МОДЕЛИРОВАНИЕ МАГНИТОСФЕРЫ ЭКЗОПЛАНЕТЫ НАТ-Р-11В

© 2024 г. Е. С. Беленькая^{1,*}, И. И. Алексеев^{1,**}, В. В. Калегаев^{1,***}

¹Московский государственный университет им. М. В. Ломоносова, Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына (НИИЯФ МГУ), Москва, Россия

*E-mail: elena@dec1.sinp.msu.ru **E-mail: iialexeev@mail.ru ***E-mail: klg@dec1.sinp.msu.ru

Поступила в редакцию 12.10.2023 г. После доработки 21.11.2023 г. Принята в печать 21.11.2023 г.

На основе имеющихся данных о магнитном поле звезды HAT-P-11 и ближайшей к ней экзопланеты HAT-P-11b, а также информации о звездном ветре в этой системе строится модель магнитосферного магнитного поля HAT-P-11b. Показано, как величина и ориентация межпланетного магнитного поля контролируют структуру магнитосферы. Каждый компонент магнитного поля звездного ветра создает определенный тип пересоединения с магнитосферным магнитным полем экзопланеты.

Ключевые слова: магнитосфера, экзопланета, звезда, звездный ветер

DOI: 10.31857/S0004629924010031 **EDN:** LFUZWY

1. ВВЕДЕНИЕ

Звезда НАТ-Р-11 в созвездии Лебедя расположена на расстоянии 123.3 световых лет от Солнца (или 37.8 пк). Ее спектральный класс — K4. Вокруг нее вращаются две экзопланеты, НАТ-Р-11b и НАТ-Р-11c, с большими полуосями орбит 0.053 и 4.13 а.е. соответственно. Экзопланета НАТ-Р-11b, открытая в 2009 г., имеет орбитальный период 4.9^d. Это газовый гигант размером с Нептун с массой $\sim 0.074 M_{\rm J}$, где $M_{\rm J} \sim 1.9 \times 10^{27}$ кг — масса Юпитера.

С помощью УФ-наблюдений космическим телескопом Хаббл (HST) поглощения нейтрального водорода и ионизированного углерода во время транзитов был сделан вывод о существовании магнитного поля экзопланеты HAT-P-11b [1]. Бен-Джаффель и др. [1] подробно описали метод, который они использовали для решения этой задачи.

Магнитное поле может объяснить наблюдаемый длинный хвост ионов углерода С II вокруг экзопланеты. HAT-P-11b — одна из немногих экзопланет с оцененным магнитным полем (1-5 Гс [1]). Так, Кислякова и др. [2] ранее оценили магнитный момент другой экзопланеты — HD 209458b.

В данной работе мы используем параболоидную модель, построенную ранее в нашей лаборатории для планетных магнитосфер Солнечной системы [3, 4, 5, 6, 7] и для некоторых экзопланет [8, 9, 10]. Здесь мы кратко опишем структуру магнитосферного магнитного поля в параболоидной модели.

2. ПАРАБОЛОИДНАЯ МОДЕЛЬ МАГНИТОСФЕРЫ ПЛАНЕТЫ

Модель магнитосферы названа параболоидной, потому что форма границы магнитосферы (магнитопаузы) описывается параболоидом вращения вокруг оси X, направленной из центра планеты к звезде:

$$\frac{x}{R_{\rm l}} = 1 - \frac{y^2 + z^2}{2R_{\rm l}^2}.$$
 (1)

Ось Y направлена к вечеру, а ось Z — к северу перпендикулярно X и Y в плоскости, содержащей ось X и ось магнитного диполя планеты. Система координат (X,Y,Z) называется звездно-магнитосферной.

Параметр модели R_1 — расстояние от центра планеты до фронтальной точки магнитопаузы. Звездный ветер, обтекающий небесное тело, создает вокруг него магнитосферу, хвост которой вытянут в антизвездном направлении.

Крупномасштабные токовые системы поддерживают конфигурацию магнитосферы. Токовая система хвоста включает в себя токи поперек нейтрального токового слоя хвоста в экваториальной плоскости и токи их замыкания на магнитопаузе. Расстояние от центра планеты до внутреннего края токового слоя хвоста — второй параметр магнитосферы R_2 .

