiabg2da9iaaikdacaGGUaGaaGynaiaaikdacaaI1aGaaG4n aaaa@426B@ ,

y 1 =6.314 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaiaac6cacaaIZaGaaGymaiaa isdaaaa@3806@ .

Целочисленный минимум достигается при y 1 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaaaa@351E@ :

x 12 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI4aaaaa@3696@ .

5. 2. 1. 2. Вторая одномерная задача:

x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@39A3@ ,

11 x 21 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIXaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGinamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG OnaiaadEhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44C1@ ,

4 e 0.6 w 1 1 +11 18 w 1 ' =2.4 e 0.6 w 1 11=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaI0aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIXaWaaeWaa8aa baWdbiaaigdacaaI4aGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaikdacaGGUaGaaGinaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI2aGaam4Da8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaigdacq GH9aqpcaaIWaaaaa@5351@ ,

e 0.6 w 1 =4.5833 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGinaiaac6cacaaI1aGaaGioaiaaiodaca aIZaaaaa@3C2A@ ,

0.6 w 1 =ln 4.5833 =1.5224 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGOnaiaadE hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGinaiaac6cacaaI1aGaaGioaiaaiodaca aIZaaacaGLOaGaayzkaaGaeyypa0JaaGymaiaac6cacaaI1aGaaGOm aiaaikdacaaI0aaaaa@43E7@ ,

w 1 =2.537 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOmaiaac6cacaaI1aGaaG4maiaa iEdaaaa@3807@ .

Целочисленный минимум достигается при w 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4maaaa@3519@ :

x 21 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aaaaa@3693@ ,

Δ u 0 =2 e 0.46 e 0.45 +4 e 0.63 e 0.62 18.19 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiabgwSixl aaiAdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGinaiabgwSixlaaiwdaaaaakiaawIcacaGLPaaacqGHRaWkca aI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaa c6cacaaI2aGaeyyXICTaaG4maaaakiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGimaiaac6cacaaI2aGaeyyXICTaaGOmaaaaaOGaayjk aiaawMcaaiabgIKi7kaaigdacaaI4aGaaiOlaiaaigdacaaI5aaaaa@5C6F@ ,

Δ u 1 =2 e 0.46 e 0.45 +1118.27 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiabgwSixl aaiAdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGinaiabgwSixlaaiwdaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGymaiabgIKi7kaaigdacaaI4aGaaiOlaiaaikdacaaI3aaa aa@4DAD@ ,

Δ u 2 =4 e 0.63 e 0.62 +1020.92 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGinamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOnaiabgwSixl aaiodaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGOnaiabgwSixlaaikdaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGimaiabgIKi7kaaikdacaaIWaGaaiOlaiaaiMdacaaIYaaa aa@4DA8@ ,

Δ u 3 =10+11=21 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaicdacqGHRaWk caaIXaGaaGymaiabg2da9iaaikdacaaIXaaaaa@3C0C@ .

Здесь c 11 >Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@387C@ , поэтому x 11 =0,  x 12 =18,  y 1 =6,  x 21 =15,  w 1 =3,  c 11 1 =12,  c 11 2 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaigdacaaI4aGaaiilaiaaKdkacaWG5bWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabg2da9iaaiAdacaGGSaGaaqoOaiaadIhapaWaaS baaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI 1aGaaiilaiaaKdkacaWG3bWdamaaBaaaleaapeGaaGymaaWdaeqaaO Wdbiabg2da9iaaiodacaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qa caaIXaGaaGymaaWdaeaapeGaaGymaaaakiabg2da9iaaigdacaaIYa GaaiilaiaaKdkacaWGJbWdamaaDaaaleaapeGaaGymaiaaigdaa8aa baWdbiaaikdaaaGccqGH9aqpcaaIXaGaaGOmaaaa@61E1@ .

