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В настоящей работе рассмотрены несколько новых моделей слоисто-неоднородной эллиптической
галактики, имеющей форму либо трехосного эллипсоида, либо сжатого или вытянутого сфероида,
и состоящей из барионной массы и темной материи с разными законами распределения плотности —
профилями. На основе этих моделей определены некоторые ключевые динамические параметры ЭГ:
гравитационная (потенциальная) энергия и кинетическая энергия вращения, распределение
углового момента и удельные угловые моменты в зависимости от профилей плотности. Установлены
равновесие и устойчивость (неустойчивость) ЭГ как динамической системы согласно известным
критериям. Найдены критические значения параметра семейства сфероидов, определяющие
границы устойчивости (или неустойчивости) динамической системы по значениям удельных
угловых моментов в зависимости от профилей плотности. Полученные результаты применены
к более шестидесяти модельным ЭГ с параметрами, точно совпадающими с реально существующими
и приведены в виде таблиц и рисунков.
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1. ВВЕДЕНИЕ

В работах [1, 2] рассмотрены три новые модели
слоисто-неоднородной эллиптической галактики
(ЭГ), состоящей из барионной массы (БМ) и тем-
ной материи (ТМ). Согласно этим моделям, эллип-
тическая галактика вместе с гало (другой вариант ––
без него) считается двухслойным неоднородным эл-
липсоидом вращения –– вытянутым сфероидом. На
основе этих моделей определены ключевые динами-
ческие параметры ЭГ [1] и исследовано простран-
ственное движение пассивно-гравитирующего тела
(ПГТ) в гравитационном поле такой галактики [2].
Полученные результаты применены к модельным
эллиптическим галактикам, параметры которых точ-
но совпадают с параметрами реально существую-
щих.

В работе [3] рассмотрены другие модели слоисто-
неоднородной эллиптической галактики. Соглас-
но этим моделям ЭГ состоит из БМ и ТМ
и представляет собой либо слоисто-неоднородной
трехосный эллипсоид с полуосями 𝑎 > 𝑏 > 𝑐 (Мо-
дель I), либо cлоисто-неоднородной сжатый сфе-
роид –– сфероид Маклорена, 𝑎 = 𝑏 > 𝑐 (Модель II),
либо слоисто-неоднородной вытянутый сфероид
𝑎 > 𝑏 = 𝑐 (Модель III). При этом законом рас-
пределения плотности –– профилем БМ –– является

ρ1(𝑚), а профилем ТМ –– ρ2(𝑚). На основе этих
моделей определены некоторые ключевые дина-
мические параметры ЭГ и установлены соотно-
шения: {масса-размеры}, {масса-дисперсия ско-
ростей}, {размер-дисперсия скоростей-светимость
(поверхностная яркость)}. Исследованы эволюци-
онные сценарии образования ЭГ согласно этим
моделям.

Упомянутые выше модели предназначены для
решения задач небесной механики и частично астро-
физики. Для получения точных результатов во всех
моделях потенциалы в ряд не разлагаются, а берут-
ся их точные выражения. При этом условные гра-
ницы ЭГ определяются по значениям величин 𝐷25
и 𝑅25 [4].

Эти модели не могут претендовать на полноту
охвата проблемы ТМ в целом, но сделана еще одна
попытка исследовать влияние ТМ на кинематику
и динамику ПГТ.

Во всех моделях в качестве профиля ρ1(𝑚)
берется “астрофизический закон” распределения
плотности. Такое название профиля дано в книге
[5, cтр. 354], он получается из закона распределения
поверхностной яркости, открытого Хабблом [6], по-
средством решения интегрального уравнения Абе-
ля. В качестве профиля ρ2(𝑚) использован один из
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аналогов профилей NFW и Хернквиста, введенные
нами в работах [1–3]. Эти профили названы анало-
гами, так как они получены из оригинальных про-
филей NFW [7] и Хернквиста [8] путем адаптации
их к эллиптическим галактикам.

В настоящей работе на основе моделей I, II и III
(см. [3]) найдены явные выражения полной грави-
тационной (потенциальной) энергии и кинетиче-
ской энергии вращения ЭГ, распределения углового
момента и удельного углового момента в зависимо-
сти от профилей плотности. Исследуется устойчи-
вость динамической системы согласно критерию
Пиблса–Острайкера [9], [10, c. 189], по критерию
неустойчивости Вандерворта [11], а также по зна-
чениям удельных угловых моментов [12]. Найдены
критические значения параметра семейства сферо-
идов, определяющие границы устойчивости (или
неустойчивости) динамической системы по значе-
ниям удельных угловых моментов в зависимости от
профилей плотности.

Следует отметить, что устойчивость звездных
систем были исследованы в работах других авторов.
В частности, в работе [13] устойчивость исследует-
ся методом матричных уравнений, который в книге
[14, cтр. 419] назван матричным методом Калнайса.
Аналогичные исследования по устойчивости звезд-
ных систем проведены в работах [15–17], а в рабо-
те [18] анализируется природа неустойчивости ра-
диальной орбиты в сферически-симметричных бес-
столкновительных звездных системах.

2. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ
И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩЕНИЯ

СЛОИСТО-НЕОДНОРОДНОЙ
ЭЛЛИПТИЧЕСКОЙ ГАЛАКТИКИ.

ОБЩИЕ ФОРМУЛЫ
Пусть эллиптическая галактика (ЭГ) представля-

ет собой трехосный слоисто-неоднородный эллип-
соид с полуосями 𝑎, 𝑏 и 𝑐, состоящий из барионной
массы (БМ) и темной материи (ТМ). Под слоисто-
неоднородным эллипсоидом подразумевается эл-
липсоид с гомотетическим (эллипсоидальным) за-
коном распределения плотности –– профилем. По-
ложим, что ρ1(𝑚) и ρ2(𝑚)–– законы распределения
плотности БМ и ТМ данного эллипсоида соответ-
ственно. Эти профили являются функциями только
параметра 𝑚 семейства эллипсоидальных поверхно-
стей

𝑚2 = 𝑥
2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 , (𝑎 > 𝑏 > 𝑐, 0 ⩽ 𝑚 ⩽ 1). (1)

Здесь значение 𝑚 = 0 соответствует центру ЭГ,
а 𝑚 = 1 –– эллипсоидальной поверхности, которой
ограничена ЭГ.

Полная гравитационная (потенциальная) энер-
гия 𝑊 и кинетическая энергия вращения 𝑇 слоисто-
неоднородного эллипсоида с полуосями 𝑎, 𝑏, 𝑐,
плотностью ρ (𝑚) и массой 𝑀 (𝑚) в случае изо-

тропного давления определяются общей формулой
[12, стр. 115, 120]

𝑊 = − 2𝐴0𝐽0 ψ (1),
𝑇 = 𝐴0𝐽1ψ (1), (2)

𝐴0 =
π𝐺𝑎𝑏𝑐

2
,

где

ψ (𝑚) =
𝑚2

∫
0

ρ (𝑢)𝑀 (𝑢) 𝑑𝑢2,

𝑀 (𝑚) = 4π𝑎𝑏𝑐
𝑚

∫
0

𝑢2 ρ (𝑢) 𝑑𝑢, (𝑘 = 1, 2),

(3)

𝐽0 =
∞

∫
0

𝑑𝑢

Δ (𝑢)
= 2
√
𝑎2 − 𝑐2

𝐹 (φ0, 𝑛),

𝐽1 = 𝐽0 − 3𝑐2𝐾0,

(4)

𝐾0 =
∞

∫
0

𝑑𝑢

(𝑐2+𝑢)Δ (𝑢)
= 2
𝑏2−𝑐2 [−

𝐸 (φ0, 𝑛)√
𝑎2−𝑐2

+ 𝑏
𝑎𝑐
] . (5)

Здесь 𝐹 (φ0, 𝑛), 𝐸 (φ0, 𝑛)–– неполные эллиптические
интегралы 1-го и 2-го рода. Кроме того, аргумент φ0
и модуль 𝑛 этих интегралов, а также функция Δ (𝑢)
равны

sinφ0 =
√
𝑎2 − 𝑐2

𝑎
, 𝑛 =

¿
ÁÁÀ𝑎2 − 𝑏2

𝑎2 − 𝑐2 ,

Δ (𝑢) =
√
(𝑎2 + 𝑢)(𝑏2 + 𝑢)(𝑐2 + 𝑢).

(6)

Теперь применим формулу (2) к слоисто-неодно-
родному промежуточному эллипсоиду, состояще-
му из барионной массы с профилем ρ1(𝑚), массой
𝑀1(𝑚) и темной материи с профилем ρ2(𝑚), мас-
сой 𝑀2(𝑚). Для этого в указанной формуле вместо
профиля ρ (𝑚) и массы 𝑀 (𝑚) следует пользоваться
общим профилем и общей массой, т. е. положить

ρ (𝑚) = ρ1(𝑚) + ρ2(𝑚),
𝑀 (𝑚) = 𝑀1(𝑚) +𝑀2(𝑚).

(7)

При этом массы 𝑀1(𝑚) и 𝑀2(𝑚) определяются по
формуле (3) заменой профиля ρ (𝑚) на соответству-
ющий, а полная масса –– при 𝑚 = 1. Кроме того,
формулу (2) в этом случае можно переписать в виде

𝑊 = − 2𝐴0𝐽0 ψ (1),
𝑇 = 𝐴0𝐽1ψ (1), (8)

ψ (𝑚) =
4

∑
𝑛=1

ψ𝑛(𝑚),

где

ψ1(𝑚) =
𝑚2

∫
0

ρ1(𝑢)𝑀1(𝑢) 𝑑𝑢
2,

ψ2(𝑚) =
𝑚2

∫
0

ρ1(𝑢)𝑀2(𝑢) 𝑑𝑢
2,

(9)
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ψ3(𝑚) =
𝑚2

∫
0

ρ2(𝑢)𝑀1(𝑢) 𝑑𝑢
2,

ψ4(𝑚) =
𝑚2

∫
0

ρ2(𝑢)𝑀2(𝑢) 𝑑𝑢
2.

(10)

3. ЯВНЫЕ ВЫРАЖЕНИЯ ЭНЕРГИЙ
В ЗАВИСИМОСТИ ОТ ПРОФИЛЕЙ

В этом разделе вычислим полные потенциаль-
ную энергию 𝑊 и кинетическую энергию враще-
ния 𝑇 слоисто-неоднородной эллиптической галак-
тики в зависимости от конкретных профилей ρ1(𝑚)
барионной массы и ρ2(𝑚) темной материи, а также
от формы галактики. Последовательно будем рас-
сматривать следующие формы ЭГ:

1) трехосный эллипсоид 𝑎 > 𝑏 > 𝑐,
2) сжатый сфероид 𝑎 = 𝑏 > 𝑐 и
3) вытянутый сфероид 𝑎 > 𝑏 = 𝑐.

Очевидно, что трехосный эллипсоид представляет
собой более сложную и общую форму, чем другие.
Поэтому его следует рассмотреть более подробно;
случаи 2) и 3) являются частными случаями первого.

3.1. Эллиптическая галактика
как слоисто-неоднородный трехосный эллипсоид

В качестве закона распределения плотности
(профиля) для барионной массы (БМ) эллиптиче-
ской галактики как слоисто-неоднородного трехос-
ного эллипсоида возьмем “астрофизический закон”
распределения плотности ρ1(𝑚), связанный с про-
филем поверхностной яркостью 𝐼1(𝑚) [6] посред-
ством интегрального уравнения Абеля:

ρ1(𝑚) =
ρ0

𝑤3 ,

𝐼1(𝑚) =
𝐼0

𝑤2 ,

𝑤 =
√

1 + β𝑚2,

(11)

где 𝑚 определяется равенством (1), ρ0 –– плотность
в центре эллиптической галактики, 𝐼0 –– централь-
ная поверхностная яркость, а параметр β ≫ 1 для
каждой ЭГ выбирается отдельно и находится вырав-
ниванием данных фотометрии [19]. Если известен
соответствующий профиль с поверхностной ярко-
стью 𝐼2(𝑚), то из интегрального уравнения Абеля
аналогичным образом определяется профиль ρ2(𝑚).
Можно решить и обратную задачу: при заданном
профиле ρ2(𝑚) с помощью упомянутого выше инте-
грального уравнения находится профиль 𝐼2(𝑚).

Масса 𝑀1(𝑚) промежуточного эллипсоида, со-
стоящего из БМ с профилем ρ1(𝑚), вычисляется по

формуле (3) и равна

𝑀1(𝑚) =
4πρ0 𝑎𝑏𝑐

β
√
β
[φ1(𝑚) −

√
𝑤2 − 1
𝑤

] ,

φ1(𝑚) = ln (𝑤 +
√
𝑤2 − 1) ,

(12)

причем полная масса ЭГ с БМ равна 𝑀1 ≡
≡ 𝑀 (𝑚 = 1), а 𝑤 определен выше.

Если ЭГ состоит только из БМ, то

ψ2(𝑚) = ψ3(𝑚) = ψ4(𝑚) ≡ 0,
ψ (𝑚) ≡ ψ1(𝑚) = 4πρ2

0𝑎 𝑏 𝑐 𝑓1(𝑚),
(13)

где

𝑓1(𝑚) =
1

β2
√
β

⎡⎢⎢⎢⎢⎣
arctg

√
𝑤2 − 1−

−
2φ1(𝑚)

𝑤
+
√
𝑤2 − 1
𝑤2

⎤⎥⎥⎥⎥⎦
.

(14)

Тогда подставив выражение (13) функции ψ (𝑚)
в формулу (8) для полной потенциальной энергии𝑊
и кинетической энергии вращения 𝑇 такой галакти-
ки получим:

𝑊 = − 2𝑊0𝐽0ρ
2
0𝑓1(1),

𝑇 = 𝑊0𝐽1ρ
2
0𝑓1(1),

𝑊0 = 2π2𝐺𝑎2𝑏2𝑐2,

(15)

где коэффициенты 𝐽0, 𝐽1 определяются равен-
ством (4), а функция 𝑓1(𝑚)–– равенством (14).

Заметим, что из выражений энергий (2) и (15)
следует, что отношение

𝑡 ≡
𝑇

∣𝑊∣
=

𝐽1

2𝐽0
= 1

2
⎛
⎝

1 −
3𝑐2𝐾0

𝐽0

⎞
⎠

(16)

не зависит от распределения массы неоднородно-
го эллипсоида, а зависит только от его формы или
размеров.

