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Изучаются факторы, влияющие на энергетику солнечной вспышки. Исследование проводилось
в рамках модели ускорения частиц в магнитной Х-особенности. Было установлено, что энергия
вспышки зависит главным образом от потока электронов в зону ускорения. А изменение такого
потока в свою очередь определяется размерами зоны ускорения. Расчеты показали, что для
хромосферного источника вспышки вертикальная протяженность зоны ускорения изменяется
от ∼100 км до ≈2 ⋅ 103 км, а ее диаметр от ∼1 км до ≈100 км.
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1. ВВЕДЕНИЕ
Одним из проявлений солнечной активности яв-

ляются вспышки. Во время вспышки выделяется
огромное количество энергии –– до 1032 эрг. Послед-
ствия столь мощного явления отражаются на состо-
янии земной атмосферы. В связи с этим возникает
естественное желание прогнозировать появление
вспышки и ее энергетику. В настоящее время во-
прос о предсказании появления вспышки остается
открытым, но есть некоторые наблюдательные свя-
зи мощности вспышки с величиной магнитного по-
тока и размерами активной области, где подавляю-
щее количество вспышек и происходит. Между тем,
в активных областях с указанными особенностями
случаются и вспышки малой мощности ∼1027 эрг.
Чтобы понять причину этого, необходимо устано-
вить влияющие на энергетику вспышки факторы,
чему и посвящено предлагаемое исследование.

2. МОДЕЛЬ ВСПЫШКИ
В солнечной вспышке происходит выделение

большого количества энергии за короткое время.
В настоящее время наиболее популярной являет-
ся идея магнитного пересоединения. Такое пересо-
единение происходит в магнитной Х-особенности
и формирует токовый слой. Однако в солнечных
условиях появление токового слоя требует мно-
гих часов, а процесс эффективного выделения
энергии во время солнечной вспышки занимает
несколько минут. Между тем в самой магнитной
Х-особенности происходит быстрое ускорение элек-
тронов [1]. В связи с такой ситуацией автор по-
лагает, что основным источником энергии сол-

нечной вспышки являются ускоренные электроны
в Х-особенности.

Появление магнитной Х-особенности возмож-
но, в частности, около нейтральной линии магнит-
ного поля, где по разные стороны возникают зоны
локального усиления магнитного поля. Возникают
эти зоны вследствие конвективных движений плаз-
мы. Процесс такого усиления описан в работе [2],
где приведены примеры численного расчета, кото-
рые показывают усиление магнитного поля на поря-
док величины. Для нашего случая достаточно иметь
по две зоны локально усиленного магнитного поля
разного знака, чтобы возникла магнитная конфи-
гурация с Х-особенностью. Такая система 4-х маг-
нитных зон может быть описана как магнитный ис-
точник, имеющий дипольную, квадрупольную и ок-
тупольную магнитные гармоники. Совместное дей-
ствие дипольной и октупольной гармоники приво-
дит к формированию магнитной Х-особенности.

Рассмотрим вариант симметричного магнитно-
го поля с одним компонентом октупольной гармо-
ники 𝑄, которая соосна дипольной гармонике 𝑀.
В сферической системе координат, связанной с ди-
полем, радиальный компонент 𝐵𝑟 и полярный ком-
понент 𝐵θ магнитного поля будут иметь вид:

𝐵𝑟 = 2𝑀 cos θ ⋅ 𝑟−3 + 3𝑄 cos θ (5 cos 2θ − 1) 𝑟−5,

𝐵θ = 𝑀 sin θ ⋅ 𝑟−3 + 1.5𝑄 sin θ (5 cos2 θ − 1) 𝑟−5,
(1)

где расстояние 𝑟 отсчитывается от некого эффектив-
ного центра, создаваемого локальными магнитны-
ми источниками, полярный угол θ отсчитывается
от направления вектора магнитного диполя.
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В окрестности 𝐵𝑟 = 0, 𝐵θ = 0 и возникает магнит-
ная Х-особенность, которая изображена схематиче-
ски на рис. 1, где кривые линии представляют сило-
вые линии. Местоположение𝐵𝑟 = 0 и𝐵θ = 0 образует
окружность, которая лежит в плоскости, перпенди-
кулярной дипольному моменту на угловом рассто-
янии θ = 90○. Указанная окружность имеет радиус
(1.5𝑄/𝑀)1/2𝑅𝑠 (в единицах солнечного радиуса).