5. 2. 2. Вторая двумерная задача:

x 11 + x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@3D6B@ ,

x 12 + x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6A@ ,

20 x 12 +12 x 11 +14 x 22 +2 e 0.4 y 1 1 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGymaiaa ikdacaWG4bWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8qacq GHRaWkcaaIXaGaaGinaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabgUcaRiaaikdadaqadaWdaeaapeGaamyza8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaisdacaWG5bWdamaaBaaameaa peGaaGymaaWdaeqaaaaak8qacqGHsislcaaIXaaacaGLOaGaayzkaa Gaey4kaSIaaGynamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWd biaaicdacaGGUaGaaG4maiaadEhapaWaaSbaaWqaa8qacaaIYaaapa qabaaaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@59C0@ .

Здесь 20= c 12 >2 e 0.4 1 +5 e 0.3 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIWaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyOpa4Ja aGOmamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdaca GGUaGaaGinaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWk caaI1aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimai aac6cacaaIZaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@4752@ , поэтому решаются две одномерные задачи.

5. 2. 2. 1. Первая одномерная задача:

x 11 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@39A1@ ,

12 x 11 +2 e 0.4 y 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGOmamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG inaiaadMhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44BF@ ,

2 e 0.4 y 1 1 +12 24 y 1 ' =0.8 e 0.4 y 1 12=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIYaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIYaWaaeWaa8aa baWdbiaaikdacaaI0aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaicdacaGGUaGaaGioaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI0aGaamyEa8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaikdacq GH9aqpcaaIWaaaaa@5352@ ,

e 0.4 y 1 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGymaiaaiwdaaaa@3939@ ,

0.4 y 1 =ln 15 =2.7081 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGinaiaadM hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGymaiaaiwdaaiaawIcacaGLPaaacqGH9a qpcaaIYaGaaiOlaiaaiEdacaaIWaGaaGioaiaaigdaaaa@40FA@ ,

y 1 =6.77 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaiaac6cacaaI3aGaaG4naaaa @3752@ .

Целочисленный минимум достигается при y 1 =7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4naaaa@351F@ :

x 11 =17 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI3aaaaa@3694@ .

5. 2. 2. 2. Вторая одномерная задача:

x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@39A0@ ,

14 x 22 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI0aGaamiEa8aada WgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaGynamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG 4maiaadEhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44C4@ ,

5 e 0.3 w 2 1 +14 22 w 2 ' =1.5 e 0.3 w 2 14=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaI1aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI ZaGaam4Da8aadaWgaaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaI0aWaaeWaa8aa baWdbiaaikdacaaIYaGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaigdacaGGUaGaaGynaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaIZaGaam4Da8aadaWg aaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaisdacq GH9aqpcaaIWaaaaa@5350@ ,

e 0.3 w 2 =9.333 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaIZaGaam4Da8aadaWgaaadbaWdbiaaikdaa8aa beaaaaGcpeGaeyypa0JaaGyoaiaac6cacaaIZaGaaG4maiaaiodaaa a@3B69@ ,

0.3 w 2 =ln 9.333 =2.234 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaG4maiaadE hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGyoaiaac6cacaaIZaGaaG4maiaaiodaai aawIcacaGLPaaacqGH9aqpcaaIYaGaaiOlaiaaikdacaaIZaGaaGin aaaa@4269@ ,

w 2 =7.445 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaG4naiaac6cacaaI0aGaaGinaiaa iwdaaaa@380B@ .

Целочисленный минимум достигается при w 2 =7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaG4naaaa@351E@ :

x 22 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aaaaa@3694@ ,

Δ u 0 =2 e 0.47 e 0.46 +5 e 0.37 e 0.36 23.87 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiabgwSixl aaiEdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGinaiabgwSixlaaiAdaaaaakiaawIcacaGLPaaacqGHRaWkca aI1aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaa c6cacaaIZaGaeyyXICTaaG4naaaakiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGimaiaac6cacaaIZaGaeyyXICTaaGOnaaaaaOGaayjk aiaawMcaaiabgIKi7kaaikdacaaIZaGaaiOlaiaaiIdacaaI3aaaaa@5C75@ ,

Δ u 1 =2 e 0.47 e 0.46 +1425.12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaiabgwSixl aaiEdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGinaiabgwSixlaaiAdaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGinaiabgIKi7kaaikdacaaI1aGaaiOlaiaaigdacaaIYaaa aa@4DAA@ ,

Δ u 2 =5 e 0.37 e 0.36 +1224.75 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGynamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG4maiabgwSixl aaiEdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaG4maiabgwSixlaaiAdaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGOmaiabgIKi7kaaikdacaaI0aGaaiOlaiaaiEdacaaI1aaa aa@4DB2@ ,

Δ u 3 =12+14=26 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaikdacqGHRaWk caaIXaGaaGinaiabg2da9iaaikdacaaI2aaaaa@3C16@ .