Теперь положим, что ЭГ состоит из БМ и ТМ,
причем профиль БМ ρ1(𝑚) определяется равен-
ством (11). В качестве профиля ТМ будем рассмат-
ривать один из аналогов профилей NFW и Херн-
квиста, приведенных в работах [1–3]. Оригиналы
этих профилей, рассмотренных в работах NFW [8]
и Хернквиста [9], предназначены для сферически
симметричных галактик. Для применения этих про-
филей к ЭГ мы внесли соответствующие изменения
и назвали их аналогами этих профилей [1–3].
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Сначала рассмотрим аналог профиля NFW
[1–3]:

ρ2(𝑚) =
𝐾

𝑔2(𝑔 − 1)
,

𝑔 = 1 + μ𝑚,

μ =
3√𝑎𝑏𝑐

𝑟𝑠
,

(17)

где 𝑟𝑠 –– радиус-шкала ЭГ. Масса промежуточного
эллипсоида 𝑀2(𝑚) при этом будет равна

𝑀2(𝑚) = 4π𝐾𝑟3
𝑠 (ln 𝑔 −

𝑔 − 1
𝑔
) .

Далее, вычислив функции ψ𝑘(𝑚) (𝑘 = 2, 3, 4)
с учетом выражения ψ1(𝑚) для энергий 𝑊 и 𝑇, полу-
чим следующие выражения:

𝑊 = − 2𝑊0𝐽0Φ71(1),
𝑇 = 𝑊0𝐽1Φ1(1),

(18)

где коэффициенты 𝐽0, 𝐽1 и 𝑊0 приведены выше,
а функция Φ1(𝑚) равна

Φ1(𝑚) = ρ
2
0𝑁1(𝑚) + 2𝐾ρ0𝑁2(𝑚) + 𝐾

2𝑁3(𝑚),
𝑁1(𝑚) ≡ 𝑓1(𝑚).

(19)

Здесь функция 𝑓1(𝑚) определяется равен-
ством (14), а

𝑁2(𝑚) =
1

β μ3𝑤

⎡⎢⎢⎢⎢⎣

𝑔 − 1
𝑔
−

μ𝑤
√
β 𝑔

lnφ1(𝑚) +

+
μ𝑤

2
√
β + μ2

ln
φ2(𝑚)
φ2(0)

− ln 𝑔
⎤⎥⎥⎥⎥⎦
, (20)

𝑁3(𝑚) =
1
μ5
(1 − 1

𝑔2 −
ln 𝑔2

𝑔
) , (21)

причем функция φ1(𝑚) определена выше равен-
ством (12), а

φ2(𝑚) =
𝑤
√
μ2 + β + β𝑚 − μ

𝑤
√
μ2 + β − β𝑚 + μ

,

[14𝑝𝑡]φ2(0) = φ2(𝑚 = 0).
(22)

Согласно аналогу профиля Хернквиста [1] имеем

ρ2(𝑚) =
𝑀

2π ̄𝑎3
1

̄𝑔3( ̄𝑔 − 1)
,

𝑀2(𝑚) =
𝑀 ( ̄𝑔 − 1)2

̄𝑔2 ,

̄𝑔 = 1 + μ̄𝑚,

μ̄ =
3√𝑎𝑏𝑐

̄𝑎
.

(23)

Здесь 𝑀–– полная масса галактики, а ̄𝑎–– шкала мас-
штабирования галактики.

Аналогично вычисляем энергии
𝑊 = − 2𝑊0𝐽0Φ2(1),
𝑇 = 𝑊0𝐽1Φ2(1),

(24)

где 𝑊0 определен в (15), а

Φ2(𝑚) =ρ
2
0𝐻1(𝑚) + 2𝑀ρ0𝐻2(𝑚) +𝑀

2𝐻3(𝑚),

𝐻1(𝑚) ≡𝑓1(𝑚).
(25)

Здесь

𝐻2(𝑚) =
1

8πμ̄2 ̄𝑎3

⎡⎢⎢⎢⎢⎣

1
(μ̄2 + β)3/2

ln
φ2(𝑚)
φ2(0)

−

−
2 lnφ1(𝑚)

β
√
β ̄𝑔2

+
2μ̄ φ3(𝑚)
β(μ̄2 + β)

⎤⎥⎥⎥⎥⎦
, (26)

𝐻3(𝑚) =
( ̄𝑔 − 1)3(3 + ̄𝑔)

48π2μ̄5 ̄𝑎6 ̄𝑔4 ,

φ3(𝑚) = 1 + 1
𝑤
+
( ̄𝑔 − 1) (2β + 𝑤2 − 2)

̄𝑔2𝑤
,

(27)

где функции φ1(𝑚) и φ2(𝑚) определены выше.

3.2. ЭГ как слоисто-неоднородный сжатый сфероид
(сфероид Маклорена)

В этом случае соответствующие потенциальные
энергии 𝑊 и кинетические энергии вращения 𝑇 так-
же будут определяться формулами (15), (18) и (24).
Однако коэффициенты 𝐽0, 𝐽1, 𝑊0, а также парамет-
ры 𝑚, μ, μ̄ вычисляются иначе:

𝐽0 =
2
𝑎𝑒

arcsin 𝑒 ,

𝐽1 =
1
𝑎𝑒2 [𝑎(3 − 2𝑒2) 𝐽0 − 6

√
1 − 𝑒2],

𝑒2 = 1 − 𝑐2

𝑎2 , (𝑎 = 𝑏),

(28)

𝑊0 = 2π2𝐺𝑎4𝑐2,

𝑚2 =
𝑥2 + 𝑦2

𝑎2 + 𝑧
2

𝑐2 ,

μ =
3√𝑎2𝑐

𝑟𝑠
,

μ̄ =
3√𝑎2𝑐

̄𝑎
.

(29)

3.3. ЭГ как слоисто-неоднородный вытянутый
сфероид

В этом случае в соответствующих форму-
лах (15), (18) и (24) для энергий 𝑊 и 𝑇 следует
учесть

𝐽0 =
1
𝑎𝑒

ln 1 + 𝑒
1 − 𝑒

,

𝐽1 =
1

2𝑎𝑒2 [𝑎(3 − 𝑒
2) 𝐽0 − 6], (30)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ ТОМ 102 № 1 2025
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𝑊0 = 2π2𝐺𝑎2𝑐4,

𝑏 = 𝑐, 𝑚2 = 𝑥
2

𝑎2 +
𝑦2 + 𝑧2

𝑐2 ,

μ =
3√𝑎𝑐2

𝑟𝑠
, μ̄ =

3√𝑎𝑐2

̄𝑎
.

4. КРИТЕРИИ РАВНОВЕСИЯ
И УСТОЙЧИВОСТИ ДИНАМИЧЕСКОЙ

СИСТЕМЫ
4.1. Критерии равновесия

Для существования неоднородной ЭГ как фи-
гуры равновесия должно удовлетворяться необхо-
димое условие для угловой скорости вращения Ω––
неравенство Пуанкаре [20]:

Ω2 ⩽ 2π𝐺 ̄ρ, (Ω2 ⩽ π𝐺ρ0, Ω
2 ⩽ 0.45π𝐺 ̄ρ). (31)

Здесь 𝐺–– гравитационная постоянная, а ̄ρ–– сред-
няя плотность неоднородной эллиптической галак-
тики. Выполнение неравенства Пуанкаре гарантиру-
ет направление полной силы тяжести внутрь и неот-
рицательность давления. В скобках указаны более
строгие неравенства Крудели и Кондратьева соот-
ветственно [12, с. 325]. В неравенстве Крудели ρ0 ––
плотность в центре галактики и она убывает от цен-
тра к периферии. При этом о направлении силы
тяжести речь не идет и согласно теореме вириала
должно выполняться неравенство

2𝑇 +𝑊 < 0, или 𝑡 ≡
𝑇

∣𝑊∣
< 1

2
.

Здесь энергии 𝑊 и 𝑇 определены формулой (15).
Теперь рассмотрим сфероиды Маклорена, для

которых нормированная угловая скорость вращения
Ω̃ равна [12, cтр. 357]:

Ω̃2 ≡
Ω2

π𝐺 ̄ρ
= 2
√

1 − 𝑒2

𝑒3 ×

×[(3 − 2𝑒2) arcsin 𝑒 − 3𝑒
√

1 − 𝑒2 ], (32)

(Ω̃2 = 0.37423),

где в скобках указано значение Ω̃2 критической кон-
фигурации равновесия. Из (32) заключаем, что сфе-
роид Маклорена –– однопараметрическая фигура от-
носительного равновесия; его характеристики зави-
сят только от сжатия фигуры ε, или от эксцентриси-
тета 𝑒:

ε = 1 − 𝑐

𝑎
,

𝑒2 = 1 − 𝑐2

𝑎2 = 1 − (1 − ε)2.

Как указано в монографии [12, cтр. 358], еще
Симпсон и Даламбер заметили, что в интервале
0 ⩽ Ω̃2 < 0.4493 для каждого значения Ω̃2 существу-
ют два сфероида сплюснутости. Однако это не зна-
чит, что чем быстрее вращение фигуры, тем силь-
нее она будет сжата с полюсов. На самом деле, чем

быстрее вращение фигуры, тем меньше сплюсну-
тость, или сжатие. Сфероид с критическим сжати-
ем ε = 0.632 вращается с максимально возможной
для всей последовательности Маклорена угловой
скоростью Ωmax = 0.6703. Оказывается, что нель-
зя заставить сфероид Маклорена вращаться быст-
рее. Кроме того, А. М. Ляпунов доказал, что при
Ω > Ωmax = 0.6703 не существуют эллипсоидальных
(или близких к ним) фигур равновесия. К такому
выводу А. М. Ляпунов пришел при решении зада-
чи, которую ему предложил П. Л. Чебышев: выяс-
нить, могут ли существовать новые фигуры равно-
весия, вращающиеся быстрее указанного предела
Ωmax [12, cтр. 360].

4.2. Критерии устойчивости
Сфероиды Маклорена остаются вековым об-

разом устойчивыми вплоть до критической кон-
фигурации со значением 𝑒 = 0.81267, получен-
ным как решение соответствующего уравнения.
При Ω̃2 = 0.37423 сфероид Маклорена становится
неустойчивым в вековом отношении [12, cтр. 362].
Установлено, что в точке 𝑒 = 0.81267 от последова-
тельности сфероидов Маклорена ответвляется по-
следовательность трехосных фигур равновесия, на-
званных эллипсоидами Якоби [12, cтр. 364]. Са-
ми же сфероиды Маклорена в отсутствии диссипа-
ции остаются динамически устойчивыми вплоть до
𝑒 = 0.95289 [12, cтр. 364].

По выражению Дарвина: при наличии диссипа-
тивных сил природа “делает посадку”, т. е. от сфе-
роидов Маклорена в этой точке неизбежно происхо-
дит бифуркация эллипсоидов Якоби. Однако в кни-
ге [12, cтр. 364] доказано, что никакой неизбежности
делать в природе указанную посадку (по Дарвину)
в точке Ω̃2 = 0.37423 нет, если в жидкой фигуре со-
храняется циркуляция. Кроме того, при дополни-
тельном, не учтенном классиками условии сохране-
ния циркуляции установлено, что [12, cтр. 367]:

a) ответвление эллипсоидов в точке 𝑒 = 0.81267
невозможно;

б) точка динамической неустойчивости
𝑒 = 0.95289 сфероида Маклорена превращается
в нейтральную точку по отношению к превраще-
нию сфероида в трехосный эллипсоид. Однако
в точке 𝑒 = 0.95289 такое ответвление невозможно,
поскольку в ней (и за ней) сфероиды Маклорена
становятся уже динамически неустойчивыми.

Заметим, что еще Пуанкаре и Ляпунову было
известно, что эллипсоид Якоби для параметров

𝑏

𝑎
⩽ 0.432232,

𝑐

𝑎
⩽ 0.345069, (33)

Ω̃2 = Ω2

π𝐺ρ
⩾ 0.284030
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имеет нейтральную точку относительно грушевид-
ной моды. Ляпунов доказал, что начиная с этой точ-
ки эллипсоиды являются вековым образом неустой-
чивыми [12, cтр. 364].

Критерием устойчивости изолированной осе-
симметричной конфигурации согласно гипотезе
Пиблса–Острайкера [9] и [10, cтр. 189] является вы-
полнение неравенства для отношения 𝑡 (см. выше)

𝑡 < 𝑡crit ≈ 0.14 ± 0.03. (34)

При этом критерий (34) Пиблса–Острайкера
об устойчивости не применим к трехосному
эллипсоиду как динамической системе. Если
потенциал тела имеет квадратичную форму, то для
установления устойчивости такой системы приме-
няются другие формулы [12, с. 419], содержащие
тензор дисперсии скоростей. Квадратичную форму
потенциала имеет только однородный трехосный
эллипсоид. Потенциал неоднородного трехосного
эллипсоида имеет более сложную форму и содержит
эллиптические интегралы.

Далее, положим, что ЭГ представляет собой
слоисто-неоднородный сжатый (𝑎 = 𝑏 > 𝑐), или вы-
тянутый сфероид (𝑎 > 𝑏 = 𝑐), состоящий из БМ
и ТМ. Для БМ берется “астрофизический” про-
филь (11), а для ТМ –– один из аналогов профилей
NFW и Хернквиста.

В качестве примера взяты 60 модельных ЭГ, име-
ющих формы либо сжатого, либо вытянутого сферо-
ида с параметрами, точно совпадающими с реально
существующими. Оказалось, что условие равнове-
сие (32) выполняется: отношение Ω2π𝐺ρ0 составля-
ет от 0.007 до 0.01 для обоих типов сфероидов.

Отношение (34) — критерий устойчивости
Пиблса–Острайкера выполняется в случае сжа-
тых сфероидов: параметр 𝑡 изменяется от 0.0061
до 0.1068. Для установления устойчивости (или
неустойчивости) вытянутых сфероидов можно поль-
зоваться другим критерием, а именно: какое значе-
ние принимает отношение 𝑡𝐴 = 𝐿𝐵/𝐿𝐶 удельных уг-
ловых моментов 𝐿𝐶 сжатого и 𝐿𝐵 вытянутого сферо-
идов. Значение 𝑡𝐴 < 1 соответствует устойчивости,
а 𝑡𝐴 > 1 –– наоборот.