Следует отметить, что при наличии квадруполь-
ной гармоники, создающей асимметрию конфигура-
ции (1), магнитная Х-особенность также возникает.
Но плоскость, в которой лежит линия нулевого маг-
нитного поля (𝐵𝑟 = 0 и 𝐵θ = 0), смещается по углу θ.
В случае, когда величина квадрупольной гармони-
ки не превышает 1% от дипольной, такое смеще-
ние составляет не более 5○ от симметричного случая
θ = 90○.

Сформировавшие локальные магнитные зоны
конвективные движения за время своего существо-
вания постоянно усиливают магнитное поле в таких
зонах. Вследствие такого усиления происходит из-
менение напряженности магнитного поля (1). И та-
кое изменение возбуждает вихревое электрическое
поле. В принятой нами модели симметричного маг-
нитного поля (1) электрическое поле будет иметь
только φ компонент, ориентированный перпенди-
кулярно дипольному моменту. Величина этого ком-
понента электрического поля согласно [3] определя-
ется временной вариацией компонента 𝐵θ как

𝐸φ = −𝑐
−1 ⋅ (𝜕𝐵θ/𝜕𝑡) ⋅ 𝑡. (2)

Электрическое поле (2) ориентировано так же,
как и линия нулевого магнитного поля (𝐵𝑟 = 0
и 𝐵θ = 0), т. е. перпендикулярно силовым линиям
в Х-особенности (рис. 1). Возможность ускорения
заряженных частиц полем (2) зависит от соотноше-
ния частоты столкновения и гирочастоты. В солнеч-
ной хромосфере и короне гирочастота существен-
но превышает частоту столкновения электронов
и протонов. Электроны и протоны “замагничены”,

D

Рис. 1. Магнитная Х-особенность в сечении перпенди-
кулярном линии нулевого магнитного поля. Геометрия
кривых показывает магнитные силовые линии. Область
диаметром 𝐷 отмечает зону, где заряженные частицы
плазмы могут быть ускорены вихревым электрическим
полем

что при наличии электрического поля приводит
к их дрейфовому перемещению. В Х-особенности
напряженность магнитного поля уменьшается к цен-
тру, и на некотором расстоянии гирочастота умень-
шается до такой величины, что становится меньше
частоты столкновения. И начиная с такого расстоя-
ния электроны уже не “привязаны” к силовым ли-
ниям и могут ускоряться электрическим полем. По-
ложения такой зоны, где электроны ускоряются по-
лем (2), схематически отмечено на рис. 1 окружно-
стью диаметром 𝐷. Физически такая зона ускоре-
ния представляет собой трубку около линии 𝐵𝑟 = 0,
𝐵θ = 0, которая показана на рис. 2 в виде набора ко-
лец. Следует понимать, что размер зоны 𝐷 меняется
вдоль указанной трубки в зависимости от окружаю-
щих условий.

Вне указанной зоны 𝐷 (см. рис. 1) заряжен-
ные частицы участвуют в дрейфовом перемещении
со скоростью V = 𝑐 ⋅ E × B ⁄ 𝐵2. В результате тако-
го дрейфа происходит перераспределение плотно-
сти плазмы в некоторой окрестности около изуча-
емого источника (1). В принятой нами симметрич-
ной модели (1) и (2) дрейфовое перемещение 𝑉 при-
водить к появлению плотной структуры типа “пет-
ля”, когда временное изменение дипольной гармо-
ники превышает изменение октупольной гармони-
ки 𝜕𝑀/𝜕𝑡 > 𝜕𝑄/𝜕𝑡. Важно отметить, что петельная
структура реально наблюдается во время импульс-
ной фазы солнечной вспышки.

Рис. 2. Результаты модельного расчета дрейфового пе-
ремещения плазмы над магнитной источником (1) при
наличии вихревого электрического поля (2). Дрейф со-
здает места уплотнения в виде петли при начальном
равномерном распределении модельных частиц. Кон-
фигурация из колец отмечает положения области 𝐷
магнитной Х-особенности (см. рис. 1) вдоль линии ну-
левого магнитного поля
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Расчеты дрейфового перемещения проводим
в предположении, что электроны и протоны “замаг-
ничены”. В нашей симметричной модели источника
магнитного поля (1) электроны и протоны переме-
щаются со скоростью 𝑉, которая имеет компоненты
по радиусу 𝑟 и углу θ. Из формулы для дрейфовой
скорости с учетом (2) указанные компоненты мож-
но записать в виде произведения составляющих маг-
нитного поля и их производных:

𝑉𝑟 = 𝑟 ⋅ (𝜕𝐵θ/𝜕𝑡)𝐵θ/𝐵
2,

𝑉θ = −𝑟 ⋅ (𝜕𝐵θ/𝜕𝑡)𝐵𝑟/𝐵
2.