Здесь c 12 <Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@3879@ , поэтому

x 12 =15,  x 22 =0,  x 11 =2,  y 1 =7,  w 2 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaigdaa8aabeaak8qacqGH9aqpcaaIYaGaaiilaiaaKdkacaWG5b WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaiEdacaGG SaGaaqoOaiaadEhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey ypa0JaaGOnaaaa@50A3@ ,

Δ u 0 23.87 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyisISRaaGOmaiaaiodacaGGUaGa aGioaiaaiEdaaaa@3A18@ ,

Δ u 1 =11.12+0 =11.12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaigdacaGGUaGa aGymaiaaikdacqGHRaWkcaaIWaGaaqoOaiabg2da9iaaigdacaaIXa GaaiOlaiaaigdacaaIYaaaaa@4126@ ,

Δ u 2 =12.75+12 =24.75 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaikdacaGGUaGa aG4naiaaiwdacqGHRaWkcaaIXaGaaGOmaiaaKdkacqGH9aqpcaaIYa GaaGinaiaac6cacaaI3aGaaGynaaaa@41FB@ ,

Δ u 3 =12+0=12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaikdacqGHRaWk caaIWaGaeyypa0JaaGymaiaaikdaaaa@3B52@ .

Здесь c 12 <Δ u 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIYaaapaqabaaaaa@3878@ , отсюда

w 2 =6,  x 12 =16,  x 22 =0,  x 11 =1,  y 1 =7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGOnaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyypa0JaaGymai aaiAdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaadIhapaWaaS baaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaGG SaGaaqoOaiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey ypa0JaaG4naaaa@50A3@ ,

Δ u 0 =11.12+7.7765=18.8965 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymaiaaigdacaGGUaGa aGymaiaaikdacqGHRaWkcaaI3aGaaiOlaiaaiEdacaaI3aGaaGOnai aaiwdacqGH9aqpcaaIXaGaaGioaiaac6cacaaI4aGaaGyoaiaaiAda caaI1aaaaa@44ED@ ,

Δ u 1 =11.12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaigdacaGGUaGa aGymaiaaikdaaaa@395F@ ,

Δ u 2 =7.7765+12 =19.7765 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaG4naiaac6cacaaI3aGa aG4naiaaiAdacaaI1aGaey4kaSIaaGymaiaaikdacaa5GcGaeyypa0 JaaGymaiaaiMdacaGGUaGaaG4naiaaiEdacaaI2aGaaGynaaaa@444B@ ,

Δ u 3 =12+0=12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaikdacqGHRaWk caaIWaGaeyypa0JaaGymaiaaikdaaaa@3B52@ .

Решение второй двумерной задачи окончено. Здесь c 12 >Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@387C@ , поэтому

w 2 =6,  x 12 =16,  x 22 =0,  x 11 =1,  y 1 =7,  c 12 1 =12,  c 12 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGOnaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyypa0JaaGymai aaiAdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaadIhapaWaaS baaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaGG SaGaaqoOaiaadMhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey ypa0JaaG4naiaacYcacaa5GcGaam4ya8aadaqhaaWcbaWdbiaaigda caaIYaaapaqaa8qacaaIXaaaaOGaeyypa0JaaGymaiaaikdacaGGSa GaaqoOaiaadogapaWaa0baaSqaa8qacaaIXaGaaGOmaaWdaeaapeGa aGOmaaaakiabg2da9iaaigdacaaIWaaaaa@6126@ .

