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Рассмотрена задача движения точки нулевой массы под действием притяжения к центральному
телу и малого возмущающего ускорения P′ = P/𝑟2, где 𝑟 — расстояние до притягивающего центра,
компоненты вектора P полагаются постоянными в системе отсчета с осями, направленными
по вектору скорости, главной нормали и вектору площадей. Ранее для данной задачи найдены
уравнения движения в средних элементах и формулы перехода от оскулирующих элементов
к средним в первом порядке малости; величинами второго порядка мы пренебрегаем. Если
возмущающие силы малы, то оскулирующая орбита слабо отклоняется от средней. Разность
𝑑r векторов положения на оскулирующей и средней орбитах является квазипериодической
функцией времени. В данной работе получена евклидова (среднеквадратичная по средней
аномалии) норма ∥𝑑r∥2 смещения оскулирующей орбиты относительно средней. Оказалось, что
∥𝑑r∥2 зависит только от компонентов вектора P (положительно определенная квадратичная форма),
большой полуоси (пропорционально второй степени) и эксцентриситета оскулирующего эллипса.
Норма ∥𝑑r∥2 получена в виде рядов по степеням эксцентриситета 𝑒. Полученное выражение
пригодно до 𝑒0 ≈ 0.995862, при 𝑒 > 𝑒0 ϱ =

√
∥𝑑r∥2 может принимать комплексные значения.

Результаты применены к задаче о движении модельных тел под действием возмущающего ускорения,
обусловленного эффектом Ярковского. Также проведено сравнение результатов с аналогичными
для нормы ∥𝑑r∥2 в системе отсчета, связанной с радиусом-вектором.
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1. ВВЕДЕНИЕ
В статье [1] сформулирована задача о движении

точки нулевой массыA под действием притяжения
к центральному телу S (например, к Солнцу) и воз-
мущающего ускорения P′, которое подчиняется за-
кону обратных квадратов P′ = P/𝑟2, где 𝑟 = ∣r∣— мо-
дуль радиуса-вектора r = SA. Компоненты 𝔗,𝔑,𝑊
вектора P постоянны в системе O, орты которой
направлены по вектору скорости, главной нормали
к оскулирующей орбите и бинормали (направлен-
ной по вектору площадей) соответственно.

Отношение модулей возмущающего ускоре-
ния ∣P′∣ и вызванного притяжением к центральному
телу основного ускорения ϰ2/𝑟2 считается малым по-
рядка μ:

max
∣P′∣
ϰ2𝑟−2 = max

∣P∣
ϰ2 = μ ≪ 1,

где ϰ2 — произведение постоянной тяготения на мас-
су S. Величинами порядка μ2 пренебрегается. В ра-

боте [1] к уравнениям движения описанной задачи
применено осредняющее преобразование, найдены
уравнения движения в средних элементах и форму-
лы перехода от оскулирующих элементов к средним:

ε𝑛 = ̄ε𝑛 + 𝑢𝑛 , (1)
где ε𝑛 — шесть оскулирующих элементов; ̄ε𝑛 — шесть
средних элементов; 𝑢𝑛 — функции замены перемен-
ных, которые считаются функциями средних эле-
ментов ̄ε𝑘, но в первом приближении безразлично,
считать ли аргументы 𝑢𝑛 средними или оскулирую-
щими.

Явные выражения 𝑢𝑛 для элементов орби-
ты ω, 𝑒, 𝑖, Ω, σ,𝑀 (среднее движение, эксцентриси-
тет, наклон, долгота восходящего узла, аргумент
перицентра и средняя аномалия соответственно)
найдены в работе [1] и приведены в Приложении A
(формулы (A1)). Там же приведена формула (A5)
для функции 𝑢7 замены оскулирующей большой по-
луоси средней, поскольку далее в качестве основ-
ной системы элементов орбиты будем использовать
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𝑎, 𝑒, 𝑖, Ω, σ,𝑀 (большая полуось, эксцентриситет, на-
клон орбиты, долгота восходящего узла, аргумент
перицентра и средняя аномалия соответственно).
В слабовозмущенных задачах первые пять элемен-
тов медленно изменяются со временем, тогда как
средняя аномалия 𝑀 служит быстрой переменной.

Отклонение оскулирующей орбиты от средней
наглядно можно представить как разность 𝑑r векто-
ров положения небесного тела на оскулирующей
и средней орбитах. Если возмущающие силы ма-
лы, то оскулирующая орбита слабо отклоняется
от средней, а 𝑑r является квазипериодической функ-
цией времени и быстро меняется, поэтому больший
интерес представляет норма 𝑑r как норма вектор-
функции от 𝑀. Выбор средней аномалии в качестве
переменной, по которой определяется норма, обу-
словлен тем, что по 𝑀 сохраняется квазипериодич-
ность функции 𝑑r.