(3)

В формуле (3) составляющие магнитного поля𝐵𝑟
и𝐵θ представляют собой выражения (1). Таким обра-
зом, в окрестности источника магнитного поля (1)
определено поле скоростей. И в этом поле каждая
частица движется со скоростью (3) в зависимости
от ее координаты. Хотя выражение для скоростей (3)
задается аналитическим способом, траекторию ча-
стицы проще рассчитывать численным способом.

На рис. 2 показан результат модельного расчета
перемещения точечных частиц в поле скоростей (3)
над источником с магнитным полем (1) с электри-
ческим полем (2). Расчеты проводились численным
способом при начальном равномерном распределе-
нии модельных точечных частиц в некоторой окрест-
ности над источником, которая содержала в себе
зону ускорения (система колец на рис. 2).

Представленный на рис. 2 вариант рассчиты-
вался при относительных изменениях дипольно-
го и октупольного моментов 𝜕𝑀/𝑀𝜕𝑡 = 10−3 c−1,
𝜕𝑄/𝑄𝜕𝑡 = 10−4 c−1 и 𝑄/𝑀 = 10−3 𝑅2

𝑠 . Указанные вели-
чины, как ожидается, являются типичными для сол-
нечной вспышки. Показан результат расчета после
2000 с от начала процесса, когда “включается” по-
ле скоростей (3). В этом случае уплотнение “пет-
ли” относительно начального распределения в сред-
нем около 5. Важно отметить, что наблюдаться такая
“петля” будет существенно контрастнее, поскольку
поток излучения плазмы пропорционален квадра-
ту плотности. В рассмотренном случае (см. рис. 2)
уже на 100 с от начала процесса плотность точек уве-
личилась в 2 раза относительно начальной. И такая
петельная структура будет хорошо заметна, посколь-
ку поток от нее превысит окружающее излучение
в 4 раза.

Эволюция петельной структуры (см. рис. 2) зави-
сит от временных изменений дипольной и октуполь-
ной гармоники магнитного поля источника 1. В этой
связи открывается возможность изучения измене-
ний величин этих гармоник по наблюдению плотно-
сти и геометрии “петли” (см. рис. 2). Наблюдаемая
вариация плотности, как изменение наблюдаемо-
го контраста, зависит от относительного роста ди-
польной гармоники 𝜕𝑀/𝑀𝜕𝑡. Высота “петли” опре-
деляется отношением 𝑄/𝑀, которое в соответствии
с установленным различием временных вариаций,
не остается постоянным. Для указанной возможно-

сти требуется анализ наблюдательных данных, и это
тема отдельного исследования.

3. ЭНЕРГИЯ ВСПЫШКИ
Во время солнечной вспышки наблюдается рент-

геновское излучение, которое возникает вследствие
свободно-свободного излучения ускоренных элек-
тронов. Подавляющая доля такого потока приходит
из двух хромосферных источников вспышки. Со-
гласно рассматриваемой модели вспышки наблюда-
емая ситуация указывает на основную долю ускоря-
емых электронов именно в хромосферных источни-
ках. Поэтому для изучения энергетических факто-
ров вспышки надо рассмотреть именно эти источ-
ники.

Выделяемая в указанном источнике энергия 𝑊𝑓

зависит от количества ускоряемых электронов,
их энергии и длительности процесса ускорения элек-
тронов:

𝑊𝑓 = 2∫ 𝑤𝑒(𝜕𝑁𝑒/𝜕𝑡)d𝑡 = 2 <𝑤𝑒><𝜕𝑁𝑒/𝜕𝑡> 𝑡f. (4)

Множитель двойка в выражении для энергии (4)
означает, что хромосферных источников два (см.
рис. 2). Нас интересует влияния различных факто-
ров на суммарную энергию вспышки, поэтому про-
ведем анализ средних значений набираемой энергии
электроном <𝑤e>, потока электронов в зону ускоре-
ния <𝜕𝑁𝑒/𝜕𝑡>, длительности процесса ускорения 𝑡f.