5. 2. 3. Третья двумерная задача:

x 21 + x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@3D6F@ ,

x 11 + x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@3D6C@ ,

22 x 21 +12 x 11 +14 x 22 +3 e 0.5 y 2 1 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa ikdacaWG4bWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaak8qacq GHRaWkcaaIXaGaaGinaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabgUcaRiaaiodadaqadaWdaeaapeGaamyza8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaiwdacaWG5bWdamaaBaaameaa peGaaGOmaaWdaeqaaaaak8qacqGHsislcaaIXaaacaGLOaGaayzkaa Gaey4kaSIaaGinamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWd biaaicdacaGGUaGaaGOnaiaadEhapaWaaSbaaWqaa8qacaaIXaaapa qabaaaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@59C6@ .

Здесь 22= c 21 >3 e 0.5 1 +4 e 0.6 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIYaGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyOpa4Ja aG4mamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdaca GGUaGaaGynaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWk caaI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimai aac6cacaaI2aaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@4758@ , поэтому решаются две одномерные задачи.

5. 2. 3. 1. Первая одномерная задача:

x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@39A5@ ,

14 x 22 +3 e 0.5 y 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI0aGaamiEa8aada WgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaey4kaSIaaG4mamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG ynaiaadMhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44C6@ ,

3 e 0.5 y 2 1 +14 16 y 2 ' =1.5 e 0.5 y 2 14=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIZaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaI0aWaaeWaa8aa baWdbiaaigdacaaI2aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaigdacaGGUaGaaGynaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaamyEa8aadaWg aaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaisdacq GH9aqpcaaIWaaaaa@535B@ ,

e 0.5 y 2 =9.3333 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aa beaaaaGcpeGaeyypa0JaaGyoaiaac6cacaaIZaGaaG4maiaaiodaca aIZaaaaa@3C2A@ ,

0.5 y 2 =ln 9.3333 =2.2336 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGynaiaadM hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGyoaiaac6cacaaIZaGaaG4maiaaiodaca aIZaaacaGLOaGaayzkaaGaeyypa0JaaGOmaiaac6cacaaIYaGaaG4m aiaaiodacaaI2aaaaa@43E9@ ,

y 2 =4.467 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGinaiaac6cacaaI0aGaaGOnaiaa iEdaaaa@380E@ .

Целочисленный минимум достигается при y 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGinaaaa@351D@ :

x 22 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaaaaa@3691@ .

5. 2. 3. 2. Вторая одномерная задача:

x 11 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8qa caaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@39A2@ ,

12 x 11 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGinamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG OnaiaadEhapaWaaSbaaWqaa8qacaaIXaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44C1@ ,

4 e 0.6 w 1 1 +12 18 w 1 ' =2.4 e 0.6 w 1 12=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaI0aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIYaWaaeWaa8aa baWdbiaaigdacaaI4aGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaig daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaikdacaGGUaGaaGinaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI2aGaam4Da8aadaWg aaadbaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaikdacq GH9aqpcaaIWaaaaa@5353@ ,

e 0.6 w 1 =5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aa beaaaaGcpeGaeyypa0JaaGynaaaa@387E@ ,

0.6 w 1 =ln5=1.6094 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGOnaiaadE hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gacaaI1aGaeyypa0JaaGymaiaac6cacaaI2aGaaGimaiaaiMdaca aI0aaaaa@3E99@ ,

w 1 =2.682 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOmaiaac6cacaaI2aGaaGioaiaa ikdaaaa@3808@ .

Целочисленный минимум достигается при w 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4maaaa@3519@ :

x 11 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaI1aaaaa@3692@ ,

Δ u 0 =3 e 0.54 e 0.53 +4 e 0.63 e 0.62 =19.48 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGynaiabgwSixl aaisdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGynaiabgwSixlaaiodaaaaakiaawIcacaGLPaaacqGHRaWkca aI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaa c6cacaaI2aGaeyyXICTaaG4maaaakiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGimaiaac6cacaaI2aGaeyyXICTaaGOmaaaaaOGaayjk aiaawMcaaiabg2da9iaaigdacaaI5aGaaiOlaiaaisdacaaI4aaaaa@5BC6@ ,