Норма разности 𝑑r позволит оценить отклоне-
ние оскулирующей орбиты от средней вследствие
периодических возмущений и покажет, нужно ли
учитывать эти возмущения (точнее, отличия оскули-
рующих элементов от средних) или можно ограни-
читься вековым движением, которое дается осред-
ненными уравнениями.

Наиболее часто в небесной механике использу-
ются чебышевская (равномерная) и евклидова (сред-
неквадратичная) нормы [2–4]. Для функции 𝑓 —
2π-периодической по 𝑀 и непрерывной на отрезке
[−π, π] скалярной или векторной функции от эле-
ментов орбиты — эти нормы имеют вид:

⟨𝑓⟩ = max
𝑀∈[−π,π]

∣𝑓(𝑎,… ,𝑀)∣,

∥𝑓∥2 = 1
2π

π

∫
−π

𝑓2 𝑑𝑀.

Аналитические выражения для чебышевской нормы
можно получить лишь для простейших функций (см.
примеры в работах [4, 5]). Напротив, для евклидовой
нормы это удается часто.

В работе [4] выведены формулы для (𝑑r)2, вы-
раженного через разности элементов 𝑢𝑛. С их по-
мощью в статье [6] получена евклидова норма
∥𝑑r∥2 смещения оскулирующей орбиты относитель-
но средней при наличии малого возмущающего
ускорения, обратно пропорционального квадрату
расстояния до притягивающего центра в системе от-
счета, связанной с радиусом-вектором. Данная ста-
тья посвящена определению нормы ∥𝑑r∥2 в системе
отсчета, связанной с вектором скорости. В Заклю-
чении приведен сравнительный анализ этих норм.

2. НОРМА РАЗНОСТИ ОСКУЛИРУЮЩИХ
И СРЕДНИХ ЭЛЕМЕНТОВ

Запишем выражение (A5) для 𝑢7 и пять послед-
них уравнений (A1) (для 𝑢2 − 𝑢6) как приращения
элементов δε𝑛 и выразим их через эксцентрическую
аномалию 𝐸, учитывая соотношения, приведенные

в Приложении B. Затем с помощью средств компью-
терной алгебры представим полученные выраже-
ния рядами по степеням эксцентриситета, посколь-
ку исходные выражения (A1), (A5) являются слож-
ными функциями от 𝑒. В Приложении C приведе-
ны разложения выражений (A1), (A5) с точностью
до 𝑒10 − 𝑒12, обеспечивающие соблюдение условия
нулевого среднего (как требуется для функций заме-
ны переменных 𝑢𝑛 согласно [1]), а также минимум
три верных знака после запятой при вычислении δε𝑛
в части, зависящей от эксцентриситета, при малых
и умеренных 𝑒 ⩽ 0.6 (см. формулы (C1)). Однако для
вычисления нормы смещения оскулирующей орби-
ты относительно средней использованы разложения
выражений (A1), (A5) с точностью до 25-й степени
эксцентриситета (ввиду их громоздкости мы не при-
водим их здесь).

Рассматривая выражения (C1), можно заме-
тить, что они представляют собой ряды Фурье ви-

да
∞

∑
𝑘=1

𝑎𝑘(𝑒) sin 𝑘𝐸 либо
∞

∑
𝑘=0

𝑎𝑘(𝑒) cos 𝑘𝐸, где функции

𝑎𝑘(𝑒) — ряды Маклорена по степеням эксцентри-
ситета с рациональными коэффициентами, причем
первый член ряда 𝑎𝑘(𝑒) имеет порядок 𝑘 − 2 и более.
Поэтому при сохранении членов до определенной
степени эксцентриситета в рядах Фурье остается ко-
нечное число слагаемых.

Некоторые из выражений (C1) имеют особенно-
сти при 𝑒 = 0 или 𝑒 = 1. Но поскольку осреднение
по средней аномалии подразумевает эллиптичность
оскулирующей орбиты, то есть 0 < 𝑒 < 1, то сингу-
лярность при вычислениях не встречается.

В Приложении D приведены формулы для раз-
ности векторов положения на оскулирующей и сред-
ней орбитах, выраженной через разности элемен-
тов [4], и нормы (формулы (D1), (D2), (D3)).

Подставляя (C1) в (D2), и далее в (D1) средства-
ми компьютерной алгебры получим для (𝑑r)2 выра-
жение вида

(𝑑r)2 =𝔗
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎1𝑘(𝑒) cos 𝑘𝐸+

+ 𝔑
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎2𝑘(𝑒) cos 𝑘𝐸+

+ 𝑊
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎3𝑘(𝑒) cos 𝑘𝐸+

+ 𝔗𝔑𝑎
2

ϰ4

∞

∑
𝑘=1

𝑎4𝑘(𝑒) sin 𝑘𝐸, (2)

где ряды Маклорена для коэффициентов 𝑎𝑛𝑘(𝑒) все-
гда начинаются с члена порядка 𝑒𝑘. На практике сум-
мирование в (2) проводилось до 𝑘 = 50.