Токи экранировки на магнитопаузе защищают внешнее пространство от проникновения в него

магнитосферного поля от всех магнитосферных источников и магнитосферу от проникновения звездного ветра и частично от внешнего межпланетного магнитного поля (ММП). Эти токовые системы характерны для магнитосфер экзопланет земного типа.

Для Юпитера и Сатурна в Солнечной системе существует дополнительная токовая система, связанная с кольцевым током или магнитодиском, играющая значительную роль. Кольцевой ток есть также в магнитосфере Земли, но там он намного слабее, чем в магнитосферах планет-гигантов, и имеет другую природу. R_{d1} и R_{d2} — планетоцентрические расстояния до внешнего и внутреннего краев магнитодиска.

 R_1 , R_2 , R_{d1} и R_{d2} — геометрические параметры, характеризующие магнитосферные токовые системы. Есть еще два параметра, описывающих магнитное поле на внутреннем крае токового слоя хвоста B_t и на внешнем крае магнитодиска B_{DC11} . Параболоидная модель также включает частично проникающее ММП с коэффициентом проникновения $k \sim 0.1-0.2$ (как для Земли) [11, 12].

Следующий модельный параметр — угол наклона диполя ψ (угол между северной осью магнитного диполя и осью Z). Также параметрами являются три компонента ММП в звездно-магнитосферной системе координат ($B_{\mathrm{IMF}x}$, $B_{\mathrm{IMF}y}$, $B_{\mathrm{IMF}z}$) и магнитное поле на экваторе планеты B_{pl} .

3. МАГНИТОСФЕРНЫЕ ПАРАМЕТРЫ ДЛЯ НАТ-Р-11В

Бен-Джаффель и др. [1], анализируя линии поглощения ионов С II и Н I Ly α во время транзитов, оценили магнитное поле на экваторе HAT-P-11b как $B_{pl} \sim 1-5$ Гс со средним значением 2.4 Гс. Из их работы [1, рис. 4c] следует, что плотность звездного ветра перед дневной магнитосферой HAT-P-11b была $\sim 3.3 \times 10^3$ см⁻³. Также Бен-Джаффель и др. [1] определили, что скорость звездного ветра от HAT-P-11 порядка 500–600 км/с. Авторы оценили магнитное поле этой звезды как 1–2 Гс (со средним значением 1.5 Гс).

Из работы [1, рис. 4d] следует, что магнитосфера НАТ-Р-11b имеет каплеобразную форму. Это означает, что орбита планеты со средним расстоянием от звезды ~0.0465 а. е. находится за альфвеновским радиусом в звездном ветре. На альфвеновском радиусе плотности магнитной и кинетической энергий равны. У находящейся за альфвеновским радиусом планеты возникает каплеобразная магнитосфера с ударной волной перед ней. Структура магнито-

сферы в работе [1, рис. 4d] была получена на основе наблюдений на космическом телескопе Хаббл (HST) во время транзитов HAT-P-11b. Авторы оценили размер магнитосферы от $\sim 20R_{\rm pl}$ на дневной стороне до, возможно, нескольких тысяч $R_{\rm pl}$ в хвосте, как в Солнечной системе (это верхний предел), где $R_{\rm pl}$ — радиус экзопланеты, равный $\sim 2.8 \times 10^4$ км [1].

Такой тип магнитосферы возникает в сверхзвуковом и сверхальфвеновском звездном ветре. В этих условиях динамическое давление звездного ветра, $p_{\rm dynsw}=m_{\rm p}n_{\rm sw}V_{\rm sw}^2$, доминирует по сравнению с тепловым и магнитным давлением [13]. Здесь $m_{\rm p}$ — масса протона, $n_{\rm sw}$ и $V_{\rm sw}$ — плотность и скорость звездного ветра на орбите планеты (для $V_{\rm sw}$ мы взяли среднее значение ~550 км/с). Поэтому в уравнении для баланса давлений на дневной магнитопаузе рассматриваем только динамическое давление звездного ветра. Используя параметры звездного ветра, описанные выше, получаем:

$$p_{\text{dynsw}} = m_p n_{\text{sw}} V_{\text{sw}}^2 = 1.67 \times 10^{-27} \text{ кг} \times 3.3 \times 10^9 \text{ м}^{-3} \times (550 \times 10^3)^2 \text{ м}^2 \text{c}^{-2} = 1667 \text{н} \Pi \text{a.} (2)$$