Исходя из этих соображений ниже приведены
формулы вычисления распределения углового мо-
мента и удельного углового момента в сфероиде Ма-
клорена с полуосями 𝑎 = 𝑏 ⩾ 𝑐 и в вытянутом сфе-
роиде с полуосями 𝑎 ⩾ 𝑏 = 𝑐.

Примечание 1. Отметим, что параметр 𝑡, фигу-
рирующий в критерии устойчивости (34) Пиблса–
Острайкера не зависит от распределения вещества
(от профиля ρ (𝑚)), а зависит, только от формы
и размеров ЭГ. В то же самое время, удельные уг-
ловые моменты сжатого и вытянутого сфероидов
(𝐿𝐶 и 𝐿𝐵), а значит, и их отношение 𝑡𝐴, зависят
и от формы и размеров ЭГ, и от распределения в них
вещества.

4.3. Распределение углового момента и удельный
угловой момент в сфероиде Маклорена

В монографии [12] подробно описан метод полу-
чения формулы вычисления удельного углового мо-
мента 𝑙 (𝑅) сначала для однородного сфероида Ма-
клорена, а затем и для слоисто-неоднородного сфе-
роида Маклорена с плотностью ρ (𝑚) методом син-
теза элементарных оболочек [12, cтр. 103]. Для при-
менения этого метода к данному сфероиду в нем
выделяется элементарная цилиндрическая оболоч-
ка с радиусом 𝑅0 = 𝑚0𝑎 и единичной толщиной. За-
тем, применив к этой оболочке математический ме-
тод, примененный в [12, cтр. 598], находим удель-
ный угловой момент 𝑙 (𝑚0) и параметр 𝑞 для слоисто-
неоднородного (состоящего из гомотетических сло-
ев с постоянной сплюснутостью) сфероида Макло-
рена с плотностью ρ (𝑚) в виде

𝑙 (𝑚0) =
15𝑚0

2𝑎
𝐿𝑇(1 − 𝑞2

0)Φ1(𝑚0),

𝑞3
0 =

Φ2(𝑚0)
Φ2(0)

⩽ 1, (35)

Φ2(0) ≡ Φ2(𝑚0 = 0),
где

Φ1(𝑚0) =
√

1 − 𝑒2
1

∫
𝑚0

𝑚ρ (𝑚) 𝑑𝑚
√
𝑚2 −𝑚2

0

⩾ 0,

Φ2(𝑚0) = 3
√

1 − 𝑒2
1

∫
𝑚0

𝑚ρ (𝑚)
√
𝑚2 −𝑚2

0 ×

× 𝑑𝑚 ⩾ 0, (36)

Φ2(0) = 3
√

1 − 𝑒2
1

∫
0

𝑚2ρ (𝑚) 𝑑𝑚 > 0,

𝑒2 = 1 − 𝑐2

𝑎2 .

Неотрицательность функций Φ1(𝑚0) и Φ2(𝑚0)
очевидна, так как подынтегральные функции
в формулах (36) положительны. Условие 0 < 𝑞0 ⩽ 1
вытекает из неравенства 0 < Φ2(𝑚0) < Φ2(0),
которое в свою очередь следует из неравенства
𝑚ρ (𝑚)

√
𝑚2 −𝑚2

0 ⩽ 𝑚2ρ (𝑚), выполняющегося
для подынтегральных функций.

Далее, учтем, что полный угловой момент 𝐿𝑇
слоисто-неоднородного сфероида Маклорена с про-
филем ρ (𝑚), его полный момент инерции 𝐼𝑇 отно-
сительно оси вращения𝑂𝑧, а также полная масса𝑀𝑇

равны
𝐿𝑇 = Ω 𝐼𝑇,

𝐼𝑇 =
2𝑀𝑇

5
𝑎2,

𝑀𝑇 = 4π𝑎2𝑐

1

∫
0

𝑚2ρ (𝑚) 𝑑𝑚.
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Тогда выражение (35) можно переписать в виде

α (𝑚0) ≡
𝑙 (𝑚0)
Ω𝑀𝑇

= 3𝑚0𝑎 (1 − 𝑞2
0)Φ1(𝑚0) > 0, (37)

(0 < 𝑞0 < 1),
где неотрицательные функции Φ1(𝑚0), Φ2(𝑚0) и па-
раметр 𝑞0 определены выше.

4.4. Распределение углового момента и удельный
угловой момент в вытянутом сфероиде

Теперь об однородном вытянутом сфероиде,
ограниченном сфероидальной поверхностью

𝑥2

𝑎2 +
𝑟2

𝑐2 = 1,

𝑟2 = 𝑦2 + 𝑧2, (38)

𝑟2 = 𝑐2 (1 − 𝑥
2

𝑎2) .

Пусть цилиндрическая поверхность с радиу-
сом 𝑅 выделяет в данном сфероиде объем 𝑉 (𝑅)
(рис. 1).

Точки𝐴 (−𝐻, 𝑅),𝐵 (𝐻, 𝑅),𝐶 (−𝐻,−𝑅)и𝐷 (−𝐻, 𝑅)
находятся на поверхности данного сфероида, т. е.
их координаты должны удовлетворять уравнению
этой поверхности:

𝐻2

𝑎2 +
𝑅2

𝑐2 = 1, 𝐻 = 𝑎𝑞,

𝑞 =

¿
ÁÁÀ1 − 𝑅

2

𝑐2 , 𝑅2 = 𝑐2(1 − 𝑞2).
(39)

По аналогии со сжатым сфероидом найдем объ-
ем заштрихованной части 𝑉 (𝑅) вытянутого сфе-
роида с полуосями 𝐿𝑂 = 𝑂𝑃 = 𝑎 и 𝑆𝑂 = 𝑂𝑁 = 𝑐 (см.
рис. 1). Этот объем равен сумме объемов цилиндра
и двух сегментов:

𝑉 (𝑅) = 𝑉cyl + 2𝑉seg, 𝑉cyl = 2π𝑅2𝐻.

S
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Рис. 1. Сечение вытянутого сфероида с полуосями
𝐿𝑂 = 𝑂𝑃 = 𝑎 и 𝑆𝑂 = 𝑂𝑁 = 𝑐. Заштрихована пло-
щадь, состоящая из сечений цилиндра 𝐴𝐵𝐶𝐷 с ради-
усом 𝑅 = 𝐵𝐾 = 𝐾𝐷, высотой 2𝐻 = 𝐹𝐸 и двух равных
сфероидальных сегментов (точнее сегментов параболи-
да вращения) высотой ℎ = 𝐿𝐹 = 𝐸𝑃

Здесь 𝑉cyl –– объем цилиндра с радиусом основа-
ния 𝑅 = 𝐾𝑂 = 𝑂𝑀 и высотой 2𝐻 = 𝐹𝐸, а 2𝑉seg –– объ-
ем двух равных сегментов 𝐴𝐿𝐶 и 𝐵𝑃𝐷 с высотой
ℎ = 𝐿𝐹 = 𝐸𝑃 (см. рис. 1), образованных частями сфе-
роида (39) и плоскостями 𝑥 = 𝐻 и 𝑥 = 𝑎, а также
𝑥 = − 𝑎 и 𝑥 = −𝐻. Эти сегменты также можно счи-
тать параболоидами вращения.

Вычислим объем 𝑉seg сегмента 𝐴𝐿𝐶 (или 𝐵𝑃𝐷)
в силу равенств (38) и (39):

𝑉seg=π
𝑎

∫
𝐻

𝑟2𝑑𝑥=π
𝑎

∫
𝐻

𝑐2 (1 − 𝑥
2

𝑎2) 𝑑𝑥=
π𝑎𝑐2

3
(2−3𝑞+𝑞3).

Следовательно, для искомого объема 𝑉 (𝑅) находим

𝑉 (𝑅) = 𝑉cyl+2𝑉seg = 2π𝐻𝑅2+4π𝑎𝑐2

3
(1 − 3

2
𝑞 + 1

2
𝑞3) .

С учетом выражений 𝐻 и 𝑅 для 𝑉 (𝑅) окончательно
находим

𝑉 (𝑅) = 4π𝑎𝑐2

3
(1 − 𝑞3) = 𝑉𝑇(1 − 𝑞3),

𝑉𝑇 =
4
3
π𝑎𝑐2,

где 𝑉𝑇 –– полный объем вытянутого сфероида.
Таким образом, масса заштрихованной части

𝑀 (𝑅) определится равенством

𝑀 (𝑅) = ρ 𝑉 (𝑅) = ρ 𝑉𝑇(1 − 𝑞3) = 𝑀𝑇(1 − 𝑞3),

𝑞3 = 1 −
𝑀 (𝑅)
𝑀𝑇

,

а масса 𝑀seg сегмента 𝐴𝐿𝐶𝐷 (или 𝐵𝑃𝐷) будет равна

𝑀seg = ρ 𝑉seg =
πρ

3
𝑎𝑐2(2 − 3𝑞 + 𝑞3) =

=
πρ

3
𝑎𝑐2(1 − 𝑞)2(2 + 𝑞).

Теперь вычислим 𝐽𝑧 –– момент инерции заштри-
хованной части тела относительно оси 𝑂𝑧. По ана-
логии с случаем сфероида Маклорена он равен

𝐽𝑧 = 𝐽cyl + 2𝐽seg,

где 𝐽cyl –– момент инерции цилиндра с плотностью ρ,
радиусом 𝑅 и высотой 2𝐻 относительно поперечной
оси 𝑂𝑧, перпендикулярной к продольной оси 𝑂𝑥
и проходящей через его центра масс, а 𝐽seg –– момент
инерции одного из сфероидальных сегментов 𝐴𝐿𝐶
(или 𝐵𝑃𝐷) относительно той же оси.

Согласно [5] момент инерции 𝐽cyl рассматривае-
мого цилиндра относительно поперечной оси, про-
ходящей через его центр тяжести, равен

𝐽cyl =
𝑀cyl

12
(4𝐻2 + 3𝑅2) =

=
π ρ𝑅2𝐻

6
(4𝐻2 + 3𝑅2), (40)

(𝑀cyl = ρ 𝑉cyl = 2ρ π𝑅2𝐻) .
Остается вычислить момент инерции 𝐽𝑂𝑧 ≡ 𝐽seg сег-
мента 𝐵𝑎1𝐷 (точнее параболоида вращения) с плот-
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ностью ρ и радиусом основания круга с радиу-
сом 𝑅 относительно оси вращения 𝑂𝑧 следующим
образом. Вырежем мысленно в сегменте 𝐵𝑎1𝐷 тон-
кий цилиндр с массой 𝑑𝑚, находящийся от оси
вращения 𝑂𝑧 на расстоянии 𝑥. Согласно теореме
Гюйгенса–Штейнера момент инерции 𝑑𝐽seg такого
цилиндра будет равен

𝑑𝐽seg = 𝑥
2𝑑𝑚 + 𝑟

2

4
𝑑𝑚,

𝑑𝑚 = ρ 𝑑𝑉, 𝑑𝑉 = π𝑟2𝑑𝑥,

где второе слагаемое в выражении 𝑑𝐽seg представляет
собой момент инерции тонкого цилиндра (диска)
относительно оси, проходящей через его диаметр.
Для момента инерции всего сегмента получим

𝐽seg =
𝑎

∫
𝐻

𝑥2𝑑𝑚 + 1
4

𝑎

∫
𝐻

𝑟2𝑑𝑚 =

= πρ
𝑎

∫
𝐻

𝑥2𝑟2𝑑𝑥 +
πρ

4

𝑎

∫
𝐻

𝑟4𝑑𝑥.

Подставив в интегралы выражение 𝑟2 после интери-
рования, находим

𝐽seg =
2πρ𝑎𝑐2

15
[𝑎2 + 𝑐2 − 1

2
𝑞3(5 − 3𝑞2)𝑎2−

−
𝑞

8
(15 − 10𝑞2 + 3𝑞4)𝑐2].

Так как

𝐽cyl =
π ρ𝑅2𝐻

6
(4𝐻2 + 3𝑅2) =

=
πρ𝑎𝑐2𝑞(1 − 𝑞2)

6
[4𝑎2𝑞2 + 3(1 − 𝑞2)𝑐2] ,

то искомый момент инерции 𝐽𝑧 заштрихованной ча-
сти тела относительно оси вращения 𝑂𝑧 вытянутого
сфероида будет равен

𝐽𝑧 =
4πρ𝑎𝑐2(𝑎2 + 𝑐2)

15
×

× [1 − 5
2

𝑐2

𝑎2 + 𝑐2 𝑞
3 + (3

2
𝐴 − 𝑎2

𝑎2 + 𝑐2 ) 𝑞
5] ,

или

𝐽𝑧 = 𝐽𝑇 [1 −
5
2
𝐴𝑞3 + 1

2
(5𝐴 − 2)𝑞5] ,

𝐽𝑇 =
𝑀𝑇

5
(𝑎2 + 𝑐2),

𝐴 = 𝑐2

𝑎2 + 𝑐2 ,

(41)

где

𝑟𝑙𝑀𝑇 =
4πρ𝑎𝑐2

3
,

𝑞3 = 1 −
𝑀 (𝑅)
𝑀𝑇

= 𝑐3
√
(1 − 𝑅2)3.

(42)

Здесь 𝐽𝑇 –– полный момент инерции вытянутого сфе-
роида относительно оси 𝑂𝑧, а 𝑀𝑇 –– его полная
масса.

Таким образом, распределение углового момен-
та 𝐿 (𝑅) = Ω𝐽𝑧(𝑅) в вытянутом сфероиде примет вид

𝐿 (𝑅) = 𝐿𝑇 [1 −
5
2
𝐴𝑞3 + 1

2
(5𝐴 − 2)𝑞5] ,

𝐿𝑇 = Ω𝐽𝑇 =
Ω𝑀𝑇

5
(𝑎2 + 𝑐2),

Ω2 =
𝐺𝑀𝑇

𝑎3 ,

(43)

где 𝐿𝑇 –– полный угловой момент вытянутого сферо-
ида.

Заметим, что при 𝐴 = 1 выражение 𝐿 (𝑅) совпа-
дает с его выражением для сжатого сфероида.