Мы не приводим промежуточные выражения
для функций (D2) и𝑎𝑛𝑘(𝑒) для экономии места и сра-
зу перейдем к вычислению нормы (D3).
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Подставив (2) в (D3) получим:

ϱ2 =∥𝑑r∥2 = 𝔗
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎1𝑘(𝑒) ×
1

2π

π

∫
−π

𝑟

𝑎
cos 𝑘𝐸 𝑑𝐸+

+ 𝔑
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎2𝑘(𝑒) ×
1

2π

π

∫
−π

𝑟

𝑎
cos 𝑘𝐸 𝑑𝐸+

+ 𝑊
2𝑎2

ϰ4

∞

∑
𝑘=0

𝑎3𝑘(𝑒) ×
1

2π

π

∫
−π

𝑟

𝑎
cos 𝑘𝐸 𝑑𝐸+

+ 𝔗𝔑𝑎
2

ϰ4

∞

∑
𝑘=1

𝑎4𝑘(𝑒) ×
1

2π

π

∫
−π

𝑟

𝑎
sin 𝑘𝐸 𝑑𝐸. (3)

Последнее слагаемое в (3) — нечетная функция 𝐸,
она исчезает в результате интегрирования. В осталь-
ных случаях при интегрировании учтем [5, п. 3.6.3]:

1
2π

π

∫
−π

𝑟

𝑎
𝑑𝐸 = 1,

1
2π

π

∫
−π

𝑟

𝑎
cos𝐸 𝑑𝐸 = − 𝑒

2
, (4)

1
2π

π

∫
−π

𝑟

𝑎
cos 𝑘𝐸 𝑑𝐸 = 0 при 𝑘 ⩾ 2.

В итоге получим норму разности оскулирующих
и средних элементов:

ϱ2 =∥𝑑r∥2 = 𝔗
2𝑎2

ϰ4 (𝑎10(𝑒) −
𝑒

2
𝑎11(𝑒)) +

+ 𝔑
2𝑎2

ϰ4 (𝑎20(𝑒) −
𝑒

2
𝑎21(𝑒)) +

+𝑊
2𝑎2

ϰ4 (𝑎30(𝑒) −
𝑒

2
𝑎31(𝑒)) =

= 𝑎
2

ϰ4 (𝑉1𝔗
2 + 𝑉2𝔑

2 + 𝑉3𝑊
2), (5)

где

𝑉1 =
1

(1 − 𝑒2)2
⎛
⎝

16 + 1121𝑒2

8
+ 10793𝑒4

512
−

− 239033𝑒6

18432
− 17713751𝑒8

18874368
− 16112611𝑒10

37748736
−

− 222199537𝑒12

1006632960
− 15794064133𝑒14

123312537600
−

− 78324446438359𝑒16

969769255698432
− 945456502286119𝑒18

17455846602571776
−

− 135640061196163177𝑒20

3562417673994240000
−

− 23949733051735938707𝑒22

862105077106606080000
−

− 256113538574688068647𝑒24

12261049985516175360000
+ 𝑂(𝑒26)

⎞
⎠
,

𝑉2 =
1

(1 − 𝑒2)2
⎛
⎝

1 + 29𝑒2

8
− 2221𝑒4

288
+ 1907𝑒6

512
−

− 265501𝑒8

491520
− 5955551𝑒10

58982400
− 108054281𝑒12

3853516800
−

− 347992909𝑒14

46242201600
− 80402703347𝑒16

170467251978240
+

+ 961519885723𝑒18

454579338608640
+ 157193618149693𝑒20

52384857115852800
+

+ 12031971779882773𝑒22

3771709712341401600
+

+ 7001336583337473239𝑒24

2266378458260255539200
+ 𝑂(𝑒26)

⎞
⎠
, (6)

𝑉3 =
⎛
⎝

1 − 39𝑒2

32
+ 101𝑒4

576
+ 599𝑒6

6144
+ 19889𝑒8

307200
+

+ 86891𝑒10

1843200
+ 145911𝑒12

4014080
+ 14979701𝑒14

513802240
+

+ 286187473𝑒16

11890851840
+ 402547717𝑒18

19818086400
+

+ 3098641663𝑒20

177628774400
+ 233207333021𝑒22

15347126108160
+

+ 300747020621𝑒24

22455968071680
+ 𝑂(𝑒26)

⎞
⎠
.

Выражения (5), (6) позволяют получить в числовом
значении смещения ϱ не менее 2 верных знаков по-
сле запятой вплоть до 𝑒 = 0.7 по сравнению со зна-
чением, полученным путем численного интегриро-
вания, как будет показано в разделе 3, но, в отличие
от численного интегрирования, не требуют больших
вычислительных ресурсов.