В магнитосферной физике $p_{\rm dynsw}$ на дневной магнитопаузе умножается на коэффициент $k_{\rm sw}$ = 0.88, полученный для одноатомного звездного ветра [14]:

$$k_{\rm sw} p_{\rm dynsw} = 1467 \text{ H}\Pi a.$$
 (3)

В первом приближении предполагаем, что с магнитосферной стороны на дневной магнитопаузе главный вклад в давление дает магнитное поле планеты и поле токов экранировки на магнитопаузе, если экзопланета типа Земли (однако в рассматриваемом случае это планета размером с Нептун). Предполагая, что поле планеты дипольное, мы получаем следующее выражение для планетоцентрического расстояния до дневной точки остановки на магнитопаузе R_1 [13]:

$$\frac{R_1}{R_{\rm pl}} = \left\{ \frac{k_m^2 B_{\rm pl}^2}{2\mu_0 (k_{\rm sw} p_{\rm dynsw})} \right\}^{1/6}.$$
 (4)

Здесь k_m = 2.44 показывает, как магнитосферное магнитное поле возрастает благодаря токам магнитопаузы [7]. Используя описанные выше параметры, мы получаем для $B_{\rm pl}$ = 2.4 Γ c = 240 000 нТл:

$$\frac{R_{\rm l}}{R_{\rm pl}} \sim 7. \tag{5}$$

Поскольку магнитное поле экзопланеты было оценено в пределах 1-5 Гс, мы можем выбрать значение $B_{\rm pl}=4.2$ Гс = $420\,000$ нТл, например. В этом случае:

$$\frac{R_1}{R_{\rm nl}} \sim 8.4. \tag{6}$$

Однако оба эти результата противоречит выводам [1, рис. 4c, 4d], полученным на базе наблюдений HST, показывающим, что дневная магнитопауза ограничена на расстоянии $\sim 20R_{\rm pl}$ от центра экзопланеты, но не на $7R_{\rm pl}$ или $8.4R_{\rm pl}$.

Для согласования с данными наблюдений мы предположили, что HAT-P-11b может иметь магнитодиск, как Юпитер или Сатурн в Солнечной системе. При этом нужно найти модельные параметры, соответствующие $R_1 = 20\,R_{\rm pl}$, R_2 (расстояние до внутреннего края токового слоя хвоста) обычно считалось равным $\sim 0.7\,R_1$ в моделях магнитосфер планет Солнечной системы и экзопланет [9], поэтому мы используем эту оценку и для HAT-P-11b, что дает $R_2 = 14\,R_{\rm pl}$. Поскольку мы не знаем точно угол наклона диполя планеты ψ , считаем его равным нулю и предполагаем, что ось диполя HAT-P-11b направлена на север.

Для согласования с данными наблюдений мы выбрали произвольно $B_{\rm pl} = 4.2 \times 10^5 \,\mathrm{HT}$ л и $B_{\rm r} = -60 \,\mathrm{HT}$ л. Используя опыт построения моделей магнитосферы для Юпитера и Сатурна, мы предполагаем, что $B_t = -B_{DC11}$, следовательно, $B_{DC11} = 60$ нТл. Поскольку мы также не имеем информации о расположении магнитодиска в магнитосфере, мы полагаем, что его внешний край может находиться несколько ближе к планете, чем внутренний край токового слоя хвоста, например, $r_{d1} = 12R_{pl}$ и $r_{d2} = 8R_{pl}$. Все параметры выбраны произвольно, этот выбор оправдан только тем, что получен результат, сравнимый с наблюдениями. Для более обоснованного выбора параметров нужно иметь больше информации об условиях в магнитосфере экзопланеты. Таким образом, мы получили следующий набор магнитосферных параметров для HAT-P-11b:

- планетоцентрическое расстояние до фронтальной точки магнитопаузы $R_1 = 20 R_{\rm p/}$;
- планетоцентрическое расстояние до внутреннего края токового слоя хвоста $R_2 = 14 R_{pl}$;
- магнитное поле на внутреннем крае токового слоя хвоста $B_i = -60$ нТл;
- магнитное поле на внешнем крае магнитодиска $B_{DC11} = 60 \text{ нТл};$
- планетоцентрическое расстояние до внешнего края магнитодиска $r_{d1} = 12 R_{\rm pl}$;
- планетоцентрическое расстояние до внутреннего края магнитодиска $r_{d2} = 8R_{\rm pl}$;

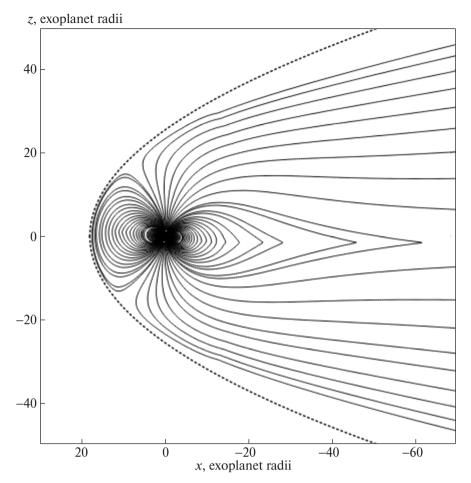
- магнитное поле на экваторе экзопланеты $B_{\rm n/} = 4.2 \times 10^5 \; {\rm HT}{\rm J};$
- ось магнитного диполя по предположению направлена на север, следовательно, угол наклона диполя $\psi = 0$;
 - коэффициент проникновения ММП k = 0.1;
 - радиус экзопланеты $R_{\rm pl} = 2.8 \times 10^4$ км;
- среднее расстояние до центральной звезды d = 0.053 a. e.;
- компоненты ММП выбираются произвольно, исходя из оценки магнитного поля звезды.

Если учесть орбитальную скорость экзопланеты, то скорость обтекающего потока будет равна:

$$\delta \mathbf{U} = \mathbf{V}_{sw} - \mathbf{U}_k, \tag{7}$$

где \mathbf{U}_k — азимутальная кеплеровская скорость, а \mathbf{V}_{sw} — скорость звездного ветра, взятая нами равной 550 км/с,

$$U_k = \frac{2\pi d}{T}. (8)$$


Здесь d=0.053 а. е. $=8\times10^6$ км — среднее расстояние планеты от звезды; $T=4.9^d=423360$ с — период обращения экзопланеты по орбите, тогда $U_k=100$ км/с,

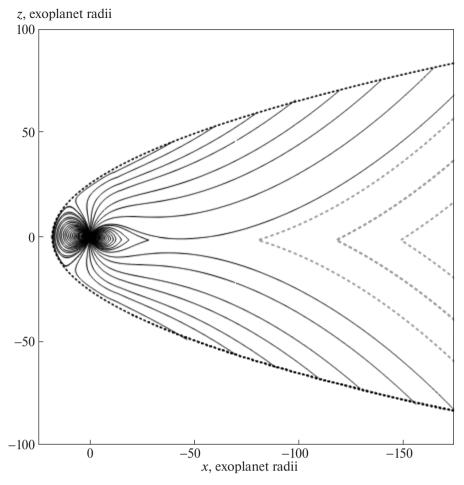
$$\delta U = (V_{\rm sw}^2 + U_k^2)^{1/2}.$$
 (9)

Отсюда следует, что $\delta U = 559 \, \text{км/c} = 1.02 V_{\text{sw}}$. Таким образом, учет орбитальной скорости не сказывается на полученных результатах. Изменение направления осей ударной волны и магнитопаузы вследствие орбитального движения экзопланеты приведет к изменению направления осей используемой системы координат: ось X будет направлена не на звезду, а навстречу относительной скорости δU . В системе координат, повернутой на угол α, структура магнитосферы не изменится в рамках принятых допущений. Угол поворота α от старой оси X к новой X' определяется выражением: $\alpha = U_{\nu}/V_{\text{sw}} = 100/550 =$ =0.18; $\alpha = 10.2^{\circ}$. За неимением точных данных о физических условиях в системе НАТ-Р-11 сделаны грубые оценки в простейшем приближении без учета, в частности, угла наклона магнитного диполя к оси вращения экзопланеты, а также различия компонентов ММП в первоначальной и повернутой на азимутальный угол α системах координат.