Δ u 1 =3 e 0.54 e 0.53 +12=20.6487 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGynaiabgwSixl aaisdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGynaiabgwSixlaaiodaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGOmaiabg2da9iaaikdacaaIWaGaaiOlaiaaiAdacaaI0aGa aGioaiaaiEdaaaa@4E7F@ ,

Δ u 2 =4 e 0.63 e 0.62 +14=24.834 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGinamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOnaiabgwSixl aaiodaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGOnaiabgwSixlaaikdaaaaakiaawIcacaGLPaaacqGHRaWkca aIXaGaaGinaiabg2da9iaaikdacaaI0aGaaiOlaiaaiIdacaaIZaGa aGinaaaa@4DC3@ ,

Δ u 3 =14+12=26 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaisdacqGHRaWk caaIXaGaaGOmaiabg2da9iaaikdacaaI2aaaaa@3C16@ .

Здесь c 21 <Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgYda8iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@3879@ , поэтому

x 21 =12,  x 22 =0,  x 11 =3,  w 1 =3,  y 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGym aiaaigdaa8aabeaak8qacqGH9aqpcaaIZaGaaiilaiaaKdkacaWG3b WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaaiodacaGG SaGaaqoOaiaadMhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey ypa0JaaGinaaaa@509B@ ,

Δ u 0 =19.48 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaGymaiaaiMdacaGGUaGa aGinaiaaiIdaaaa@396F@ ,

Δ u 1 =20.6487 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaicdacaGGUaGa aGOnaiaaisdacaaI4aGaaG4naaaa@3AE9@ ,

Δ u 2 =10.83+0 =10.83 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaicdacaGGUaGa aGioaiaaiodacqGHRaWkcaaIWaGaaqoOaiabg2da9iaaigdacaaIWa GaaiOlaiaaiIdacaaIZaaaaa@4135@ ,

Δ u 3 =0+12=12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGimaiabgUcaRiaaigda caaIYaGaeyypa0JaaGymaiaaikdaaaa@3B52@ .

Здесь c 21 >Δ u 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIXaaapaqabaaaaa@387B@ , поэтому решение двумерной задачи окончено:

c 21 1 =10,  c 21 2 =12 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaa0baaSqaa8qaca aIYaGaaGymaaWdaeaapeGaaGymaaaakiabg2da9iaaigdacaaIWaGa aiilaiaaKdkacaWGJbWdamaaDaaaleaapeGaaGOmaiaaigdaa8aaba WdbiaaikdaaaGccqGH9aqpcaaIXaGaaGOmaaaa@3F78@ .

5. 2. 4. Четвертая двумерная задача:

x 21 + x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@3D6F@ ,

x 12 + x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6A@ ,

10 x 21 +28 x 22 +10 x 12 +3 e 0.5 y 2 1 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaGOmaiaa iIdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8qacaaIXaGaaGOm aaWdaeqaaOWdbiabgUcaRiaaiodadaqadaWdaeaapeGaamyza8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaiwdacaWG5bWdamaaBaaameaa peGaaGOmaaWdaeqaaaaak8qacqGHsislcaaIXaaacaGLOaGaayzkaa Gaey4kaSIaaGynamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWd biaaicdacaGGUaGaaG4maiaadEhapaWaaSbaaWqaa8qacaaIYaaapa qabaaaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqG TbGaaeyAaiaab6gaaaa@59C6@ .

Здесь 28= c 22 >3 e 0.5 1 +5 e 0.3 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaI4aGaeyypa0Jaam 4ya8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaeyOpa4Ja aG4mamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdaca GGUaGaaGynaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWk caaI1aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimai aac6cacaaIZaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa@475D@ , поэтому решаются две одномерные задачи.