Исследуем поведение функций 𝑉1, 𝑉2 и 𝑉3 (6)
на интервале 𝑒 ∈ [0, 1):

min(𝑉1) = 16 при 𝑒 = 0, 𝑉1 → ∞ при 𝑒 → 1, 𝑉1
монотонно возрастает;

min(𝑉2) = 1 при 𝑒 = 0, max(𝑉2) ≈ 102.12175
при 𝑒 ≈ 0.991724, 𝑉2 → −∞ при 𝑒 → 1;

min(𝑉3) ≈ 0.247374 при 𝑒 ≈ 0.926173,
max(𝑉3) = 1 при 𝑒 = 0.

Функция 𝑉2 < 0 при 𝑒 > 𝑒0 ≈ 0.995862. Таким об-
разом 𝑉𝑘 > 0 при 𝑒 < 𝑒0, следовательно, на интервале
𝑒 ∈ [0, 𝑒0] норма ϱ2 (5) положительна и ϱ — действи-
тельное число. Зависимость 𝑉1, 𝑉2 и 𝑉3 от 𝑒 показана
на рис. 1.

Как и в задаче с постоянным возмущающим
ускорением P′, представленной в работе [7], ϱ2 за-
висит только от компонентов вектора возмущающе-
го ускорения 𝔗,𝔑,𝑊 (положительно определенная
квадратичная форма), большой полуоси (пропорци-
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Рис. 1. Значения𝑉1,𝑉2,𝑉3 в зависимости от эксцентриситета 𝑒 на интервале от 0 до 1. Верхние графики представляют𝑉1
в разных масштабах. На левой панели вверху и в центре показаны значения 𝑉1 и 𝑉2 до 𝑒 = 0.95. На графиках отмечены
точки максимумов (синие квадратные маркеры) и точки минимумов (красные круглые маркеры)

онально второй степени) и эксцентриситета оскули-
рующего эллипса. От ориентации орбиты и положе-
ния точкиA на ней ϱ2 не зависит.

Согласно работе [7] наибольшее значение ϱ2 для
заданной орбиты при возмущающем ускорении P′

таком, что вектор P находится внутри некоторого
эллипсоида, ориентированного вдоль осей системы
отсчетаO, равно:

max ϱ2 = 𝑎
2

ϰ4 𝑃
2 max{𝑉1, 𝑉2, 𝑉3}, (7)

где 𝑃=
√
𝔗2+𝔑2+𝑊 2=const. Для 𝑒 ∈ [0, 0.995859]

𝑉1 > 𝑉2 ⩾ 𝑉3 (равенство достигается при 𝑒 = 0
и 𝑒 ≈ 0.995859), при 𝑒 ∈ (0.995859, 𝑒0] 𝑉2 < 𝑉3,
на интервале 𝑒 ∈ (𝑒0, 1.0) функция 𝑉2(𝑒) прини-

мает отрицательные значения, поэтому далее
рассматриваем только интервал 𝑒 ∈ (0, 𝑒0]. С учетом
сказанного выше выражение (7) дает

max ϱ2 = 𝑎
2

ϰ4 𝑃
2𝑉1(𝑒),

max ϱ = 𝑎

ϰ2𝑃
√
𝑉1(𝑒).

(8)

3. СМЕЩЕНИЕ ОСКУЛИРУЮЩЕЙ ОРБИТЫ
ОТНОСИТЕЛЬНО СРЕДНЕЙ ВСЛЕДСТВИЕ

ЭФФЕКТА ЯРКОВСКОГО
В статье [8] рассмотрены модельные объекты

с различными эксцентриситетами орбит от 0 до 0.99,
и остальными орбитальными и теплофизическими
характеристиками, как у астероида 101955 Bennu,
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и найдены средние по орбите значения компонентов
вектора P, дрейфы элементов и смещение относи-
тельно невозмущенного положения в двух системах
отсчета, связанных с радиусом-вектором и векто-
ром скорости. Обращаясь к результатам работы [8],
для этих модельных объектов вычислены смеще-
ние ϱ =

√
ϱ2 (5) оскулирующей орбиты относитель-

но средней и максимальное значение max ϱ (8). При
вычислениях использованы константы

ϰ2 = 1.32712440041279419 × 1020 м3/с2,
1 a. e. = 1.495978707 × 1011 м,
1 сут = 86 400 с,

и те же исходные данные для астероида
101955 Bennu, как и в работе [8]. Для вычисле-
ния ϱ необходимо только значение большой
полуоси 𝑎 = 1.126391025894812 а. е., значения
эксцентриситета указаны в табл. 1 для каждой
модели, так же как значения тангенциального 𝔗
и нормального 𝔑 компонентов вектора P. Соглас-
но [8] среднее за орбитальный период значение
компонента 𝑊 = 0.