4. МАГНИТОСФЕРА НАТ-Р-11В ПРИ НУЛЕВОМ ММП

В начале исследования взаимодействия магнитосферы экзопланеты со звездным ветром рассмотрим случай равного нулю ММП. Соответству-

Рис. 1. Магнитосфера экзопланеты HAT-P-11b для равного нулю ММП в сечении полдень-полночь. Параметры модели приведены в тексте статьи, магнитный момент экзопланеты направлен на север. Сплошными линиями по-казаны магнитные силовые линии; пунктирной — магнитопауза. Кружком обозначена экзопланета. X и Z координаты отложены по горизонтальной и вертикальной осям.


ющая структура магнитосферы показана на рис. 1. В этом случае мы получаем "закрытую" магнитосферу с открытыми силовыми линиями, не пересскающими магнитопаузу, а идущими в удаленный хвост. Размеры полученной магнитосферы сравнимы с полученными в работе [1] и представленными у них на рис. 4d.

5. ОТКРЫТАЯ МАГНИТОСФЕРА НАТ-Р-11В

Рассмотрим, как магнитосфера экзопланеты меняется под действием не равного нулю ММП. Для этого нужно знать магнитное поле звездного ветра. Бен-Джаффель и др. [1] оценили величину магнитного поля на экваторе HAT-P-11 как $B_{\rm star} \sim 1-2$ Гс. Для сравнения поле Солнца ~ 1 Гс. Моррис и др. [15] отмечали, что звездная активность HAT-P-11 превышает солнечную. Для оценки магнитного поля звездного ветра, которое мы точно не знаем, мы используем грубую аналогию с солнечным ветром на орбите ближайшей планеты — Меркурия,

несмотря на то, что его расстояние от Солнца 0.31-0.47 а.е. [16], т.е. почти в 10 раз больше, чем расстояние HAT-P-11b от центральной звезды (0.053 а.е.). Согласно Расселу и др. [17], средняя величина ММП вблизи Меркурия ~30.5 нТл со стандартным отклонением 11.2 нТл. Учитывая, что НАТ-Р-11 более активная, чем Солнце, и экзопланета находится ближе к ней, мы берем компоненты ММП для вычислений вблизи HAT-P-11b произвольными, но немного большими, чем у Меркурия. Например, $|B_{{
m IMF}_z}| \sim 75$ нТл и $|B_{{
m IMF}_z}| \sim 38$ нТл для спокойных условий и ~110 нТл для возмущенных во время столкновений с корональными выбросами массы (КВМ) и т. д. Мы полагаем, что вблизи звезды в спокойных условиях главный компонент ММП, $B_{\text{IMF}x}$, такой же, как у Солнца. Как меняется структура магнитосферы экзопланеты при северном ММП, показано на рис. 2.

Для северного ММП, параллельного диполю экзопланеты, магнитосфера становится открытой,

Рис. 2. То же, что на рис. 1, но для ММП с компонентами $\{0, 0, 38\}$ нТл. Открытая магнитосфера HAT-P-11b для умеренного северного ММП. Штриховые линии на всех рисунках обозначают линии межпланетного магнитного поля, проникшие в магнитосферу (показана пунктиром).

как для Земли при южном ММП (земной магнитный диполь направлен на юг). Сравнение с результатами работы [1, рис. 4d] показывает хорошее согласие: расстояние от центра экзопланеты до фронтальной точки магнитопаузы $\sim 20R_{\rm pl}$ и нейтральная точка в хвосте находится примерно на $-50R_{\rm pl}$. В этом случае межпланетные магнитные линии заполняют магнитосферный хвост. Открытые силовые линии пересекают магнитопаузу и не идут в удаленный хвост параллельно линии звезда-планета, как при нулевом ММП.