5. 2. 4. 1. Первая одномерная задача:

x 21 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@39A4@ ,

10 x 21 +3 e 0.5 y 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaey4kaSIaaG4mamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG ynaiaadMhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44C1@ ,

3 e 0.5 y 2 1 +10 16 y 2 ' =1.5 e 0.5 y 2 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIZaWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI 1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIWaWaaeWaa8aa baWdbiaaigdacaaI2aGaeyOeI0IaamyEa8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaigdacaGGUaGaaGynaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaamyEa8aadaWg aaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0IaaGymaiaaicdacq GH9aqpcaaIWaaaaa@5353@ ,

1.5 e 0.5 y 2 =10 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaGGUaGaaGynaiaadw gapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaamyEa8aadaWg aaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyypa0JaaGymaiaaicdaaa a@3B62@ ,

e 0.5 y 2 =6.6666 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaI1aGaamyEa8aadaWgaaadbaWdbiaaikdaa8aa beaaaaGcpeGaeyypa0JaaGOnaiaac6cacaaI2aGaaGOnaiaaiAdaca aI2aaaaa@3C33@ ,

0.5 y 2 =ln 6.6666  =1.897 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGynaiaadM hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGOnaiaac6cacaaI2aGaaGOnaiaaiAdaca aI2aGaaqoOaaGaayjkaiaawMcaaiabg2da9iaaigdacaGGUaGaaGio aiaaiMdacaaI3aaaaa@44C7@ ,

y 2 =3.79 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaG4maiaac6cacaaI3aGaaGyoaaaa @3752@ .

Целочисленный минимум достигается при y 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGinaaaa@351D@ :

x 21 =12,  x 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabg2da9iaaigdacaaIYaGaaiilaiaa KdkacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GH9aqpcaaIWaaaaa@3D6F@ .

5. 2. 4. 2. Вторая одномерная задача:

x 12 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@399F@ ,

10 x 12 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGynamaa bmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG 4maiaadEhapaWaaSbaaWqaa8qacaaIYaaapaqabaaaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaacqGHsgIRcaqGTbGaaeyAaiaab6gaaa a@44BF@ ,

5 e 0.3 w 2 1 +10 22 w 2 ' =15 e 0.3 w 2 10=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaI1aWaae Waa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI ZaGaam4Da8aadaWgaaadbaWdbiaaikdaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaIWaWaaeWaa8aa baWdbiaaikdacaaIYaGaeyOeI0Iaam4Da8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaai4jaaaakiabg2da9iaaigdacaaI1aGaamyza8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaiodacaWG3bWdamaaBaaameaa peGaaGOmaaWdaeqaaaaak8qacqGHsislcaaIXaGaaGimaiabg2da9i aaicdaaaa@5296@ ,

e 0.3 w 2 =6.6666 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaape GaaGimaiaac6cacaaIZaGaam4Da8aadaWgaaadbaWdbiaaikdaa8aa beaaaaGcpeGaeyypa0JaaGOnaiaac6cacaaI2aGaaGOnaiaaiAdaca aI2aaaaa@3C2F@ ,

0.3 w 2 =ln 6.6666 =1.897 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaG4maiaadE hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaciiBaiaa c6gadaqadaWdaeaapeGaaGOnaiaac6cacaaI2aGaaGOnaiaaiAdaca aI2aaacaGLOaGaayzkaaGaeyypa0JaaGymaiaac6cacaaI4aGaaGyo aiaaiEdaaaa@433D@ ,

w 2 =6.3237 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGOnaiaac6cacaaIZaGaaGOmaiaa iodacaaI3aaaaa@38C6@ .

Целочисленный минимум достигается при w 2 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGOnaaaa@351D@ :

x 12 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabg2da9iaaigdacaaI2aaaaa@3694@ ,

Δ u 0 =3 e 0.54 e 0.53 +5 e 0.36 e 0.35 =16.4252 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0JaaG4mamaabmaapaqaa8qa caWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGynaiabgwSixl aaisdaaaGccqGHsislcaWGLbWdamaaCaaaleqabaWdbiaaicdacaGG UaGaaGynaiabgwSixlaaiodaaaaakiaawIcacaGLPaaacqGHRaWkca aI1aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaaGimaiaa c6cacaaIZaGaeyyXICTaaGOnaaaakiabgkHiTiaadwgapaWaaWbaaS qabeaapeGaaGimaiaac6cacaaIZaGaeyyXICTaaGynaaaaaOGaayjk aiaawMcaaiabg2da9iaaigdacaaI2aGaaiOlaiaaisdacaaIYaGaaG ynaiaaikdaaaa@5D39@ ,