Норма смещения вычислена также путем чис-
ленного интегрирования исходных выражений, при-
веденных в Приложении A, полагая в формулах (A2),
(A3) и (A4) верхний предел суммирования по 𝑛,𝑚, 𝑠
равным 100. Коэффициенты Ганзена вычислены
с помощью интегральной формулы, выраженной

через эксцентрическую аномалию 𝐸 и приведен-
ной в работе [9]. Также при численном интегри-
ровании использованы значения наклона орби-
ты 𝑖 = 6.03494377024794○ и аргумента перицентра
σ = 66.22306084084298○, как и в работе [8].

В табл. 1 приведены смещения ϱ и ϱ∗, вычис-
ленные с помощью формул (5), (6) и численно-
го интегрирования соответственно, а также аб-
солютная Δϱ = ∣ϱ − ϱ∗∣ и относительная погреш-

ность δϱ =
∣ϱ − ϱ∗∣
ϱ∗

⋅ 100%, и максимальное значение

max ϱ (8), вычисленные при различных эксцентри-
ситетах 𝑒. Видно, что при 𝑒 ⩽ 0.7 Δϱ не превышает
1 см, то есть формулы (5), (6) позволяют получить
в числовом значении ϱ не менее 2 верных знаков по-
сле запятой вплоть до 𝑒 = 0.7 по сравнению со зна-
чением, полученным путем численного интегриро-
вания. Вследствие отбрасывания членов порядка
𝑂(𝑒26) в формулах (6) при вычислении ϱ получено
немного завышенное значение по сравнению с ϱ∗.
Относительная погрешность составляет 0.2% и ме-
нее для всех рассмотренных 𝑒. Однако необходимо
помнить, что само значение ϱ∗ имеет ограниченную
точность, поскольку в исходных выражениях также
содержатся ряды.

Таблица 1. Исходные данные и результаты

𝑒
𝔗, 10−14

а.е.3/сут2
𝔑, 10−14

а.е.3/сут2 ϱ, м ϱ∗, м Δϱ, м δϱ, % max ϱ, м ϱO∗, м

0.001 −5.10168 −9.91079 129.185 129.185 4.5 ⋅ 10−9 3.5 ⋅ 10−9 253.901 129.185
0.01 −5.10155 −9.91054 129.245 129.245 4.2 ⋅ 10−11 3.3 ⋅ 10−11 254.029 129.231
0.05 −5.09849 −9.90457 130.680 130.680 5.4 ⋅ 10−13 4.1 ⋅ 10−13 257.147 130.351
0.10 −5.08887 −9.88585 135.127 135.127 6.1 ⋅ 10−12 4.5 ⋅ 10−12 266.802 133.848
0.20 −5.04976 −9.80969 152.479 152.479 5.7 ⋅ 10−14 3.7 ⋅ 10−14 304.430 147.865
0.30 −4.98212 −9.67805 180.585 180.585 8.2 ⋅ 10−11 4.6 ⋅ 10−11 365.370 171.674
0.40 −4.88179 −9.48280 219.968 219.968 5.7 ⋅ 10−10 2.6 ⋅ 10−10 450.989 206.987
0.50 −4.74156 −9.20998 273.527 273.527 1.9 ⋅ 10−7 7.1 ⋅ 10−8 567.932 258.152
0.60 −4.54897 −8.83547 348.406 348.405 1.0 ⋅ 10−4 2.9 ⋅ 10−5 732.103 335.067
0.70 −4.28099 −8.31451 461.304 461.297 0.0071 0.0015 980.244 461.827
0.80 −3.88832 −7.55138 658.382 658.245 0.1369 0.0208 1413.488 711.424
0.85 −3.60997 −7.01056 831.777 831.343 0.4345 0.0523 1794.282 958.324
0.90 −3.22864 −6.26976 1136.522 1135.696 0.8257 0.0727 2462.726 1448.588
0.95 −2.62669 −5.10050 1879.287 1876.154 3.1327 0.1670 4089.474 2909.908
0.97 −2.23295 −4.33575 2678.000 2672.555 5.4447 0.2037 5836.915 4852.070
0.99 −1.53792 −2.98595 5562.831 5552.548 10.2828 0.1852 12143.297 14545.945
Примечание. Приведены: эксцентриситет 𝑒, тангенциальный 𝔗 и нормальный 𝔑 компоненты, смещения ϱ и ϱ∗, вы-
численные с помощью формул (5), (6) и численного интегрирования, абсолютная Δϱ и относительная δϱ погрешности,
максимальное значение max ϱ (8), а также смещение ϱO∗ в системе отсчетаO∗, связанной с радиусом-вектором [6], при зна-
чениях компонентов возмущающего ускорения согласно [8]: радиальный 𝑆 = 9.91079 × 10−14 а.е.3/сут2, трансверсальный
𝑇 = −5.10168 × 10−14 а.е.3/сут2 и бинормальный 𝑊 = 0.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



76 САННИКОВА

Из анализа результатов вычислений видно, что
с ростом 𝑒 увеличивается величина периодических
возмущений, обусловленных эффектом Ярковско-
го, хотя значения (по модулю) компонентов 𝔗, 𝔑
уменьшаются: ϱ = 129 м для почти круговой орбиты
и более 5.5 км при 𝑒 = 0.99. Но в целом при малых
возмущающих ускорениях, характерных для эффек-
та Ярковского, смещение оскулирующей орбиты от-
носительно средней мало и им можно пренебречь,
учитывая лишь вековые дрейфы элементов орбиты,
как и было показано в работе [6].