На рис. 3 показана магнитосфера HAT-P-11b при сильном северном ММП ($|B_{\rm IMFz}| \sim 110$ нТл). В этом случае нейтральная точка в хвосте сдвигается ближе к экзопланете, и большая часть хвоста заполняется межпланетными силовыми линиями магнитного поля.

6. ЗАМКНУТАЯ МАГНИТОСФЕРА НАТ-Р-11В

Для южного ММП с нулевыми $B_{\mathrm{IMF}x}$ (радиальной) и $B_{\mathrm{IMF}y}$ (азимутальной) компонентами магни-

тосфера экзопланеты с осью диполя, направленной на север, становится закрытой (рис. 4).

Для умеренного южного ММП (антипараллельного диполю экзопланеты) существуют только две открытые силовые линии, идущие в каспы. Межпланетное магнитное поле проникает в магнитосферу (пунктирные линии на рис. 4), ограничивая область замкнутых силовых линий.

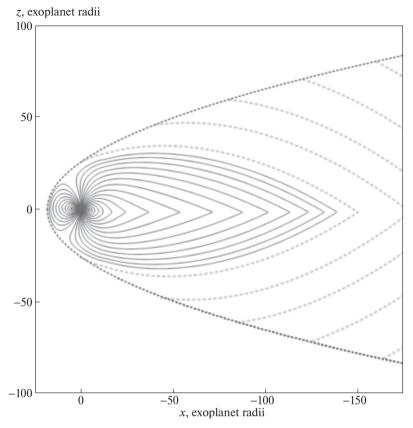
В экстремальных условиях при столкновениях магнитосферы с КВМ или с коротирующими взаимодействующими потоками с очень сильным южным ММП структура магнитосферы меняется, как это показано на рис. 5: область замкнутых силовых линий сжимается.

Однако для южного ММП магнитосфера экзопланеты с направленной к северу осью магнитного диполя становится замкнутой, только если другие компоненты ММП, B_{IMF_x} и B_{IMF_y} , равны нулю. Если хотя бы один из них отличен от нуля, магнитосфера становится открытой. Далее мы рассмотрим эффект

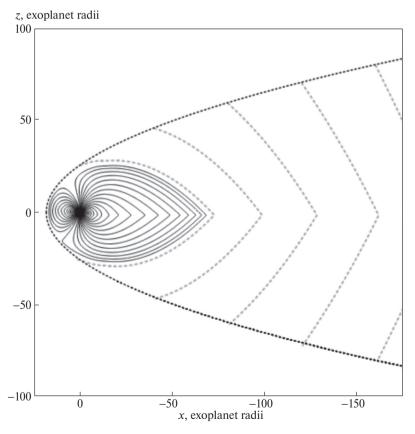
АСТРОНОМИЧЕСКИЙ ЖУРНАЛ ТОМ 101 № 1 2024

Рис. 3. То же, что на рис. 2, но для сильного северного ММП: $\{0, 0, 110\}$ нТл.

 $B_{{
m IMF}x}$, так как это главный компонент ММП для экзопланеты, расположенной близко к родительской звезде.


7. МАГНИТОСФЕРА НАТ-Р-11В ПРИ ОТРИЦАТЕЛЬНОМ РАДИАЛЬНОМ ММП

На рис. 6 представлена структура магнитосферы НАТ-Р-11b для ММП с отрицательным (направленным от звезды) радиальным компонентом.


Отрицательный радиальный компонент ММП $B_{\mathrm{IMF}x}$ драматически меняет магнитосферное магнитное поле. Первое трехмерное пересоединение происходит в северном каспе (для экзопланеты с направленным на север магнитным диполем). Там межпланетное магнитное поле пересоединяется с замкнутыми силовыми линиями, образуя открытые силовые линии двух полярных шапок. В северном полупространстве открытые силовые линии северной полярной шапки и межпланетные силовые линии (отмеченные пунктирными кривыми) идут в удаленный хвост вдоль линии планета-звезда.