Δ u 1 =8.6487+10=18.6487 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaeyypa0JaaGioaiaac6cacaaI2aGa aGinaiaaiIdacaaI3aGaey4kaSIaaGymaiaaicdacqGH9aqpcaaIXa GaaGioaiaac6cacaaI2aGaaGinaiaaiIdacaaI3aaaaa@42C2@ ,

x 12 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@399F@ ,

Δ u 3 =10+10=20 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabfs5aejaadwhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaeyypa0JaaGymaiaaicdacqGHRaWk caaIXaGaaGimaiabg2da9iaaikdacaaIWaaaaa@3C0A@ .

Здесь c 22 >Δ u 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca aIYaGaaGOmaaWdaeqaaOWdbiabg6da+iabfs5aejaadwhapaWaaSba aSqaa8qacaaIZaaapaqabaaaaa@387E@ , поэтому решение четвертой двумерной задачи окончено:

y 2 =4,  x 21 =12,  x 22 =0,  w 2 =6,  x 12 =16,  c 22 1 =14,  c 22 2 =14 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGinaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyypa0JaaGymai aaikdacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabg2da9iaaicdacaGGSaGaaqoOaiaadEhapaWaaS baaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaaGOnaiaacYcacaa5 GcGaamiEa8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey ypa0JaaGymaiaaiAdacaGGSaGaaqoOaiaadogapaWaa0baaSqaa8qa caaIYaGaaGOmaaWdaeaapeGaaGymaaaakiabg2da9iaaigdacaaI0a GaaiilaiaaKdkacaWGJbWdamaaDaaaleaapeGaaGOmaiaaikdaa8aa baWdbiaaikdaaaGccqGH9aqpcaaIXaGaaGinaaaa@61E9@ .

Легко видеть, что из полученных решений двумерных задач сформировать решение исходной задачи невозможно. Для достижения предельного состояния итерационного процесса потребовалось четыре цикла.

5. 2. 5. Итоговый набор одномерных задач имеет следующий вид:

x 11 + x 12 + y 1 =24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGOmaiaaisdaaaa@3D6B@ ,

10 x 11 +10 x 12 +2 e 0.4 y 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa icdacaWG4bWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8qacq GHRaWkcaaIYaWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaI0aGaamyEa8aadaWgaaadbaWdbiaaigdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@49FC@ .

Решение: y 1 =6,  x 11 + x 12 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaGOnaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaamiEa8 aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyypa0JaaGym aiaaiIdaaaa@4088@ ;

x 21 + x 22 + y 2 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadMhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGymaiaaiAdaaaa@3D6F@ ,

8 x 21 +13 x 22 +3 e 0.5 y 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiIdacaWG4bWdamaaBaaale aapeGaaGOmaiaaigdaa8aabeaak8qacqGHRaWkcaaIXaGaaG4maiaa dIhapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiodadaqadaWdaeaapeGaamyza8aadaahaaWcbeqaa8qacaaIWaGa aiOlaiaaiwdacaWG5bWdamaaBaaameaapeGaaGOmaaWdaeqaaaaak8 qacqGHsislcaaIXaaacaGLOaGaayzkaaGaeyOKH4QaaeyBaiaabMga caqGUbaaaa@4951@ .

Решение: y 2 =3,  x 21 =13,  x 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaG4maiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyypa0JaaGymai aaiodacaGGSaGaaqoOaiaadIhapaWaaSbaaSqaa8qacaaIYaGaaGOm aaWdaeqaaOWdbiabg2da9iaaicdaaaa@4397@ ;

x 11 + x 21 + w 1 =18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGymaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIXaaapaqabaGcpeGaeyypa0JaaGymaiaaiIdaaaa@3D6C@ ,

14 x 11 +14 x 21 +4 e 0.6 w 1 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI0aGaamiEa8aada WgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa isdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaigdaa8aabeaak8qacq GHRaWkcaaI0aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaI2aGaam4Da8aadaWgaaadbaWdbiaaigdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@4A06@ .