4. ЗАКЛЮЧЕНИЕ
Рассмотрена задача движения точки нулевой

массы под действием притяжения к центральному
телу и малого возмущающего ускорения, обратно
пропорционального квадрату расстояния до при-
тягивающего центра в системе отсчета O с осями,
направленными по вектору скорости, главной нор-
мали к оскулирующей орбите и бинормали. Получе-
на евклидова (среднеквадратичная по средней ано-
малии) норма смещения ∥𝑑r∥2, где 𝑑r представля-
ет разность векторов положения на оскулирующей
и средней орбитах, что позволяет оценить величину
периодических возмущений. Оказалось, что ∥𝑑r∥2
зависит только от компонентов вектора P (положи-
тельно определенная квадратичная форма), боль-
шой полуоси (пропорционально второй степени)
и эксцентриситета оскулирующего эллипса. Норма
∥𝑑r∥2 получена в виде рядов по степеням эксцентри-
ситета 𝑒. Полученное выражение пригодно только
до 𝑒0 ≈ 0.995862, при 𝑒 > 𝑒0 ϱ =

√
∥𝑑r∥2 может при-

нимать комплексные значения.
Результаты применены к задаче о движении мо-

дельных малых тел под действием возмущающего
ускорения, возникающего вследствие эффекта Яр-
ковского. Показано, что с ростом 𝑒 увеличивается
величина периодических возмущений, обусловлен-
ных эффектом Ярковского, хотя значения (по мо-
дулю) компонентов 𝔗, 𝔑 уменьшаются. Однако при
малых возмущающих ускорениях, характерных для
эффекта Ярковского, смещение оскулирующей ор-
биты относительно средней мало и им можно прене-
бречь, учитывая лишь вековые дрейфы элементов
орбиты.

В заключение сравним полученные результаты
с аналогичными для нормы смещения в задаче дви-
жения точки нулевой массы под действием притяже-
ния к центральному телу и малого возмущающего
ускорения P′, обратно пропорционального квадра-
ту расстояния до притягивающего центра в систе-
ме отсчетаO∗ с осями, направленными по радиусу-
вектору, трансверсали и вектору площадей, при
этом компоненты 𝑆, 𝑇,𝑊 вектора P постоянны в си-
стемеO∗ [6]. Формулы главного результата (5) иден-
тичны с точностью до замены компонентов возму-
щающего ускорения. Функции 𝑉𝑛(𝑒) в обоих слу-

чаях — ряды по четным степеням эксцентриситета.
Функции 𝑉3(𝑒) совпадают, поскольку компонент 𝑊
одинаков для обеих систем отсчета. В системе O∗
функция 𝑉1(𝑒) является многочленом второй степе-
ни, тогда как в системе O — бесконечным рядом,
𝑉2(𝑒)— ряды в обеих системах. Поскольку при ну-
левом эксцентриситете триедр (−𝔑, 𝔗, 𝑊) иденти-
чен триедру (𝑆, 𝑇,𝑊) из работы [6], то 𝑉1(0) = 𝑉∗2 (0),
𝑉2(0) = 𝑉∗1 (0) и 𝑉3(0) = 𝑉∗3 (0), то есть свободные
члены совпадают, как и должно быть. Здесь введено
обозначение 𝑉∗𝑛 для функций 𝑉𝑛 из статьи [6], чтобы
избежать путаницы.

В табл. 1 для сравнения приведены смещения ϱ
и ϱO∗ в системахO иO∗ соответственно. Очевидно,
что величина смещения оскулирующей орбиты от-
носительно средней не должна зависеть от выбора
системы отсчета. Однако из табл. 1 видно, что рост
ϱO∗ при больших 𝑒 выражен сильнее, чем в систе-
ме O. Это может свидетельствовать о завышении
короткопериодических орбитальных возмущений
для объектов на высоко эксцентрических орбитах
при их расчете в системеO∗.
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ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЕ A. ФУНКЦИИ ЗАМЕНЫ

ОСКУЛИРУЮЩИХ ЭЛЕМЕНТОВ СРЕДНИМИ
Явные выражения функций 𝑢𝑛 в формулах пе-

рехода от оскулирующих элементов к средним (1),
вычисленные в работе [1]:

𝑢1 = −
6ω

ϰ2(1 − 𝑒)
[F2 (

θ

2
, 𝑘) − 1

π
E(𝑘)𝑀] 𝔗,

𝑢2 =
4
ϰ2

⎧⎪⎪⎨⎪⎪⎩
F1 (

θ

2
, 𝑘) − 1

π
K(𝑘)𝑀−

− 2
(1 + 𝑒)

[F3 (
θ

2
, 𝑘) − 1

π
D(𝑘)𝑀]

⎫⎪⎪⎬⎪⎪⎭
𝔗+

+
2η
ϰ2𝑒
[arctg 𝜗

η
− π

4
− 1
π
(η2K(𝑒) − E(𝑒))] 𝔑,

𝑢3 =
1

ϰ2η𝑒

⎧⎪⎪⎨⎪⎪⎩
cos σ [η(θ −𝑀) − (𝐸 −𝑀)] +

+ η sin σ [ln(1 + 𝑒 cos θ) + 1 − η − ln
2η2

1 + η
]
⎫⎪⎪⎬⎪⎪⎭
𝑊 ,
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𝑢4 =
1

ϰ2η𝑒 sin 𝑖

⎧⎪⎪⎨⎪⎪⎩
sin σ[η(θ −𝑀) − (𝐸 −𝑀)] −

− η cos σ [ln(1 + 𝑒 cos θ) + 1 − η − ln
2η2

1 + η
]
⎫⎪⎪⎬⎪⎪⎭
𝑊 ,

(A1)

𝑢5 = −
2

ϰ2𝑒2 [𝜗 −
2η
π

E(𝑒)] 𝔗+

+ 1
ϰ2

⎡⎢⎢⎢⎢⎣

1
η
(F1 (𝐸 +

π

2
, 𝑒) − K(𝑒) (1 + 2

π
𝑀)) +

+ 1
𝑒2 ln 𝑒 sin𝐸 +

√
1 − 𝑒2 cos2 𝐸

η

⎤⎥⎥⎥⎥⎦
𝔑 − 𝑢4 cos 𝑖 ,

𝑢6 =
2

ϰ2(1 − 𝑒)

⎧⎪⎪⎨⎪⎪⎩
2(1 − 𝑒)

⎡⎢⎢⎢⎢⎣
arctg 𝜗

η
− π

4
+ 2
π

E(𝑒) −

−
η2

π
K(𝑒) + 1

𝑒2 (
η

2
𝜗 − 1

π
E(𝑒))

⎤⎥⎥⎥⎥⎦
+

+
3E(𝑘)
π
[𝑒 (cos𝐸 + 𝑒

2
) − 𝑒

2

4
cos 2𝐸] −

−
3E(𝑘)
π
I(θ − 𝐸) − 3I𝐻

⎫⎪⎪⎬⎪⎪⎭
𝔗+

+
η

ϰ2

⎡⎢⎢⎢⎢⎣
F1 (𝐸 +

π

2
, 𝑒) − K (𝑒) (1 + 2

π
𝑀) −

− 1
𝑒2 ln 𝑒 sin𝐸 +

√
1 − 𝑒2 cos2 𝐸

η

⎤⎥⎥⎥⎥⎦
𝔑,

где θ — истинная аномалия, 𝐸 — эксцентрическая
аномалия, ω, 𝑒, 𝑖, Ω, σ,𝑀 — среднее движение, экс-
центриситет, наклон орбиты, долгота восходящего
узла, аргумент перицентра и средняя аномалия со-
ответственно,

𝜗 =
√

1 + 𝑒2 + 2𝑒 cos θ = (1 + 𝑒)×

×

√
1 − 𝑘2 sin2 (θ

2
) = η

√
1 + 𝑒 cos𝐸
1 − 𝑒 cos𝐸

,

I(θ − 𝐸) = −
𝛽(2 + 𝛽2)

1 + 𝛽2 ( 𝑒
2
+ cos𝐸) + 2

1 + 𝛽2×

×

∞

∑
𝑛=2

𝑛 + 1 − (𝑛 − 1)𝛽2

𝑛2(𝑛2 − 1)
𝛽𝑛 cos 𝑛𝐸, (A2)

η =
√

1 − 𝑒2, β = 𝑒

(1 + η)
, 𝑘 =

2
√
𝑒

(1 + 𝑒)
,

I𝐻 =
∞

∑
𝑛=1

𝐶𝑛

𝑛
cos 𝑛𝑀,

𝐶𝑛 =
∞

∑
𝑚=1
(−1)𝑚𝐵𝑚(𝑘)𝑆0𝑚

𝑛 (𝑒)𝑘
2𝑚.