Наблюдаемая импульсная фазы вспышки, ко-
гда и происходит ускорение электронов, составля-
ет десятки минут. Этот временной масштаб явле-
ния ∼103 с указывает на то, что локальное маг-
нитное конфигурация с Х-особенностью создается
конвекцией мезогрануляционного масштаба. Зна-
чит, импульсная фаза не может превышать време-
ни жизни мезогрануляции≈ 2 ⋅ 103 с. Минимальная
наблюдаемая длительность этой фазы для слабых
вспышек ≈ 500 с. В таком случае влияние факто-
ра 𝑡f на энергию солнечной вспышки оказывается
менее 5 раз.

Ситуация с набираемой электроном энергии
<𝑤e> зависит от условия ускорения, которое опре-
деляется соотношением между вихревым электри-
ческим полем (2) и величиной поля Драйсера. Для
нашей задачи интерес представляет среднее значе-
ние вариации магнитного поля (2) <𝜕𝑀/𝜕𝑡> =Δ𝐵/Δ𝑡
в течение фазы ускорения. Длительность этой фа-
зы Δ𝑡 ≈ 103 с. Ситуация с вариацией магнитного
поля зависит от соотношения временных измене-
ний дипольной и октупольной гармоник источни-
ка (1). Если есть различие между ними в несколь-
ко раз, тогда Δ𝐵 будет определяться изменением
напряженности магнитного поля в окрестности
Х-особенности. Индикатором пространственного
положения Х-особенности является высота коро-
нального источника вспышки (см. рис. 2). Эта вы-
сота находится в пределах 20–40 тыс. км, где на-
пряженность магнитного поля в активной области
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∼10 Гс. Изменение напряженности магнитного по-
ля источником (1), как было сказано выше (п. 2), мо-
жет быть до десяти раз. Тогда вариация магнитного
поля в Х-особенности за время импульсной фазыΔ𝐵
может быть более 10 Гс. При указанных величинах
(𝑟 > 20 тыс. км) из формулы (2) получаем среднюю
величину электрического поля <𝐸φ> > 10−3 [СГС].

Поле Драйсера 𝐸𝐷 ≈ 10−10𝑛p/𝑇e [СГС], где
плотность протонов в хромосфере 𝑛p ⩽ 1012 см−3.
Электронная температура в зоне ускорения
𝑇e ∼ 107 K [4, 5]. Тогда величина поля Драйсера
𝐸𝐷 < 10−5 [СГС], т. е. более чем на 2 порядка
меньше возбуждаемого вихревого поля во время
вспышки. В процессе вспышки представляется
очень маловероятным, чтобы поле 𝐸φ отличалось
от среднего более, чем на 2 порядка. Значит,
ускорение электронов во время импульсной фазы
вспышки происходит в режиме убегания.

В режиме убегания электроны тормозятся воз-
буждаемой ими неустойчивостью. В нашем случае,
когда магнитное поле не влияет на ситуацию, быст-
рее всего возбуждается неустойчивость Бунемана.
Неустойчивость возникает, когда потоковая ско-
рость электронов в несколько раз превышает тепло-
вую. Для мощных вспышек электронная температу-
ра в зоне ускорения 40 МК [5], которая соответству-
ет энергии 10−8 эрг. Для возбуждения неустойчи-
вости набираемая электроном скорость в процессе
ускорения, очевидно, не может превышать тепло-
вую больше, чем на порядок. Это означает, что энер-
гия электрона в процессе ускорения <𝑤e> < 10−6 эрг
или ≈600 кэВ. Для слабых вспышек с температу-
рой в зоне ускорения 6 МК [4] энергия электрона
<𝑤e> < 1.5 ⋅ 10−7 эрг (≈90 кэВ). В таком случае влия-
ние <𝑤e> на диапазон изменения энергии вспышек
не более 7 раз –– менее порядка величины.

Полученные оценки ускоряемых электронов яв-
ляются весьма неопределенными. Но такая неопре-
деленность, вероятно, не превышает фактора 2,
поскольку наблюдаемое рентгеновское излучение
мощных вспышек указывает на присутствие элек-
тронов с энергией до 300 кэВ. Важно отметить, что
количество электронов, ускоряемых в режиме убега-
ния, должно составлять наибольшую долю от посту-
пающих в зону ускорения электронов вследствие
большого превышения возбуждаемого вихревого
электрического поля над полем Драйсера.