Для применения метода синтеза элементарных
оболочек к вытянутому однородному сфероиду с уг-
ловым моментом 𝐿 (𝑅), определяемым приведен-
ным выше равенством, выделим мысленно в нем
элементарную цилиндрическую оболочку с радиу-
сом 𝑅1 = 𝑚1𝑐 и единичной толщиной. Применив ма-
тематический аппарат, приведенный в работе [5],
найдем удельный угловой момент 𝑙 (𝑚1) и пара-
метр 𝑞1 для слоисто-неоднородного вытянутого сфе-
роида (с постоянной сплюснутостью) с профилем
ρ (𝑚) в виде

𝑙 (𝑚1) =
5𝑚1

2𝑐
𝐿𝑇 [3𝐴 − (5𝐴 − 2) 𝑞2

1]×

×Φ1(𝑚1) > 0,

𝑞3
1 =

Φ2(𝑚1)
Φ2(0)

< 1,

(44)

или с учетом выражений 𝐿𝑇 из (43), коэффициента𝐴
из (41) и тождества
(𝑎2 + 𝑐2) [3𝐴 − (5𝐴 − 2)𝑞2

1] = 3𝑐2 − (3𝑐2 − 2𝑎2)𝑞2
1

имеем

β (𝑚1)≡
𝑙 (𝑚1)
Ω𝑀𝑇

=
𝑚1

2𝑐
[3𝑐2 − (3𝑐2 − 2𝑎2) 𝑞2

1] Φ1(𝑚1),

или

β (𝑚1) =
𝑚1𝑎

2
√

1 − 𝑒2
[3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2

1]×

×Φ1(𝑚1) > 0, (45)
(0 < 𝑞1 < 1).

Функции Φ1(𝑚1) и Φ2(𝑚1), фигурирующие в (44)
и 45, определяются формулой 36.

Очевидно, что отношение функций α (𝑚0)
и β (𝑚1), определяемых равенствами (37) и (45), име-
ет вид

α (𝑚0)
β (𝑚1)

=
6
√

1 − 𝑒2(1 − 𝑞2
0)

3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2
1

𝑚0

𝑚1

Φ1(𝑚0)
Φ1(𝑚1)

> 0,

(0 < 𝑞0 < 1, 0 < 𝑞1 < 1).
Кроме того, при 𝑚0 = 𝑚1 имеем 𝑞1 = 𝑞0. Поэтому
это соотношение зависит не только от параметра 𝑞0,
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но и от эксцентриситета 𝑒, т. е. от формы и размеров
сфероида:

α (𝑚0)
β (𝑚0)

=
6
√

1 − 𝑒2(1 − 𝑞2
0)

3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2
0

> 0, (46)

(0 < 𝑞0 < 1).
Для определения устойчивости (или неустойчи-

вости) рассмотрим далее, слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид, состо-
ящие из барионной массы (БМ) и темной материи
(ТМ) с известными профилями плотностей.

4.5. Слоисто-неоднородные сфероиды
с “астрофизическим” профилем

Рассмотрим сначала слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид, со-
стоящие только из БМ с “астрофизическим”
профилем 11. В этом случае в формуле (36) профиль
ρ (𝑚) заменяется на ρ1(𝑚) из (11) и вычисляют-
ся функции Φ1(𝑚0), Φ2(𝑚0) и Φ2(0). Затем по
формулам (35) и 37 определяются параметр 𝑞0
и нормированный удельный угловой момент α (𝑚0)
для слоисто-неоднородного сфероида Маклорена
с профилем ρ (𝑚), а по формулам (44) и (45) ––
параметр 𝑞1 и β (𝑚1) для слоисто-неоднородного
вытянутого сфероида с тем же профилем.

Итак, по формуле (36) в случае “астрофизическо-
го” профиля для функций Φ1(𝑚0), Φ2(𝑚0) и Φ2(0)
находим

Φ1(𝑚0) = 𝐶1𝐹1(𝑚0) > 0,

𝐶1 =
ρ0
√

1 − 𝑒2
√

1 + β
,

𝐹1(𝑚0) =

√
1 −𝑚2

0

1 + β𝑚2
0

> 0,

Φ2(𝑚0) = 𝐶2𝐹2(𝑚0) > 0,
Φ2(0) = 𝐶2𝐹2(0) > 0,

𝐶2 = 3𝐶1,

где

𝐹2(𝑚0) =
1

2β
√
β
[
√

1 + β ln 𝜂1(𝑚0) −

−
√

1 + β ln(1 + β𝑚2
0) − 2

√
β

√
1 −𝑚2

0] > 0,

𝐹2(0) =
1

2β
√
β
[
√

1 + β ln (
√
β +
√

1 + β)2
−

−2
√
β ] > 0,

а

η1(𝑚0) = 1 + 2β − β𝑚2
0 + 2

√
β
√

1 + β
√

1 −𝑚2
0.

Теперь обозначим через α1(𝑚0) и β1(𝑚1) нор-
мированные удельные угловые моменты слоисто-
неоднородного сфероида Маклорена и вытянутого

сфероида с “астрофизическим” профилем. Тогда
в силу (37) и (45) для этих функций, а по форму-
лам (35) и (44) для параметра 𝑞3 получим

α1(𝑚0) = 𝐴1(𝑞0)𝑚0𝐹1(𝑚0) > 0,

𝑞3
0 =

𝐹2(𝑚0)
𝐹2(0)

< 1,
(47)

β1(𝑚1) = 𝐵1(𝑞1)𝑚1𝐹1(𝑚1) > 0,

𝑞3
1 =

𝐹2(𝑚1)
𝐹2(0)

< 1,
(48)

где функции 𝐹1(𝑚0), 𝐹2(𝑚0) и 𝐹2(0) определены
выше, а

𝐴1(𝑞0) =
3𝑎 ρ0

√
1 − 𝑒2

√
1 + β

(1 − 𝑞2
0) > 0,

𝐵1(𝑞1) =
ρ0𝑎

2
√

1 + β
[3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2

1] > 0.

Легко проверить, что контрольные условия
Φ1 (1) ≡ 𝐹1 (1) = 0 и Φ2(1) ≡ 𝐹2 (1) = 0 удовлетворя-
ются. Кроме того, при 𝑚0 = 𝑚1 имеем 𝑞1 = 𝑞0, а от-
ношение α1(𝑚0)/β1(𝑚0) имеет точно такой же вид,
что и (46).

4.6. Слоисто-неоднородные сфероиды с аналогом
профиля NFW

Теперь положим, что слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид состо-
ят из БМ с аналогом профиля NFW. В этом слу-
чае в формуле (36) следует заменить профиль ρ (𝑚)
на аналог профиля NFW ρ2(𝑚), определяемый ра-
венством (17). После вычисления соответствующих
интегралов в (36) находим функции Φ1(𝑚0), Φ2(𝑚0)
и Φ2(0):

Φ1(𝑚0) = 𝐷1𝑁1(𝑚0, μ) > 0,

𝐷1 = 𝐾
√

1 − 𝑒2,

𝑁1(𝑚0, μ) =
1

2μ 𝑢3
0

[ℎ2(𝑚0) −
2μ𝑢0𝑣0

1 + μ
] > 0,

Φ2(𝑚0) = 𝐷2𝑁2(𝑚0, μ) > 0,
Φ2(0) = 𝐷2𝑁2(0, μ) > 0,

𝐷2 = 3𝐷1,

(49)

где

𝑁2(𝑚0, μ) =
1
μ3 [−

ℎ2(𝑚0)
2𝑢0

−
μ 𝑣0

1 + μ
+ ln

1 + 𝑣0

𝑚0
] > 0,

𝑁2(0, μ) =
1
μ3 (ln(1 + μ) −

μ

1 + μ
) > 0,

ℎ2(𝑚0) = ln
1 + μ𝑚2

0 + 𝑢0𝑣0

1 + μ𝑚2
0 − 𝑢0𝑣0

,

𝑢0 =
√

1 − μ2𝑚2
0, 𝑣0 =

√
1 −𝑚2

0.

После чего по формулам (37) и (45) определяем
нормированные удельные угловые моменты α2(𝑚0)
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для слоисто-неоднородного сфероида Маклорена
и β2(𝑚1) для вытянутого сфероида с аналогом про-
филя NFW, а по формулам (35) и 44 параметр 𝑞3:

α2(𝑚0) = 𝐴2(𝑞0)𝑚0𝑁1(𝑚0, μ0) > 0,

𝑞3
0 =

𝑁2(𝑚0, μ0)
𝑁2(0, μ0)

< 1, (50)

μ0 =
3√𝑎2𝑐

𝑟𝑠
,

β2(𝑚1) = 𝐵2(𝑞1)𝑚1𝑁1(𝑚1, μ1) > 0,

𝑞3
1 =

𝑁2(𝑚1, μ1)
𝑁2(0, μ1)

< 1, (51)

μ1 =
3√𝑎𝑐2

𝑟𝑠
,

где функции 𝑁1(𝑚, μ), 𝑁2(𝑚, μ) определены выше, а

𝐴2(𝑞0) = 3𝐾𝑎
√

1 − 𝑒2 (1 − 𝑞2
0) > 0,

𝐵2(𝑞1) =
𝐾𝑎

2
[3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2

1] > 0.

Контрольные условия Φ1 (1) ≡ 𝑁1 (1) = 0
и Φ2(1) ≡ 𝑁2 (1) = 0 удовлетворяются. Кроме
того, при 𝑚0 = 𝑚1 отношение α2(𝑚0)/β2(𝑚0)
по аналогии с (46) при 𝑚0 = 𝑚1 имеет вид:

α2(𝑚0)
β2(𝑚0)

=
6
√

1−𝑒2(1 − 𝑞2
0)

3−3𝑒2−(1−3𝑒2) 𝑞2
1

𝑁1(𝑚0, μ0)
𝑁1(𝑚0, μ1)

>0, (52)

(0 < 𝑞0 < 1, 0 < 𝑞1 < 1).

Отличие отношения (52) от (46) связано с парамет-
рами μ0 и μ1, которые для сфероида Маклорена и вы-
тянутого сфероида определяются по разному.

4.7. Слоисто-неоднородные сфероиды с аналогом
профиля Хернквиста

Пусть теперь слоисто-неоднородные сфероид
Маклорена и вытянутый сфероид состоят из БМ
с аналогом профиля Хернквиста. В этом слу-
чае в формулах (36) и (37) следует положить
ρ (𝑚) = ρ2(𝑚), где аналог профиля Хернквиста
ρ2(𝑚) определяется равенством (23). После вычис-
ления интегралов в (36) находим функции Φ1(𝑚0),
Φ2(𝑚0) и Φ2(0):

Φ1(𝑚0) = 𝐸1𝐻1(𝑚0, μ̄0) > 0,
Φ2(𝑚0) = 𝐸2𝐻2(𝑚0, μ̄0) > 0, (53)
Φ2(0) = 𝐸2𝐻2(0, μ̄0) > 0,

где

𝐻1(𝑚0, μ̄0) =
1

4μ̄0 ̄𝑢5
0

𝐵𝑖𝑔[(2 + μ̄2
0𝑚

2
0) ̄ℎ2(𝑚0) −

−
2μ̄0 ̄𝑢0 ̄𝑣0

(1 + μ̄0)2
(4 + 3μ̄0 − μ̄

2
0𝑚

2)] > 0,

𝐻2(𝑚0, μ̄0) =
1

2μ̄0(1 + μ̄0)2 ̄𝑢3
0

[(1 + μ̄0𝑚
2
0) ̄𝑢0 ̄𝑣0 −

−
𝑚2

0(1 + μ̄0)
2

2
̄ℎ2(𝑚0)] > 0,

𝐻2(0, μ̄0) =
1

2μ̄0(1 + μ̄0)2
> 0,

̄ℎ2(𝑚0) = ln
1 + μ̄0𝑚

2
0 + ̄𝑢0 ̄𝑣0

1 + μ̄0𝑚
2
0 − ̄𝑢0 ̄𝑣0

,

𝐸1 =
𝑀
√

1 − 𝑒2

2π ̄𝑎3 , 𝐸2 = 3𝐸1,

̄𝑢0 =
√

1 − μ̄2
0𝑚

2
0, ̄𝑣0 =

√
1 −𝑚2

0.

Аналогичным образом определяем нормирован-
ные удельные угловые моменты α3(𝑚0) для слоисто-
неоднородного сфероида Маклорена и β3(𝑚1) для
вытянутого сфероида с аналогом профиля Хернкви-
ста, а также параметр ̄𝑞3:

α3(𝑚0) = 𝐴3( ̄𝑞0)𝑚0𝐻1(𝑚0, μ̄0) > 0,

̄𝑞3
0 =

𝐻2(𝑚0, μ̄0)
𝐻2(0, μ̄0)

< 1,

μ̄0 =
3√𝑎2𝑐

̄𝑎
,

β3(𝑚1) = 𝐵3( ̄𝑞1)𝑚1𝐻1(𝑚1, μ̄1) > 0,

̄𝑞3
1 =

𝐻2(𝑚1, μ̄1)
𝐻2(0, μ̄1)

< 1,

μ̄1 =
3√𝑎𝑐2

̄𝑎
,

(54)

где

𝐴3( ̄𝑞0) =
3𝑀𝑎
√

1 − 𝑒2

2π ̄𝑎3 (1 − ̄𝑞2
0) > 0,

𝐵3( ̄𝑞1) =
𝑀𝑎

4π ̄𝑎3
[3 − 3𝑒2 − (1 − 3𝑒2) ̄𝑞2

1] > 0.

При этом отношение α3(𝑚0)/β3(𝑚0) по аналогии
с (46) при 𝑚0 = 𝑚1 имеет вид:

α3(𝑚0)
β3(𝑚0)

=
6
√

1−𝑒2(1− ̄𝑞2
0)

3−3𝑒2−(1−3𝑒2) ̄𝑞2
1

𝐻1(𝑚0, μ̄0)
𝐻1(𝑚0, μ̄1)

> 0, (55)

(0 < ̄𝑞0 < 1, 0 < ̄𝑞1 < 1).