В южном полупространстве мы видим иную структуру: поток открытых силовых линий, идущих в южную полярную шапку, разворачивается к южной магнитопаузе и пересекает ее; в остальной части южной магнитосферы межпланетные магнитные силовые линии идут в антизвездном направлении. Это результат второго двумерного пересоединения в экваториальном хвосте, где открытые силовые линии двух полярных шапок, сливаясь, образуют замкнутые и межпланетные силовые линии. В южном полупространстве возникает резкая граница открытых силовых линий, на которой силовые линии, идущие в южную полярную шапку, и межпланетные линии, уходящие от звезды, разделяются. Такая структура возникает из-за усиления вытянутого потока силовых линий в северном хвосте и ослабления в южном благодаря сильному отрицательному радиальному ММП, частично проникающему в магнитосферу.

Когда B_{IMF_X} меняет знак, мы получаем картину, симметричную представленной на рис. 6 относительно оси X в сечении день-ночь. В этом случае

Рис. 4. Закрытая магнитосфера HAT-P-11b при умеренном южном ММП: $\{0,0,-38\}$ нТл.

Рис. 5. То же, что на рис. 4, но для сильного южного ММП: $\{0,0,-110\}$ нТл.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ ТОМ 101 № 1 2024

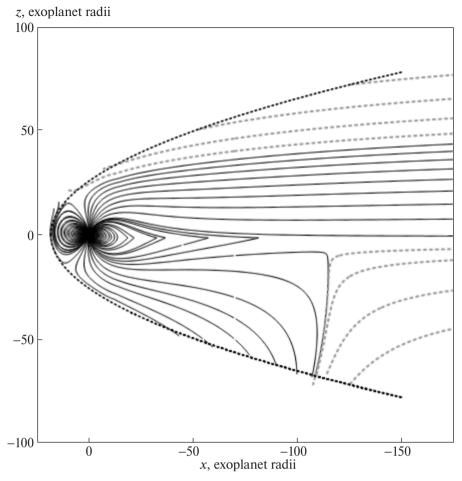


Рис. 6. Магнитосфера НАТ-Р-11b для ММП с отрицательным радиальным компонентом ММП: {-75, 0, 0} нТл.

положительный радиальный компонент ММП усилит вытянутый поток в южном хвосте и ослабит в северном. Укороченный хвост будет в северной части магнитосферы противоположно случаю, представленному на рис. 6.

Мы видим, что при сильном радиальном ММП одновременно существуют двумерное и трехмерное пересоединения в магнитосфере. Для НАТ-Р-11b трехмерное пересоединение возникает в каспе, а двумерное — в экваториальном хвосте. В работе [18] показано, что в параболоидной модели для Земли при радиальном ММП тоже возникает двумерное и трехмерное пересоединения, и одна доля хвоста преобладает над другой.

Беленькая и др. [19] рассчитали в параболоидной модели магнитосферную структуру для отрицательного и положительного радиального ММП для Меркурия [19, рис. 7c, d]. Было показано, что синхронно существуют двумерное и трехмерное пересоединения и что одна доля хвоста значительно преобладает над другой.

Наличие диска в магнитосферной структуре для HAT-P-11b не меняет эти особенности при радиальном ММП. Как для планет земного типа, так и для экзопланеты HAT-P-11b первое пересоединение трехмерное и происходит в одном из каспов.

8. ЗАКЛЮЧЕНИЕ

Используя доступные в литературе данные о системе звезды НАТ-Р-11, была построена параболоидная модель магнитосферы экзопланеты НАТ-Р-11b. Оказалось, что при известных условиях в звездном ветре, в ММП и по имеющимся оценкам магнитного поля экзопланеты, необходимо существование магнитодиска вокруг НАТ-Р-11b для того, чтобы объяснить полученные на НЅТ данные во время транзитов о размере магнитосферы. Были найдены параметры параболоидной модели магнитосферы экзопланеты и рассчитаны различные структуры магнитосферного магнитного поля в зависимости от величины и направления ММП.

Была получена структура магнитосферного магнитного поля, характерная для планет земного типа в Солнечной системе, которая возникает при сильном радиальном магнитном поле в звездном ветре.

Как для Земли и особенно Меркурия, для которого радиальное ММП имеет большое значение, у НАТ-P-11b при радиальном ММП двумерное и трехмерное пересоединения одновременно возникают в магнитосфере, причем одна доля хвоста становится значительно меньше другой.