Наблюдаемый диапазон энергии солнечной
вспышки 1027–1032 эрг. Тогда из формулы (3)
и оценки <𝑤e> и 𝑡f для слабых и мощных вспы-
шек получаем для потока электронов <𝜕𝑁𝑒/𝜕𝑡>
∼1031–1035 электрон/с.

4. ОБЛАСТЬ УСКОРЕНИЯ
Электроны попадают в зону ускорения по си-

ловым линиям из окружающей плазмы (см. рис. 1).
Количество таких электронов зависит от скорости,

плотности и объема зоны ускорения. Для просто-
ты расчетов примем геометрию зоны ускорения 𝐷
в виде окружности. Тогда поток электронов зависит
от указанных выше параметров как

<𝜕𝑁𝑒/𝜕𝑡> = <𝑣r> π𝐷 ⋅ 0.5∫ 𝑛edℎ =

= 0.5 <𝑣r><𝑛e> π𝐷 ⋅ 𝐻, (5)
где <𝑣r>–– средняя величина радиально направлен-
ной скорости электронов, <𝑛e>–– средняя плот-
ность, 𝐻–– протяженность зоны ускорения. Коэф-
фициент 0.5 в формуле (5) показывает, что движе-
ние электронов по силовым линиям равновероятно
в разных направлениях.

Величина радиальной скорости электрона опре-
деляется тепловой скоростью 𝑣k и геометрией сило-
вых линий (см. рис. 1) 𝑣r = (1/3)1/2𝑣k cos β, где β––
угол между направлениями силовой линии и ра-
диальным. Тепловая скорость зависит от окружа-
ющей зону ускорения температуры. В нашем слу-
чае 𝑇𝑒 ≈ 106 К как среднее значение между темпера-
турой в зоне ускорения и фоновой хромосферной.
С учетом геометрии силовых линий (см. рис. 1) по-
лучаем оценку скорости <𝑣r>≈ 5 ⋅ 108 см/с.

В случае мощных вспышек класса Х протяжен-
ность зоны ускорения занимает всю высоту хромо-
сферы [6]. Тогда параметр 𝐻 = 2 ⋅ 103 км, и из фор-
мулы (5) можно определить размер сечения зо-
ны ускорения (см. рис. 1). С учетом полученной
выше оценки <𝑣r> и найденной выше величины
<𝜕𝑁e/𝜕𝑡>≈ 1035 электрон/с получаем размер зоны
𝐷 ≈ 102 км.

Рассмотрим случай слабой солнечной вспышки
с потоком электронов <𝜕𝑁e/𝜕𝑡 >≈1031 электрон/с.
Этот поток на 4 порядка меньше, чем у мощной
вспышки. Представляется маловероятным, что про-
тяженность зоны ускорения меньше во столько же
раз, т. е. 𝐻 ≈ 0.1 км. Однако понятно, что протяжен-
ность эффективной области ускорения электронов
существенно меньше, чем у мощных вспышек. Воз-
можное положение такой области в пределах хромо-
сферы приводит к соотношению 𝐷 ⋅ 𝐻 ≈ 1–100 км2.
В связи с возбуждаемой неустойчивостью представ-
ляется маловероятным, чтобы протяженность 𝐻 бы-
ла меньше размера 𝐷. В этом плане выглядит наи-
более предпочтительным вариант, когда 𝐷 ∼ 1 км
и 𝐻 ∼ 100 км. Для подтверждения такого варианта
необходимо дополнительное исследование.

5. ВЫВОДЫ
В рамках принятой модели ускорения был

найден определяющий энергетику вспышки фак-
тор. Им оказался поток электронов в зону уско-
рения, который меняется на 4 порядка от 1031

до 1035 электрон/с. Диаметр зоны ускорения в маг-
нитной Х-особенности, где и происходит уско-
рение, составляет ≈100 км для мощных вспы-
шек и ∼1 км для слабых. При этом протяжен-
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ность этой зоны в хромосфере ≈103 км и ∼100 км
соответственно.
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The factors influencing the energy of the solar flare are being studied. The model of particle acceleration
in the magnetic X-singularity is investigated. It was found that the flare energy depends mainly on the flow
of electrons into the acceleration zone. The change in such a flow is determined by the size of the acceleration
zone. It is calculated that for a chromospheric flare source the vertical length of the acceleration zone varies
from ∼100 km to ≈ 2 ⋅ 103 km and its diameter varies from ∼1 km to ≈ 100 km.
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