Отличие отношения (55) от (46) также объясняется
с различием параметров μ̄0 и μ̄1.
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4.8. Слоисто-неоднородные сфероиды, состоящие
из барионной массой и темной материи

Заметим, что приведенные выше выражения
α𝑘(𝑚0) и β𝑘(𝑚0) соответствуют случаю, когда
слоисто-неоднородный сфероид (сжатый и вытяну-
тый) состоит, например, только из барионной мас-
сы (БМ) с профилем ρ (𝑚). Если данные сфероиды
состоят из БМ и ТМ с профилями ρ1(𝑚) и ρ2(𝑚)
соответственно, то в формуле (50) для функций
Φ1(𝑚0) и Φ2(𝑚0) профиль ρ (𝑚) следует заменить
на сумму ρ1(𝑚) + ρ2(𝑚). При этом в качестве про-
филя ρ1(𝑚) для БМ возьмем “астрофизический про-
филь”, а вместо профиля ρ2(𝑚) для ТМ один из ана-
логов профилей NFW и Хернквиста (см. раздел 3).
В этом случае нормированные удельные угловые мо-
менты слоисто-неоднородных сфероида Маклорена
и вытянутого сфероида будут определяться иначе.
По этой причине обозначим через α̃𝑘(𝑚0), β̃𝑘(𝑚0)
и 𝑞3(𝑚0) соответствующие нормированные удель-
ные угловые моменты и параметр. Ниже приведены
соответствующие формулы для вычисления этих ве-
личин:

α̃𝑘(𝑚0) = 3𝑚0𝑎 (1 − 𝑞2
0) 𝑆1(𝑚0) > 0,

𝑞3
0 =

𝑆2(𝑚0)
𝑆2(0)

< 1,
(56)

β̃𝑘(𝑚1) =
𝑚1

2𝑐
[3𝑐2 − (3𝑐2 − 2𝑎2) 𝑞2

1] 𝑆1(𝑚1) > 0,

𝑞3
1 =

𝑆2(𝑚1)
𝑆2(0)

< 1,
(57)

где

𝑆1(𝑚0) =
√

1 − 𝑒2
1

∫
𝑚0

𝑚 [ρ1(𝑚) + ρ2(𝑚)]√
𝑚2 −𝑚2

0

𝑑𝑚 ⩾ 0,

𝑆2(𝑚0) = 3
√

1 − 𝑒2
1

∫
𝑚0

𝑚 [ρ1(𝑚) + ρ2(𝑚)]×

×

√
𝑚2 −𝑚2

0 𝑑𝑚 ⩾ 0, (58)
𝑆2(0) ≡ 𝑆2(𝑚0 = 0) ⩾ 0.

Здесь для краткости приведены формулы для функ-
ций 𝑆1(𝑚0) и 𝑆2(𝑚0) с аргументом 𝑚0. Эти же функ-
ции для аргумента 𝑚1 легко получаются из них за-
меной 𝑚0 на 𝑚1.

Сначала для БМ возьмем “астрофизический
профиль”, а для ТМ –– аналог профиля NFW. В этом
случае функции α̃1(𝑚0) и β̃1(𝑚0) в силу формул (56)
и (57) можно представить в виде:

α̃1(𝑚0) = 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) +
+ 𝐴2(𝑞0)𝑁1(𝑚0, μ0)] ⩾ 0,

β̃1(𝑚1) = 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) +
+ 𝐵2(𝑞1)𝑁1(𝑚1, μ1)] ⩾ 0.

(59)

Аналогично в случае аналога профиля Хернквиста:
α̃2(𝑚0) = 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) +
+ 𝐴3(𝑞0)𝐻1(𝑚0, μ̄0)] ⩾ 0,

β̃2(𝑚1) = 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) +
+ 𝐵3(𝑞1)𝐻1(𝑚1, μ̄1)] ⩾ 0.

(60)

Фигурирующие в равенствах (59) и (60) коэф-
фициенты 𝐴𝑘(𝑞), 𝐵𝑘(𝑞) и функции 𝐹𝑘(𝑚), 𝑁𝑘(𝑚)
и 𝐻𝑘(𝑚) (𝑘 = 1, 2) приведены выше.

Теперь определим параметры 𝑞3
0 и 𝑞3

1 по форму-
лам (56) и (57). Для этого достаточно вычислить
функции 𝑆2(𝑚0) и 𝑆2(0). В случае “астрофизиче-
ского профиля” для БМ и аналога профиля NFW
для ТМ получим:

𝑞3
0 =

𝐶2𝐹2(𝑚0) + 𝐷2𝑁2(𝑚0, μ0)
𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ0)

< 1,

𝑞3
1 =

𝐶2𝐹2(𝑚1) + 𝐷2𝑁2(𝑚1, μ1)
𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ1)

< 1.

В случае “астрофизического профиля” для БМ
и аналога профиля Хернквиста для ТМ получаем:

𝑞3
0 =

𝐶2𝐹2(𝑚0) + 𝐸2𝐻2(𝑚0, μ̄0)
𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄0)

< 1,

𝑞3
1 =

𝐶2𝐹2(𝑚1) + 𝐸2𝐻2(𝑚1, μ̄1)
𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄1)

< 1,

где коэффициенты 𝐶𝑘, 𝐷𝑘 и 𝐸𝑘, а также функции
𝐹𝑘(𝑚0), 𝑁𝑘(𝑚𝑛, μ𝑘) и 𝐻𝑘(𝑚𝑛, μ̄𝑘) (𝑛 = 0, 1, 𝑘 = 1, 2)
приведены выше.

Отношения функций α̃𝑘(𝑚0)/β̃𝑘(𝑚0) при
𝑚1 = 𝑚0 примут вид:

α̃1(𝑚0)

β̃1(𝑚0)
=
𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ0)
𝐵1(𝑞1)𝐹1(𝑚0) + 𝐵2(𝑞1)𝑁1(𝑚0, μ1)

=

=
6
√

1 − 𝑒2(1 − 𝑞2
0)

3 − 3𝑒2 − (1 − 3𝑒2)𝑞2
1

×

×
ρ0𝐹1(𝑚0) + 𝐾

√
1 + β𝑁1(𝑚0, μ0)

ρ0𝐹1(𝑚0) + 𝐾
√

1 + β𝑁1(𝑚0, μ1)
> 0,

(61)

где

𝑞3
0 =

ρ0𝐹2(𝑚0) + 𝐾
√

1 + β𝑁2(𝑚0, μ0)

ρ0𝐹2(0) + 𝐾
√

1 + β𝑁2(0, μ0)
< 1,

𝑞3
1 =

ρ0𝐹2(𝑚0) + 𝐾
√

1 + β𝑁2(𝑚0, μ1)

ρ0𝐹2(0) + 𝐾
√

1 + β𝑁2(0, μ1)
< 1,

(62)

α̃2(𝑚0)

β̃2(𝑚0)
=
𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴3(𝑞0)𝐻1(𝑚0, μ̄0)
𝐵1(𝑞1)𝐹1(𝑚0) + 𝐵3(𝑞1)𝐻1(𝑚0, μ̄1)

=

=
6
√

1 − 𝑒2(1 − 𝑞2
0)

3 − 3𝑒2 − (1 − 3𝑒2)𝑞2
1

×

×
2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀

√
1 + β𝐻1(𝑚0, μ̄0)

2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀
√

1 + β𝐻1(𝑚0, μ̄1)
> 0,

(63)
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𝑞3
0 =

2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀
√

1 + β𝐻2(𝑚0, μ̄0)

2π ̄𝑎3ρ0𝐹2(0) +𝑀
√

1 + β𝐻2(0, μ̄0)
< 1,

𝑞3
1 =

2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀
√

1 + β𝐻2(𝑚0, μ̄1)

2π ̄𝑎3ρ0𝐹2(0) +𝑀
√

1 + β𝐻2(0, μ̄1)
< 1.

(64)

При этом если μ0 = μ1 ≡ μ и μ̄0 = μ̄1 ≡ μ̄, то
𝑞0 = 𝑞1 ≡ 𝑞 и эти соотношения упростятся:

α̃1(𝑚0)

β̃1(𝑚0)
=

6
√

1 − 𝑒2(1 − 𝑞2)
3 − 3𝑒2 − (1 − 3𝑒2)𝑞2 ,

𝑞3 =
ρ0𝐹2(𝑚0) + 𝐾

√
1 + β𝑁2(𝑚0, μ)

ρ0𝐹2(0) + 𝐾
√

1 + β𝑁2(0, μ)
< 1,

α̃2(𝑚0)

β̃2(𝑚0)
=

6
√

1 − 𝑒2(1 − 𝑞2)
3 − 3𝑒2 − (1 − 3𝑒2)𝑞2 ,

𝑞3 =
2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀

√
1 + β𝐻2(𝑚0, μ̄)

2π ̄𝑎3ρ0𝐹2(0) +𝑀
√

1 + β𝐻2(0, μ̄)
< 1.

Итак, мы рассмотрели два варианта слоисто-
неоднородных сжатых и вытянутых сфероидов. Пер-
вый вариант соответствует случаю, когда эти сферо-
иды состоят только из БМ, а во втором варианте они
состоят из БМ и ТМ. В первом варианте мы опре-
делили нормированные удельные угловые момен-
ты α𝑘(𝑚0) и β𝑘(𝑚0) слоисто-неоднородных сжатых
и вытянутых сфероидов (табл. 1).

Во втором варианте эти величины обозначены
как α̃𝑘(𝑚0) и β̃𝑘(𝑚0) (табл. 2).

Величины α𝑘(𝑚0), β𝑘(𝑚0), α̃𝑘(𝑚0) и β̃𝑘(𝑚0) име-
ют размерность поверхностной плотности (в массах
Солнца на квадратный парсек). При этом удельный
угловой момент 𝑙 (𝑚0) выражается в 𝑀2

⊙/пк2/Myr,
где 𝑀⊙ –– масса Солнца, а Myr –– млн лет.

4.9. Критические значения параметров 𝑚0 и 𝑚1

Очевидно, что при 𝑚0 = 𝑚1 могут выполняться
неравенства

α𝑘(𝑚0)
β𝑘(𝑚0)

> 1,
α̃𝑛(𝑚0)

β̃𝑛(𝑚0)
> 1, (65)

0 ⩽ 𝑚0 ⩽ 1, 𝑘 = 1, 2, 3, 𝑛 = 1, 2.
В этом случае будем считать, что имеет место устой-
чивость слоисто-неоднородного вытянутого сферо-
ида при соответствующих профилях (при одина-
ковой массе). Если же не выполняются неравен-
ства (65), т. е. нормированные значения удельно-
го углового момента вытянутого сфероида β𝑘(𝑚0)
и β̃𝑛(𝑚0) превышают аналогичные значения сфе-
роида Маклорена α𝑘(𝑚0) и α̃𝑛(𝑚0) соответствен-
но, то имеет место неустойчивость вытянутого
сфероида.

Пусть при некотором значении 𝑚0 имеют ме-
сто равенства α𝑘(𝑚0) = β𝑘(𝑚0) и α̃𝑛(𝑚0) = β̃𝑛(𝑚0).
Такое значение параметра 𝑚0 назовем критиче-
ским (или переходным) и обозначим его через 𝑚̃0.
Например, в случае “астрофизического профиля”
в силу (47) и (48) получим:

α1(𝑚0) = β1(𝑚0),

𝑞2
0 = 𝑞

2
1 =

6
√

1 − 𝑒2 + 3𝑒2 − 3
6
√

1 − 𝑒2 + 3𝑒2 − 1
=

= 1 − 2
6
√

1 − 𝑒2 + 3𝑒2 − 1
.

При аналоге профиля NFW это условие в силу (52)
примет вид:

α2(𝑚0) = β2(𝑚0),

6
√

1 − 𝑒2 (1 − 𝑞2
0)𝑁1(𝑚0, μ0) =

= [3 − 3𝑒2 − (1 − 3𝑒2) 𝑞2
1𝑁1(𝑚0, μ1) ] .

Таблица 1. Явные выражения нормированных удельных угловых моментов α (𝑚0) и β (𝑚1) слоисто-неоднородных
сжатых и вытянутых сфероидов в зависимости от профиля 𝜌 (𝑚) в соответствии с первым вариантом

ρ(𝑚) α(𝑚0) β(𝑚1)

ρ0

(1 + β𝑚2)3/2

𝐴1(𝑞0)𝑚0𝐹1(𝑚0) 𝐵1(𝑞1)𝑚1𝐹1(𝑚1)

𝑞3
0 =

𝐹2(𝑚0)
𝐹2(0)

𝑞3
1 =

𝐹2(𝑚1)
𝐹2(0)

𝐾

μ𝑚 (1 + μ𝑚)2

𝐴2(𝑞0)𝑚0𝑁1(𝑚0, μ0) 𝐵2(𝑞1)𝑚1𝑁1(𝑚1, μ1)

𝑞3
0 =

𝑁2(𝑚0, μ0)
𝑁2(0, μ0)

, μ0 =
3√𝑎2𝑐

𝑟2
𝑞3

1 =
𝑁2(𝑚1, μ1)
𝑁2(0, μ1)

, μ1 =
3√𝑎𝑐2

𝑟𝑠

𝑀

2π ̄𝑎

1
μ̄𝑚 (1 + μ̄𝑚)3

𝐴3( ̄𝑞0)𝑚0𝐻1(𝑚0, μ̄0) 𝐵3( ̄𝑞1)𝑚1𝐻1(𝑚1, μ̄1)

̄𝑞3
0 =

𝐻2(𝑚0, μ̄0)
𝐻2(0, μ̄0)

, μ̄0 =
3√𝑎2𝑐

̄𝑎
̄𝑞3
1 =

𝐻2(𝑚1, μ̄1)
𝐻2(0, μ̄1)

, μ̄1 =
3√𝑎𝑐2

̄𝑎

Примечание. Функции𝐴𝑛(),𝐵𝑛(), (𝑛 = 1, 2, 3),𝐹𝑘(),𝑁𝑘(),𝐻𝑘() (𝑘 = 1, 2) определяются соответствующими равенствами
и приведены в тексте.
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Таблица 2. Явные выражения нормированных удельных угловых моментов α̃(𝑚0) и β̃(𝑚1) слоисто-неоднородных
сжатых и вытянутых сфероидов в зависимости от профиля ρ(𝑚) = ρ1(𝑚) +ρ2(𝑚) в соответствии со вторым вариантом

ρ1(𝑚) + ρ2(𝑚) α̃(𝑚0) β̃(𝑚1)
ρ0

(1 + β𝑚2)3/2
+ 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ0)] 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) + 𝐵2(𝑞1)𝑁1(𝑚1, μ1)]

+ 𝐾

μ𝑚(1 + μ𝑚)2
̄𝑞3
0 =

𝐶2𝐹2(𝑚0) + 𝐷2𝑁2(𝑚0, μ0)
𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ1)

̄𝑞3
1 =

𝐶2𝐹2(𝑚1) + 𝐷2𝑁2(𝑚1, μ1)
𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ0)

ρ0

(1 + β𝑚2)3/2
+ 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ̄0)] 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) + 𝐵2(𝑞1)𝑁1(𝑚1, μ̄1)]

+ 𝑀

2π ̄𝑎

1
μ̄𝑚(1 + μ̄𝑚)3

̄𝑞3
0 =

𝐶2𝐹2(𝑚0) + 𝐸2𝐻2(𝑚0, μ̄0)
𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄1)

̄𝑞3
1 =

𝐶2𝐹2(𝑚1) + 𝐸2𝐻2(𝑚0, μ̄1)
𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄0)

Примечание. Функции 𝐴𝑘(), 𝐵𝑘(), 𝐹𝑘(), 𝑁𝑘() и 𝐻𝑘(), а также параметры μ𝑘, μ̄𝑘 (𝑘 = 1, 2) те же самые, что и в табл. 1.
Коэффициенты 𝐶2, 𝐷2 и 𝐸2 приведены в тексте.