Решение: w 1 =3,  x 11 + x 21 =15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyypa0JaaG4maiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaey4kaSIaamiEa8 aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaeyypa0JaaGym aiaaiwdaaaa@4080@ ;

x 12 + x 22 + w 2 =22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadIhapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadEhapaWaaSbaaSqaa8 qacaaIYaaapaqabaGcpeGaeyypa0JaaGOmaiaaikdaaaa@3D6A@ ,

10 x 12 +15 x 22 +5 e 0.3 w 2 1 min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaamiEa8aada WgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaey4kaSIaaGymaiaa iwdacaWG4bWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacq GHRaWkcaaI1aWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaIZaGaam4Da8aadaWgaaadbaWdbiaaikdaa8aabe aaaaGcpeGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgkziUkaab2ga caqGPbGaaeOBaaaa@4A04@ .

Решение: w 2 =6,  x 12 =16 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadEhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyypa0JaaGOnaiaacYcacaa5GcGaamiEa8aa daWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaeyypa0JaaGymai aaiAdaaaa@3CBC@ .

Из этого набора решений легко формируется итоговый результат:

x 11 =2,  x 12 =16,  x 21 =13,  x 22 =0,  y 1 =6,  y 2 =3, w 1 =3,  w 2 =6 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaGaaGymaaWdaeqaaOWdbiabg2da9iaaikdacaGGSaGaaqoOaiaa dIhapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabg2da9i aaigdacaaI2aGaaiilaiaaKdkacaWG4bWdamaaBaaaleaapeGaaGOm aiaaigdaa8aabeaak8qacqGH9aqpcaaIXaGaaG4maiaacYcacaa5Gc GaamiEa8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaeyyp a0JaaGimaiaacYcacaa5GcGaaeyEa8aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacqGH9aqpcaaI2aGaaiilaiaaKdkacaWG5bWdamaaBaaa leaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaaiodacaGGSaGaam4Da8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaaIZaGaaiil aiaaKdkacaWG3bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2 da9iaaiAdaaaa@6302@ .

Заключение. Декомпозиционный подход оказался применим для еще одного класса задач. Намечается путь к рассмотрению двух индексов в данной постановке.

×

Авторлар туралы

V. Lobantsov

The State University of Land Use Planning

Хат алмасуға жауапты Автор.
Email: lobantsov.vv@phystech.edu
Ресей, Moscow

A. Tizik

Central Communications Research Institute

Email: tizik_ap@mail.ru
Ресей, Moscow

V. Tsurkov

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Email: tsur@ccas.ru
Ресей, Moscow

Әдебиет тізімі

  1. Гольштейн Е.Г., Юдин Д.Б. Задачи линейного программирования транспортного типа. М.: Наука, 1969.
  2. Tриус Е.Б. Задачи математического программирования транспортного типа. М.: Сов. радио, 1967.
  3. Tизик А.П., Цурков В.И. Метод последовательных изменений параметров функционала для решения транспортной задачи // Аи Т. 2012. № 1. Р. 148–158.
  4. Tизик А.П., Цурков В.И. Декомпозиционная методика для одного класса задач блочного программирования // ЖВМ и МФ. 1989. Т. 29. № 10. Р. 1581–1586.
  5. Tизик А.П., Цурков В.И. Оптимальное распределение каналов на сети связи // Изв. АН СССР. Техн. кибернетика. 1989. № 4. Р. 153–159.
  6. Думбадзе Л.Г. Разработка методов и алгоритмов в задачах оптимального использования и развития сетей: Дис. … канд. физ.-мат. наук. М.: ВЦ РАН, 2007.
  7. Соколов А.А., Тизик А.П., Цурков В.И. Итеративный метод для транспортной задачи с дополнительными пунктами производства и потребления и квадратичным штрафом // Изв. РАН. ТиСУ. 2013. № 4. С. 88–98.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».