Изменение знака радиального и азимутального компонентов ММП приводит к изменениям структуры магнитосферы, симметричным относительно плоскостей XY и XZ соответственно. Изменение знака вертикального компонента ММП приводит к фундаментальной перестройке структуры магнитного пересоединения и, соответственно, магнитного поля магнитосферы.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. L. Ben-Jaffel, G. E. Ballester, A. Garcia Muñoz, P. Lavvas, et al., Nature Astron. 6, 141 (2022).
- 2. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346(6212), 981 (2014).
- 3. *I. Alexeev, E. Belenkaya, V. Kalegaev, and Y. Lutov*, J. Geophys. Res. Space Physics 98(A3), 4041 (1993).
- 4. *I. Alexeev and E. Belenkaya*, Ann. Geophysicae 23(3), 809 (2005).
- 5. *I. Alexeev, V. Kalegaev, E. Belenkaya, S. Bobrovnikov, E. Bunce, S. Cowley, and J. Nichols*, Geophys. Res. Letters 33(L08101) (2006).

- 6. I. Alexeev, E. Belenkaya, S. Yu. Bobrovnikov, J. Slavin, and M. Sarantos, J. Geophys. Res. Space Physics 113(A12), id. A12210 (2008).
- 7. *I. Alexeev, E. Belenkaya, J. Slavin, H. Korth, et al.*, Icarus 209(1), 23 (2010).
- 8. E. Belenkaya, M. Alexeev, M. Khodachenko, M. Panchenko, and Blokhina, in: European Planetary Science Congress 2010, held 20–24 September in Rome, Italy; http://meetings.copernicus.org/epsc2010, p.72.
- 9. *E. Belenkaya, I. Alexeev, and M. Blokhina*, Universe 8(4), id. 231 (2022).
- 10. *M. Khodachenko, I. Alexeev, E. Belenkaya, J.-M. Grieβmeier, et al.*, in: European Planetary Science Congress 2010, held 20–24 September in Rome, Italy; Abstracts 5, http://meetings.copernicus.org/epsc2010, p.85.
- 11. *I. Alexeev*, J. Geomagnetism and Geoelectricity 38(11), 1199 (1986).
- 12. I. Alexeev, E. Belenkaya, S. Bobrovnikov, and V. Kalegaev, Space Sci. Rev. 107(1), 7 (2003).
- 13. *J. D. Nichols and S. E. Milan*, Monthly Not. Roy. Astron. Soc. 461(3), 2353 (2016).
- 14. *J.R. Spreiter and A.Y. Alksne*, Ann. Rev. Fluid Mechanics 2, 313 (1970).
- 15. B. M. Morris, L. Hebb, J. R. A. Davenport, G. Rohn, and S. L. Hawley, Astrophys. J. 846(2), id. 99 (2017).
- 16. P. Diego, M. Piersanti, M. Laurenza, and U. Villante, J. Geophys. Res. Space Physics 125(9), id. e28281 (2020).
- 17. *C. Russell, D. Baker, and J. Slavin*, The magnetosphere of Mercury (Tucson: University of Arizona Press, 1988), p. 514.
- 18. E. Belenkaya, J. Geophys. Res. 103(A11), 26487 (1998).
- 19. E. Belenkaya, I. Alexeev, J. Slavin, and M. Blokhina, Planet. Space Sci. 75, 46 (2013).

MODELING OF THE EXOPLANET HAT-P-11B MAGNETOSPHERE

E. S. Belenkaya^a, I. I. Alexeev^a, V. V. Kalegaev^a

^aLomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU), Moscow, Russia

Based on the available data on the magnetic field of the star HAT-P-11 and its closest exoplanet HAT-P-11b, as well as information on the stellar wind in this system, we construct the HAT-P-11b magnetic field magnetospheric model. We show how the value and orientation of the interplanetary magnetic field control the magnetospheric structure. Each component of the stellar wind's magnetic field creates a specific type of reconnection with the exoplanet's magnetic field.

Keywords: magnetosphere, exoplanet, star, stellar wind