При аналоге профиля Хернквиста в силу (55) нахо-
дим

α3(𝑚0) = β3(𝑚0),

6
√

1 − 𝑒2 (1 − ̄𝑞2
0)𝐻1(𝑚0, μ̄0) =

= [3 − 3𝑒2 − (1 − 3𝑒2) ̄𝑞2
1𝐻1(𝑚0, μ̄1) ] .

Наконец, при смешанных профилях в силу (61)
и (63) получим:

α̃1(𝑚0) = β̃1(𝑚0),

[6
√

1 − 𝑒2(1 − 𝑞2
0)] ×

× [ρ0𝐹1(𝑚0) + 𝐾
√

1 + β𝑁1(𝑚0, μ0)] =

= [3 − 3𝑒2 − (1 − 3𝑒2)𝑞2
1] ×

× [ρ0𝐹1(𝑚0) + 𝐾
√

1 + β𝑁1(𝑚0, μ1)] ,

α̃2(𝑚0) = β̃2(𝑚0),

[6
√

1 − 𝑒2(1 − 𝑞2
0)] ×

× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀
√

1 + β𝐻1(𝑚0, μ̄0)] =

= [3 − 3𝑒2 − (1 − 3𝑒2)𝑞2
1] ×

× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀
√

1 + β𝐻1(𝑚0, μ̄1)] .

α̃2(𝑚0) = β̃2(𝑚0),

[6
√

1 − 𝑒2(1 − 𝑞2
0)] ×

× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀
√

1 + β𝐻1(𝑚0, μ̄0)] =

= [3 − 3𝑒2 − (1 − 3𝑒2)𝑞2
1] ×

× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀
√

1 + β𝐻1(𝑚0, μ̄1)] .

Очевидно, что при 𝑚0 ⩽ 𝑚̃0, или 𝑚0 > 𝑚̃0 нера-
венства в (65) либо будут выполняться, либо нет.
В разделе 7 (табл. 3) найдено критическое значе-
ние 𝑚̃0 для некоторых модельных эллиптических га-
лактик (МЭГ) и установлена устойчивость (неустой-

чивость) в смысле выполнения (или невыполнение)
неравенства (65).

Таким образом, мы рассмотрели три крите-
рия устойчивости эллипсоидальных тел: крите-
рий Пиблса–Острайкера, выраженный неравен-
ством (34), критерий (65) по значениям норми-
рованного удельного углового момента и нера-
венство (33) для отношений полуосей такого те-
ла и угловой скорости вращения. В следующих
разделах рассмотрим критерии неустойчивости
Вандерворта.

5. КРИТЕРИЙ НЕУСТОЙЧИВОСТИ
ВАНДЕРВОРТА. СЛУЧАЙ ТРЕХОСНОГО

ЭЛЛИПСОИДА
Критерий неустойчивости трехосного эллипсо-

ида с полуосями 𝑎1 ⩾ 𝑎2 > 𝑎3 как динамической си-
стемы в работе [11] представлен в виде

𝑡𝑒 ≡
𝐿2

2 (𝐼11 + 𝐼22 ) ∣𝑊∣
>
(2 + 𝑃)3

27 𝐼
𝑎2

1𝐴1

𝑄2 , (66)

который назовем критерием Вандерворта. В ле-
вой части неравенства (66) 𝐿–– угловой момент, 𝐼11
и 𝐼22 –– тензоры момента инерции, 𝑊–– гравитаци-
онная (потенциальная) энергия системы (см. ниже).
В правой части неравенства (66) положено:

𝑃 = −
2𝑉12∶12

𝑉11
, 𝑄 = 2 − 𝑃

Ω𝑃

Ω𝐿

,

Ω𝐿 =
𝐿

2𝐼11
, Ω𝑃 =

𝑊12∶12

𝑉12∶12
Ω,

(67)

и

𝐼 = 𝑎1𝑎2𝑎3

∞

∫
0

𝑑𝑢

Δ (𝑢)
,

𝐴𝑖 = 𝑎1𝑎2𝑎3

∞

∫
0

𝑑𝑢

(𝑢 + 𝑎2
𝑖
)Δ (𝑢)

, (68)

Δ2(𝑢) = (𝑎2
1 + 𝑢)(𝑎

2
2 + 𝑢)(𝑎

2
3 + 𝑢).
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Таблица 3. Критические значения параметра 𝑚̃0, определяемые в зависимости от профилей ρ1(𝑚) БМ и ρ2(𝑚) ТМ
для модельных эллиптических галактик (МЭГ), имеющих форму вытянутого сфероида с полуосями 𝑎 и 𝑏 = 𝑐 [кпк]

МЭГ
Полуоси Профили Параметр

𝑚̃0𝑎 𝑏 = 𝑐 ρ1(𝑚) ρ2(𝑚)

NGC 4374 E1
(M 84) 17.373 15.131

ρ0

(1 + β𝑚2)3/2

0 0.15524
𝐾

μ𝑚(1 + μ𝑚)2
0.16043

𝑀

2π ̄𝑎3
1

μ̄(1 + μ̄)3
0.15598

NGC 4406 E3
(M 86) 28.055 20.324

ρ0

(1 + β𝑚2)3/2

0 0.13422
𝐾

μ𝑚(1 + μ𝑚)2
0.15211

𝑀

2π ̄𝑎3
1

μ̄(1 + μ̄)3
0.13498

NGC 4472 E2
(M 49) 25.450 22.069

ρ0

(1 + β𝑚2)3/2

0 0.15923
𝐾

μ𝑚(1 + μ𝑚)2
0.16656

𝑀

2π ̄𝑎3
1

μ̄(1 + μ̄)3
0.16002

Примечание. В первой строке в столбце ρ2(𝑚) цифра 0 означает, что ЭГ состоит только из БМ с профилем ρ1(𝑚). При
𝑚0 > 𝑚̃0 вытянутый сфероид становится устойчивым, а при 𝑚0 < 𝑚̃0 –– неустойчивым согласно критерию (65).

Здесь для удобства использованы переобозначения:
𝑎1 ≡ 𝑎, 𝑎2 ≡ 𝑏 и 𝑎3 ≡ 𝑐.

Далее, тензор момента инерции 𝐼𝑖𝑗 равен [5, 13]

𝐼𝑖𝑗 = δ𝑖𝑗𝑀̃𝑎2
𝑖
𝐽 (1),

𝐽 (𝑚) =
𝑚

∫
0

𝑚4ρ (𝑚)𝑑𝑚, (69)

𝑀̃ = 4
3
π 𝑎1𝑎2𝑎3,

где δ𝑖𝑗 –– символ Кронекера. При этом из фор-
мул (68) и (69) следует

3

∑
𝑘=1

𝑎2
𝑘
𝐴𝑘 = 𝐼,

1 −
𝐼33

𝐼11
= 1 −

𝑎2
3

𝑎2
1

= 𝑒2, (70)

𝐼11 + 𝐼22 = 𝑀̃ (𝑎
2
1 + 𝑎

2
2)𝐽 (1).

Тензоры 𝑉𝑖𝑗, 𝑉𝑖𝑗∶𝑖𝑗 и 𝑊12∶12 в равенстве (67) определя-
ются формулами [13]:

𝑉𝑖𝑗 = −𝑉0𝑎
2
𝑖
𝐴𝑖δ𝑖𝑗ψ (1),

𝑉𝑖𝑗∶𝑖𝑗 = 𝑉0𝑎
2
𝑖
(𝐴𝑖 − 𝑎

2
𝑗
𝐴𝑖𝑗)ψ (1), (71)

𝑉0 = π
2𝐺𝑎1𝑎2𝑎3,

𝑊12∶12 =
1
2
Ω2𝐼11,

𝐴𝑖𝑗 = 𝑎1𝑎2𝑎3

∞

∫
0

𝑑𝑢

(𝑢 + 𝑎2
𝑖
)(𝑢 + 𝑎2

𝑗
)Δ (𝑢)

, (72)

ψ (1) ≡ ψ (𝑚 = 1),

ψ (𝑚) =
𝑚

∫
0

[𝐹 (𝑚2)]2 𝑑𝑚,

𝐹 (𝑚2) =
1

∫
𝑚2

ρ (𝑚2) 𝑑𝑚2, (73)

𝑚2 = 𝑥
2

𝑎2
1

+
𝑦2

𝑎2
2

+ 𝑧
2

𝑎2
3

.

Очевидно, что для осесимметричного тела
𝑎1 = 𝑎2 > 𝑎3 имеют место равенства:

𝐴1 = 𝐴2, 𝐴12 = 𝐴21,

𝐼22 = 𝐼11, 𝑉22 = 𝑉11,

𝑉12∶12 = 𝑉21∶21, Ω𝐿 = Ω.
(74)

Кроме того, для потенциальной энергии 𝑊 и кине-
тической энергии вращения 𝑇 помимо (2) можно
пользоваться и другими формулами, приведенными
в работе [13]:

𝑊 =
𝑉𝑖𝑖𝐼

𝑎2
𝑖
𝐴𝑖
= −π2𝐺𝑎1𝑎2𝑎3𝐼 ψ (1),

𝑇 = Ω𝐿

2
, 𝐿 = Ω (𝐼11 + 𝐼22 ) .

(75)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ ТОМ 102 № 1 2025



ОБ УСТОЙЧИВОСТИ СЛОИСТО-НЕОДНОРОДНОЙ ЭЛЛИПТИЧЕСКОЙ ГАЛАКТИКИ 17

Коэффициент 𝐼 и функция ψ (𝑚) определены
выше.

Если в (66) учесть выражения (75) для углово-
го момента 𝐿 и кинетической энергии вращения 𝑇,
то выражение 𝑡𝑒 будет точно совпадать с выражени-
ем 𝑡 из (16), т. е. 𝑡𝑒 ≡ 𝑡 = 𝑇/∣𝑊∣. Кроме того, с учетом
выражений (75) для потенциальной энергии 𝑊 и уг-
лового момента 𝐿, критерий (66) Вандерворта мож-
но переписать в виде

𝑡𝑒 ≡
Ω2

2
𝐼11 + 𝐼22

∣𝑉11∣
> 2

27
(1 + 𝑆)3

(1 + 𝑈)2
≡ 𝑡1, (76)

где с учетом выражений 𝐿, 𝑉11, 𝑉12∶12, Ω𝑃 и Ω𝐿 вели-
чины 𝑃 и 𝑄 представлены в виде:

𝑃 = 2𝑆, 𝑄 = 2(1 + 𝑈),

𝑆 = 1 −
𝑎2

2𝐴12

𝐴1
, (77)

𝑈 =
Ω2𝐼2

11

𝑉11 (𝐼11 + 𝐼22 )
.

Для проверки выполнения критерия неустойчи-
вости –– неравенства (76) –– необходимо определить
следующие величины: 𝑡𝑒, 𝐴1, 𝐼, 𝑆 и 𝑈. Отношение 𝑡𝑒
нам известно, так как полная гравитационная энер-
гия 𝑊 и кинетическая энергия вращения 𝑇 опреде-
лены выше формулой (2), причем для 𝑇 имеем еще
вторую формулу (75). Следовательно, остается опре-
делить четыре последние.

После вычисления интегралов в (68), (69) и (72)
для 𝐼, 𝐴1 и 𝐴12 получим:

𝐼 = 𝑎1𝑎2𝑎3𝐽0,

𝐴1 =
2𝑎1𝑎2𝑎3

(𝑎2
1 − 𝑎

2
2)
√
𝑎2

1 − 𝑎
2
3

×

× [𝐹 (φ0, 𝑛) − 𝐸 (φ0, 𝑛)] , (78)

𝐴12 = −
2𝑎2

3

(𝑎2
1 − 𝑎

2
2)(𝑎

2
2 − 𝑎

2
3)
+

+
2𝑎1𝑎2𝑎3

(𝑎2
1 − 𝑎

2
2)2(𝑎

2
2 − 𝑎

2
3)
√
𝑎2

1 − 𝑎
2
3

×

×[(𝑎2
1 + 𝑎

2
2 − 2𝑎2

3)𝐸 (φ0, 𝑛)−

−2 (𝑎2
2 − 𝑎

2
3) 𝐹 (φ0, 𝑛) ]. (79)

Здесь 𝐽0 определяется равенством (4), а аргумент φ0
и модуль 𝑛 эллиптических интегралов –– равен-
ством (6), в котором следует учесть обозначения
𝑎 ≡ 𝑎1, 𝑏 ≡ 𝑎2 и 𝑐 ≡ 𝑎3.

Вычисленные выше интегралы (78) и (79) позво-
ляют определить отношение𝐴1/𝐼и величину 𝑆. Оста-
ется вычислить величину𝑈, которая содержит тензо-
ры момента инерции 𝐼11, 𝐼22 и тензор𝑉11. Эти величи-
ны зависят исключительно от профиля плотности,

т. е. их можно вычислить только при заданном про-
филе ρ (𝑚). В подразделах 5.1, 5.2, 5.3 и 5.4 рассмот-
рены конкретные профили плотности ρ (𝑚), соот-
ветствующие современным требованиям к структу-
ре галактик.

Примечание 2. Как мы выше отмечали
(см. Примечание 1), отношение кинетической энер-
гии вращения к модулю потенциальной энергии
в критерии устойчивости Пиблса–Острайкера (34)
не зависит от распределения вещества в галактике,
т. е. от профиля ρ (𝑚), но зависит только от формы
и размеров ЭГ. Однако согласно другому критерию
устойчивости, отношение удельных угловых мо-
ментов сжатого и вытянутого сфероидов зависит
и от формы и размеров ЭГ, и от распределения
в них вещества. В силу критерия неустойчивости 76
Вандерворта отношения 𝑡𝑒 и 𝑡1 (см. выше) также
зависят от профиля ρ (𝑚).

5.1. Критерий неустойчивости ЭГ
при “астрофизическом” профиле

Положим, что ЭГ состоит только из БМ, с “аст-
рофизическим” профилем ρ (𝑚), определяемый
равенством (11). Нам следует определить следую-
щие величины. Сначала подставим выражение (11)
в формулу (72) и находим функции 𝐹1(𝑚

2) ≡ 𝐹 (𝑚2)
и ψ1(𝑚

2) ≡ ψ (𝑚2):

𝐹1(𝑚
2) =

1

∫
𝑚2

ρ0√
(1 + β𝑚2)3

𝑑𝑚2 =

=
2ρ0

β

⎛
⎝

1
√

1 + β𝑚2
− 1
√

1 + β

⎞
⎠
,

(80)

ψ1(𝑚)=
4ρ2

0

β2

𝑚

∫
0

⎛
⎝

1
√

1+β𝑚2
− 1
√

1+β

⎞
⎠

2

𝑑𝑚 =

=
4ρ2

0

β2(1 + β)
√
β
[
√
β𝑚 − 2

√
1 + β φ1(𝑚) +

+(1 + β) arctan (
√
β𝑚) ], (81)

где функция φ1(𝑚) определена в равенстве (12). Да-
лее, по формуле 71 вычисляем тензор

𝑉11 = −π
2𝐺𝑎3

1𝑎2𝑎3𝐴1ψ1(1),
ψ1(1) = ψ1(𝑚 = 1).

(82)

Здесь функция ψ1(𝑚) определяется равенством (81),
а 𝐴1 –– равенством (77).

Теперь вычислим тензоры 𝐼11 и 𝐼22. Для этого вы-
ражение профиля из (11) подставим в формулу (70).
Это нам даст:

𝐼11 = 𝑀̃𝑎2
1𝐽1(1),

𝐼22 = 𝑀̃𝑎2
2𝐽1(1),

𝐼11 + 𝐼22 = 𝑀̃ (𝑎
2
1 + 𝑎

2
2)𝐽1(1),

(83)
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где

𝐽1(𝑚)=
ρ0

2β2
√
β

⎡⎢⎢⎢⎢⎣

√
β𝑚 (3 + β𝑚2)
√

1 + β𝑚2
− 3φ1(𝑚)

⎤⎥⎥⎥⎥⎦
. (84)

Здесь функция φ1(𝑚) та же самая, что и в равен-
стве (81).

Итак, определив равенствами (82) и (83) тензоры
𝑉11, 𝐼11 и 𝐼22, вычисляем по формуле (79) значение 𝑈.
Итак, все необходимые величины определены.

Таким образом, в случае “астрофизического”
профиля можно проверить выполнение крите-
рия (66), или (76).

5.2. Критерий неустойчивости ЭГ при аналоге
профиля NFW

Пусть теперь ЭГ состоит только из БМ
с аналогом профиля NFW, определяемого равен-
ством (17). Поступим аналогично приведенному
в подразделе 5.1. Определяем сначала функции

𝐹2(𝑚
2) =

1

∫
𝑚2

𝐾

(1 + μ𝑚)2 μ𝑚
𝑑𝑚2 =

= 2𝐾
μ2 (

1
1 + μ𝑚

− 1
1 + μ

) ,

(85)

ψ2(𝑚) =
4𝐾2

μ4

𝑚

∫
0

( 1
1 + μ𝑚

− 1
1 + μ

)
2
𝑑𝑚 =

= 4𝐾2

μ5(1 + μ)

⎡⎢⎢⎢⎢⎣
− 2 ln(1 + μ𝑚) +

+μ𝑚 ( 1
1 + μ

+
1 + μ

1 + μ𝑚
)
⎤⎥⎥⎥⎥⎦
. (86)

Далее, тензор 𝑉11 также определяется равен-
ством (71), но функция ψ (𝑚) ≡ ψ2(𝑚)–– форму-
лой (86). Затем по формуле (70), в которой ρ (𝑚)
заменяется на аналог профиля NFW, вычисляем
функцию 𝐽 (𝑚) ≡ 𝐽2(𝑚):

𝐽2(𝑚) =
𝐾

2μ5
[6 ln(1 + μ𝑚) −

−
μ𝑚

1 + μ𝑚
(6 + 3μ𝑚 − μ2𝑚2)], (87)

после чего определяем тензоры 𝐼11 и 𝐼22 по форму-
ле (70), заменив в ней 𝐽 (1) на 𝐽2(1).

5.3. Критерий неустойчивости эллиптической
галактики при аналоге профиля Хернквиста

Наконец, положим, что ЭГ состоит только из БМ
с аналогом профиля Хернквиста, определяемого ра-
венством (23). Определяем сначала функции

𝐹3(𝑚
2) = 𝑀

2π ̄𝑎3

1

∫
𝑚2

𝑑𝑚2

μ̄ 𝑚 (1 + μ̄ 𝑚)3
=

= 𝑀

2πμ̄ ̄𝑎3(1 + μ̄)2
(1 −𝑚)(2 + μ̄ + μ̄ 𝑚)

(1 + μ̄ 𝑚)2
, (88)

ψ3(𝑚) =
𝑀2

4π2μ̄2 ̄𝑎6(1 + μ̄)4
×

×

𝑚

∫
0

(1 −𝑚)2(2 + μ̄ + μ̄ 𝑚)2

(1 + μ̄ 𝑚)4
𝑑𝑚 =

= 𝑀2

4π2μ̄5 ̄𝑎6(1 + μ̄)4

⎡⎢⎢⎢⎢⎣
μ̄𝑚 −

(1 + μ̄)4

3(1 + μ̄ 𝑚)3
+

+
2(1 + μ̄)2

1 + μ̄ 𝑚
+
(1 + μ̄)4

3
− 2(1 + μ̄)2

⎤⎥⎥⎥⎥⎦
, (89)

причем

ψ3(1) =
𝑀2(4 + μ̄)

12π2μ̄2 ̄𝑎6(1 + μ̄)4
. (90)

Далее, тензор𝑉11 также определится равенством (71),
но функция ψ3(𝑚)–– формулой (89). Затем по фор-
муле (70), в которой ρ (𝑚) заменяется на ана-
лог профиля Хернквиста, вычисляем функцию
𝐽 (𝑚) ≡ 𝐽3(𝑚):

𝐽3(𝑚) =
𝑀

4πμ̄5 ̄𝑎3

⎧⎪⎪⎨⎪⎪⎩
− 6 ln(1 + μ̄ 𝑚) +

+ μ̄ 𝑚 [2 + 4
1 + μ̄ 𝑚

+
μ̄ 𝑚

(1 + μ̄ 𝑚)2
]
⎫⎪⎪⎬⎪⎪⎭
, (91)

после чего определяем тензоры 𝐼11 и 𝐼22 по форму-
ле (70), заменив в ней 𝐽 (1) на 𝐽3(1).

5.4. Критерий неустойчивости ЭГ, состоящей
из барионной массы и темной материи

Пусть теперь ЭГ состоит из барионной массы
(БМ) с профилем ρ1(𝑚) и темной материи (ТМ)
с профилем ρ2(𝑚). Рассмотрим два случая: а) в ка-
честве профиля ТМ ρ2(𝑚) берется аналог профиля
NFW, б) в качестве ρ2(𝑚) берется аналог профиля
Хернквиста. В обоих случаях в качестве профиля БМ
ρ1(𝑚) берется “астрофизический” профиль (11). Да-
лее, для удобства обозначим через 𝐹4(𝑚

2), ψ4(𝑚)
и 𝐽4(𝑚) функции 𝐹 (𝑚2), ψ (𝑚) и 𝐽 (𝑚), соответству-
ющие случаю а). В случае б) эти функции обозначим
через 𝐹5(𝑚

2), ψ5(𝑚) и 𝐽5(𝑚). Тогда согласно нашим
обозначениям имеем

а) 𝐹4(𝑚
2) = 𝐹1(𝑚

2) + 𝐹2(𝑚
2),

ψ4(𝑚) =ψ1(𝑚) + ψ2(𝑚) + 2ψ12(𝑚), (92)
𝐽4(𝑚) = 𝐽1(𝑚) + 𝐽2(𝑚),

б) 𝐹5(𝑚
2) = 𝐹1(𝑚

2) + 𝐹3(𝑚
2),

ψ5(𝑚) =ψ1(𝑚) + ψ3(𝑚) + 2ψ13(𝑚), (93)
𝐽5(𝑚) = 𝐽1(𝑚) + 𝐽3(𝑚),
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где функции 𝐹𝑘(𝑚
2), ψ𝑘(𝑚) и 𝐽𝑘(𝑚), (𝑘 = 1, 2, 3)

определены выше, а

ψ12(𝑚) =
𝑚

∫
0

𝐹1(𝑚
2) 𝐹2(𝑚

2) 𝑑𝑚,

ψ13(𝑚) =
𝑚

∫
0

𝐹1(𝑚
2) 𝐹3(𝑚

2) 𝑑𝑚.

(94)

Следовательно, нам остается вычислить только
функции ψ12(𝑚) и ψ13(𝑚). Учитывая выраже-
ния (80), (85) и (88) функций 𝐹𝑘(𝑚

2), для ψ12(𝑚)
и ψ13(𝑚) получим следующие выражения:

ψ12(𝑚) =
4𝐾ρ0

βμ2

⎧⎪⎪⎨⎪⎪⎩

1
2
√
β + μ2

[ lnφ2(𝑚) −

− lnφ2(𝑚 = 0)] −
lnφ1(𝑚)

(1 + μ)
√
β
+

+ 𝑚

(1 + μ)
√

1 + β
−

ln(1 + μ𝑚)

μ
√

1 + β

⎫⎪⎪⎬⎪⎪⎭
,

ψ13(𝑚) =
𝑀ρ0

πμ̄β ̄𝑎3(1 + μ̄)2
×

×

⎧⎪⎪⎨⎪⎪⎩

(1 + μ̄)2β

2μ̄
√
(β + μ̄2)3

[ ln φ̄2(𝑚) −

− ln φ̄2(𝑚 = 0)] −
φ1(𝑚)

μ̄
√
β
+

+
(1 + μ̄)2

(β + μ̄2)
⎛
⎝

1 −
√

1 + β𝑚2

1 + μ̄ 𝑚
⎞
⎠
+

+
𝑚(𝑚 − 2 − μ̄)
√

1 + β (1 + μ̄ 𝑚)

⎫⎪⎪⎬⎪⎪⎭
,

где функция φ1(𝑚) определяется равенством (12), а

φ2(𝑚) =

√
β + μ2

√
1 + β𝑚2 + β𝑚 − μ

√
β + μ2

√
1 + β𝑚2 − β𝑚 + μ

,

φ̄2(𝑚) =

√
β + μ̄2

√
1 + β𝑚2 + β𝑚 − μ̄

√
β + μ̄2

√
1 + β𝑚2 − β𝑚 + μ̄

.

6. КРИТЕРИЙ НЕУСТОЙЧИВОСТИ
ВАНДЕРВОРТА. СЛУЧАЙ

ОСЕСИММЕТРИЧНОГО ТЕЛА
В случае сфероида Маклорена 𝑎 = 𝑏 > 𝑐 малые

параметры μ и μ̄ определяются равенством (29), а

𝐼 = 2𝑎𝑐
𝑒

arcsin 𝑒, 𝑒2 = 1 − 𝑐2

𝑎2 , (95)

𝐴1 = 𝐴2 = 𝑎
2𝑐

∞

∫
0

𝑑𝑢

(𝑢 + 𝑎2)2
√
𝑢 + 𝑐2

=

= 1
𝑒3 [
√

1 − 𝑒2 arcsin 𝑒 − 𝑒(1 − 𝑒2)] , (96)

𝐴3 = 𝑎
2𝑐

∞

∫
0

𝑑𝑢

(𝑢 + 𝑎2) (𝑢 + 𝑐2)
√
𝑢 + 𝑐2

=

= 2
𝑒3 (𝑒 −

√
1 − 𝑒2 arcsin 𝑒) ,

𝐴11 = 𝐴12 = 𝑎
2𝑐

∞

∫
0

𝑑𝑢

(𝑢 + 𝑎2)3
√
𝑢 + 𝑐2

=

=
√

1 − 𝑒2

4𝑎2𝑒5
[3 arcsin 𝑒 − 𝑒 (3 + 2𝑒2)

√
1 − 𝑒2] .

(97)

Критерий Вандерморта в этом случае запишется
так:

𝑡𝑒 ≡
Ω2𝐼11

2∣𝑉11∣
> 1

27
(1 + 𝑆)3

(1 + 𝑈)2
≡ 𝑡1,

𝑆 = 1 −
𝑎2

1𝐴11

𝐴1
,

𝑈 =
𝐼11Ω

2

2𝑉11
,

(98)

где 𝐴1 и 𝐴11 определяются равенствами (96) и (97),
а тензоры 𝐼11 и 𝑉11 –– формулами (69) и (70) соот-
ветственно. При этом функции 𝐽 (𝑚) и ψ (𝑚), фи-
гурирующие в выражениях 𝐼11 и 𝑉11, также задают-
ся формулами (69) и (70), в которых следует учесть
𝑎1 = 𝑎2 и тождество (73). Это связано с тем, что дан-
ные функции зависят только от профиля ρ (𝑚).

Теперь рассмотрим случай вытянутого сферои-
да 𝑎 > 𝑏 = 𝑐. В этом случае малые параметры μ и μ̄
определяются равенством (31). Кроме того,

𝐼 = 𝑐
2

𝑒
ln 1 + 𝑒

1 − 𝑒
, 𝑒2 = 1 − 𝑐2

𝑎2 , (99)

𝐴1 = 𝑎𝑐
2

∞

∫
0

𝑑𝑢

(𝑢 + 𝑐2)(𝑢 + 𝑎2)
√
𝑢 + 𝑎2

=

= 1 − 𝑒2

𝑒3 (ln 1 + 𝑒
1 − 𝑒

− 2𝑒) ,

𝐴2 = 𝐴3 = 𝑎𝑐
2

∞

∫
0

𝑑𝑢

(𝑢 + 𝑐2)2
√
𝑢 + 𝑎2

=

= 1 − 𝑒2

2𝑒3 ( 2𝑒
1 − 𝑒2 − ln 1 + 𝑒

1 − 𝑒
) ,

(100)

𝐴12 = 𝐴13 = 𝑎𝑐
2
∞

∫
0

𝑑𝑢

(𝑢 + 𝑐2)2(𝑢 + 𝑎2)
√
𝑢 + 𝑎2

=

= 1
2𝑎2𝑒5

[2𝑒(3 − 2𝑒2) − 3(1 − 𝑒2) ln 1 + 𝑒
1 − 𝑒

] . (101)

Критерий Вандерморта в этом случае тождестве-
нен неравенству (76). Однако в выражении парамет-
ров 𝑆 и𝑈, фигурирующих в этом неравенстве и опре-
деляемых равенством (77), следует учесть выраже-
ния (100) и (101) для величин 𝐴1 и 𝐴12. Тензоры 𝐼11,
𝐼22 и 𝑉11 задаются также формулами (69) и (70) с уче-
том равенства 𝑎2 = 𝑎3 и выражений (100) и (101).
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7. ПРИМЕРЫ И ВЫВОДЫ

Для применения полученных нами результатов
рассмотрим 64 модельные эллиптические галакти-
ки (МЭГ) с параметрами, точно совпадающими
с параметрами реальных галактик, имеющие фор-
му слоисто-неоднородного сжатого (сфероида Ма-
клорена) или вытянутого сфероида, или слоисто-
неоднородного трехосного эллипсоида Якоби с со-
ответствующими профилями (см. выше). При этом
полуоси этих галактик определены по значениям
величин 𝐷25 и 𝑅25 из каталога [4].

Проверено, что выполняется необходимое усло-
вие: неравенство Пуанкаре для существования
неоднородной галактики как фигуры равновесия
для всех рассмотренных МЭГ. При этом нормиро-
ванная угловая скорость для всех МЭГ как сферо-
идов Маклорена не превышает критического зна-
чения, т. е. Ω̃2 < 0.37423. Кроме того, установлено,
что условие устойчивости для МЭГ, имеющих фор-
му слоисто-неоднородного сжатого или вытянутого
сфероида, по критерию (34) Пиблса–Острайкера
выполняется. При этом значения параметра 𝑡
из критерия устойчивости Пиблса–Острайкера (34)
для слоисто-неоднородных вытянутых сфероидов
оказались меньше, чем их значения для сжатых
сфероидов, как и показано в книге [12]. Поэтому
устойчивость (или неустойчивость) галактик, имею-
щих форму вытянутого сфероида, можно установить
по другим критериям. Таковыми являются критерий
выполнения неравенства (65) для отношения зна-
чений нормированных удельных угловых моментов
сжатого и вытянутого сфероида (см. подраздел 4.9),
или критерий Вандерворта (см. разделы 5 и 6).

Если установить устойчивость (или не устой-
чивость) в зависимости от выполнения неравен-
ства (65), то при всех значениях параметра 𝑚0, удо-
влетворяющих неравенству𝑚0 ⩾ 𝑚̃0, мы заключаем,
что выполняется условие устойчивости таких галак-
тик с соответствующими профилями. В противном
случае вытянутый сферорид с соответствующими
профилями будем считать неустойчивым. Следова-
тельно, вытянутый сфероид с полуосями 𝑎0 = 𝑚0𝑎
и 𝑐0 = 𝑚0𝑐 будет устойчивым, если его полуоси удо-
влетворяют условию 𝑎0 > 𝑎1 = 𝑚̃0𝑎 и 𝑐0 > 𝑐1 = 𝑚̃0𝑐.
В противном случае будем считать его неустойчи-
вым. Как определяется параметр 𝑚̃0 мы рассмотрели
в подразделе 4.9, а полуоси 𝑎 и 𝑐 каждой конкретной
галактики взяты из каталога [4]. Возможно, такое
определение устойчивости (или неустойчивости) га-
лактик, имеющих форму вытянутого сфероида, но-
сит условный характер, так как является необходи-
мым, но недостаточным условием устойчивости.

В табл. 3 приведены критические значения па-
раметра 𝑚̃0, определяемые в зависимости от про-
филей ρ1(𝑚) БМ и ρ2(𝑚) ТМ для трех МЭГ. Значе-
ния 𝑎 и 𝑐–– большой и малой полуосей этих галак-
тик –– взяты из каталога Вокулера и др. [4]. Фигу-

рирующие в выражениях профилей ρ1(𝑚) и ρ2(𝑚)
ключевые параметры –– плотность в центре галакти-
ки ρ0, параметр β, нормализующий коэффициент 𝐾
и радиус-шкала 𝑟𝑠, а также масса 𝑀 определены в ра-
ботах [1, 7, 8].

Далее, на рис. 2, 3 и 4 приведены графики
функций 𝑇𝑘(𝑚0) в зависимости от профилей плот-
ности барионной массы (БМ) и темной материи
(ТМ), параметра 𝑚0, а также от формы галактики
МЭГ NGC 4472. Для краткости записи на рисунках
через 𝑇𝑘(𝑚0) обозначены:

𝑇𝑘(𝑚0) = {𝑃𝑘(𝑚0), 𝑄𝑘(𝑚0), 𝑃𝑛(𝑚0), 𝑄𝑛(𝑚0)}, (102)
(𝑘 = 1, 2, 3; 𝑛 = 1, 2),
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Рис. 2. График функций 𝑇𝑘(𝑚0) в зависимости
от параметра 𝑚0 МЭГ NGC 4472. Сплошная ли-
ния соответствует функции 𝑃1(𝑚0) ≡ 10−3𝛼1(𝑚0), т. е.
слоисто-неоднородному сжатому, а штриховая –– функ-
ции𝑄1(𝑚0) ≡ 10−3𝛽1(𝑚0) слоисто-неоднородному вы-
тянутому сфероиду с “астрофизическим” профилем,
пунктирная линия –– функции 𝑃1(𝑚0) ≡ 10−3𝛼̃1(𝑚0)
слоисто-неоднородному сжатому, а штрих-пунктирная
линия –– функции 𝑄1(𝑚0) ≡ 10−3𝛽1(𝑚0) или слоисто-
неоднородному вытянутому сфероиду с суммарным
профилем “астрофизическим” для БМ и аналогом про-
филя NFW для ТМ
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Рис. 3. График функций 𝑇𝑘(𝑚0) в зависимости от па-
раметра 𝑚0 МЭГ NGC 4472. Сплошная линия соответ-
ствует функции 𝑃2(𝑚0) ≡ 10−3𝛼2(𝑚0), или слоисто-
неоднородному сжатому, а штриховая –– функции
𝑄2(𝑚0) ≡ 10−3𝛽2(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с “астрофизическим” профилем.
Пунктирная и штрих-пунктирная линии то же, что
на рис. 2
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Рис. 4. График функций 𝑇𝑘(𝑚0) в зависимости
от параметра 𝑚0 МЭГ NGC 4472. Сплошная линия
соответствует функции 𝑃3(𝑚0) ≡ 10−3𝛼3(𝑚0) слоисто-
неоднородному сжатому, а штриховая –– функции
𝑄3(𝑚0) ≡ 10−3𝛽3(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с аналогом профиля Хернквиста,
пунктирная линия –– функции 𝑃2(𝑚0) ≡ 10−3𝛼̃2(𝑚0)
слоисто-неоднородному сжатому, а штрих-пунктирная
линия –– функции 𝑄2(𝑚0) ≡ 10−3𝛽2(𝑚0), или слоисто-
неоднородному вытянутому сфероиду с суммарным
профилем “астрофизическим” для БМ и аналогом
профиля Хернквиста для ТМ

где
𝑃𝑘(𝑚0) = 10−3α𝑘(𝑚0),
𝑄𝑘(𝑚0) = 10−3β𝑘(𝑚0),

(𝑘 = 1, 2, 3)
𝑃𝑛(𝑚0) = 10−3α̃𝑛(𝑚0),
𝑄𝑛(𝑚0) = 10−3β̃𝑛(𝑚0),

𝑛 = (1, 2).
Кроме того, функции α𝑘(𝑚0), β𝑘(𝑚0) (𝑘 = 1, 2, 3)

и α̃𝑛(𝑚0), β̃𝑛(𝑚0) (𝑛 = 1, 2) определены выше равен-
ствами (48), (50), (53), (60) и (61) соответственно.

На рис. 2 сплошная линия соответствует
функции 𝑃1(𝑚0) ≡ 10−3α1(𝑚0), т. е. слоисто-неод-
нородному сжатому, а штриховая — функции
𝑄1(𝑚0) ≡ 10−3β1(𝑚0) слоисто-неоднородному
вытянутому сфероиду с “астрофизическим”
профилем, пунктирная линия — функции
𝑃1(𝑚0) ≡ 10−3α̃1(𝑚0) слоисто-неоднородному
сжатому, а штрих-пунктирная линия — функции
𝑄1(𝑚0) ≡ 10−3β̃1(𝑚0), или слоисто-неоднородному
вытянутому сфероиду с суммарным профилем
“астрофизическим” для БМ и аналогом профиля
NFW для ТМ.

На рис. 3 сплошная линия соответствует
функции 𝑃2(𝑚0) ≡ 10−3α2(𝑚0), или слоисто-
неоднородному сжатому, а штриховая –– функции
𝑄2(𝑚0) ≡ 10−3β2(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с “астрофизическим” профилем.
Обозначения пунктирной и штрих-пунктирной
линий совпадают с обозначениями на рис. 2.

На рис. 4 сплошная линия соответствует
функции 𝑃3(𝑚0) ≡ 10−3α3(𝑚0) слоисто-неод-

нородному сжатому, а штриховая –– функции
𝑄3(𝑚0) ≡ 10−3β3(𝑚0) слоисто-неоднородному
вытянутому сфероиду с аналогом профиля
Хернквиста, пунктирная линия –– функции
𝑃2(𝑚0) ≡ 10−3α̃2(𝑚0) слоисто-неоднородному
сжатому, а штрих-пунктирная линия –– функции
𝑄2(𝑚0) ≡ 10−3β̃2(𝑚0), или слоисто-неоднородному
вытянутому сфероиду с суммарным профилем
“астрофизическим” для БМ и аналогом профиля
Хернквиста для ТМ.

Теперь о критерии неустойчивости Вандервор-
та (см. разделы 5 и 6). В случае вытянутого сферо-
ида с соответствующими профилями согласно это-
му критерию имеем следующее. Если галактика со-
стоит только из барионной массы с “астрофизи-
ческим” профилем, то только модельные галакти-
ки NGC 3610 и NGC 4660 являются неустойчивыми
по критерию Вандерворта. Если же галактика с фор-
мой вытянутого сфероида состоит из БМ с “астро-
физическим” профилем и ТМ с аналогом профиля
NFW, то согласно этому критерию следующие 10 мо-
дельных эллиптических галактик (МЭГ) являются
неустойчивыми: NGC 0661, 0680, 3610, 3641, 4278,
4283, 4434, 4473, 4660 и 5173. Наконец, в случае га-
лактики с формой вытянутого сфероида, состоящей
из БМ с “астрофизическим” профилем и ТМ с ана-
логом профиля Хернквиста, то следующие 5 МЭГ
являются неустойчивыми: NGC 0680, 4283, 4434,
4473 и 4660.

8. ЗАКЛЮЧЕНИЕ
Рассмотрены несколько новых моделей слоисто-

неоднородной эллиптической галактики (ЭГ), име-
ющей форму либо трехосного эллипсоида, либо сжа-
того или вытянутого сфероида. При этом полагает-
ся, что ЭГ состоит из барионной массы (БМ) и тем-
ной материи (ТМ) с разными законами распределе-
ния плотности –– профилями. Во всех моделей в ка-
честве профиля БМ берется “астрофизический за-
кон” распределения плотности, а в качестве профи-
ля ТМ –– один из аналогов профилей NFW и Херн-
квиста.

На основе этих моделей определены некоторые
ключевые динамические параметры ЭГ: гравита-
ционная (потенциальная) энергия и кинетическая
энергия вращения, распределение углового момента
и удельные угловые моменты в зависимости от про-
филей плотности.

В качестве примера взяты более шестидесяти
модельных эллиптических галактик с параметрами,
точно совпадающими с реально существующими.
Проверено, что выполняется с достаточной гаран-
тией необходимое условие: неравенство Пуанкаре
для существования неоднородной ЭГ как фигуры
равновесия. Кроме того, установлена устойчивость
(неустойчивость) ЭГ как динамической системы
согласно критерию Вандерворта и проверено вы-
полнение критерия Пиблса–Острайкера. Найдены
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критические значения параметра семейства сферо-
идов, определяющие границы устойчивости (или
неустойчивости) динамической системы по значе-
ниям удельных угловых моментов в зависимости
от профилей плотности.

Полученные результаты приведены в виде таб-
лиц и рисунков.
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ON THE STABILITY OF A LAYERED INHOMOGENEOUS ELLIPTICAL
GALAXY AS DYNAMIC SYSTEM
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In this paper, we consider several new models of a layered inhomogeneous elliptical galaxy (EG) having
the shape either a triaxial ellipsoid or an oblate or prolate spheroid and consisting of baryonic mass (BM)
and dark matter (DM) with different laws of density distribution — profiles. Based on these models, some
key dynamic parameters of the EG were determined: gravitational (potential) energy and rotational kinetic
energy, angular momentum distribution and specific angular momentum depending on density profiles. The
equilibrium and stability (instability) of the EG as a dynamic system have been established according to
known criteria. Critical values found parameters of the family of spheroids that determine the boundaries of
stability (or instability) dynamic system based on the values of specific angular momentum depending on the
density profiles. The results obtained were applied to sixty model EGs with parameters exactly matching
those that actually exist and are presented in the form of tables and figures.

Keywords: elliptical galaxies, fundamental parameters, the equilibrium and stability (instability)
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