(A3)

В (A3) коэффициенты 𝑆0𝑚
𝑛 (𝑒) = 𝑋

0𝑚
𝑛 (𝑒) − 𝑋

0𝑚
−𝑛 (𝑒)

можно найти в статьях [10–13], различные методики
вычисления коэффициентов Ганзена𝑋𝑛𝑚

𝑘
изложены

в работе [9], а 𝐵𝑚(𝑘) можно представить рядом [14]:

𝐵𝑚(𝑘) =
1
𝑚

∞

∑
𝑠=0

(𝑠 + 1)⋯(𝑠 +𝑚)
(𝑠 +𝑚 + 1)⋯(𝑠 + 2𝑚)

×

× [
(2𝑠 + 2𝑚 − 1)!!
(2𝑠 + 2𝑚)!!

]
2

𝑘2𝑠

2𝑠 + 2𝑚 − 1
. (A4)

Здесь и ниже использованы стандартные обозначе-
ния для полных и неполных эллиптических интегра-
лов в форме Лежандра:

K(𝑘) =
π/2

∫
0

𝑑𝑥

ℎ(𝑥, 𝑘)
, E(𝑘) =

π/2

∫
0

ℎ(𝑥, 𝑘) 𝑑𝑥,

D(𝑘) =
π/2

∫
0

sin2 𝑥 𝑑𝑥

ℎ(𝑥, 𝑘)
=

K(𝑘) − E(𝑘)
𝑘2 ,

F1(𝜑, 𝑘) =
𝜑

∫
0

𝑑𝑥

ℎ(𝑥, 𝑘)
, F2(𝜑, 𝑘) =

𝜑

∫
0

ℎ(𝑥, 𝑘) 𝑑𝑥,

F3(𝜑, 𝑘) =
𝜑

∫
0

sin2 𝑥 𝑑𝑥

ℎ(𝑥, 𝑘)
=
F1(𝜑, 𝑘) − F2(𝜑, 𝑘)

𝑘2 ,

где

ℎ(𝑥, 𝑘) =
√

1 − 𝑘2 sin2 𝑥.

Используя связь среднего движения и большой
полуоси ω = ϰ𝑎−3/2, 𝑑ω = (−3/2)ϰ𝑎−5/2𝑑𝑎, вместо 𝑢1
получим выражение, относящееся к большой полу-
оси:

𝑢7 =
4𝑎

ϰ2(1 − 𝑒)
[F2 (

θ

2
, 𝑘) − 1

π
E(𝑘)𝑀] 𝔗. (A5)

Замечание. В [1] выражение для 𝑢6 обозначе-
но буквой 𝑣 и в нем допущена опечатка: в первых
квадратных скобках пропущено слагаемое 2E(𝑒)/π.
Здесь мы приводим правильное выражение и далее
используем его.

ПРИЛОЖЕНИЕ B. СООТНОШЕНИЯ МЕЖДУ
ФУНКЦИЯМИ ИСТИННОЙ

И ЭКСЦЕНТРИЧЕСКОЙ АНОМАЛИЙ
Переход от истинной аномалии к эксцентри-

ческой осуществляется с помощью соотношений
[5, 15]:

cos θ = 𝑎
𝑟
(cos𝐸 − 𝑒), sin θ = 𝑎

𝑟
η sin𝐸,

𝑟 = 𝑎(1 − 𝑒 cos𝐸),
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ln(1 + 𝑒 cos θ) − ln
2η2

1 + η
= − ln (1 − 2𝛽 cos𝐸 + 𝛽2) =

= 2
∞

∑
𝑛=1

𝛽𝑛

𝑛
cos 𝑛𝐸,

𝐸 −𝑀 = 𝑒 sin𝐸,

θ − 𝐸 = 2 arctg
𝛽 sin𝐸

1 − 𝛽 cos𝐸
= 2

∞

∑
𝑛=1

𝛽𝑛

𝑛
sin 𝑛𝐸,

θ −𝑀 = θ − 𝐸 + 𝐸 −𝑀 = 𝑒 sin𝐸 + 2 arctg
𝛽 sin𝐸

1 − 𝛽 cos𝐸
.

ПРИЛОЖЕНИЕ C. ФУНКЦИИ δε𝑒

Функции замены переменных 𝑢𝑛, входящие
в выражения (1), запишем как приращения элемен-
тов орбиты и представим в виде рядов:

δ𝑎 = 𝑎𝔗

ϰ2(1 − 𝑒2)2
×

× [(6𝑒 − 5𝑒3 − 25𝑒5

32
− 29𝑒7

256
− 349𝑒9

8192
− 43𝑒11

2048
) ×

× sin𝐸+

+ (5𝑒2

4
− 13𝑒4

16
− 113𝑒6

512
− 179𝑒8

2048
− 2845𝑒10

65536
)×

× sin 2𝐸+

+ (𝑒
3

2
− 7𝑒5

32
− 27𝑒7

256
− 115𝑒9

2048
− 1085𝑒11

32768
) sin 3𝐸+

+ (27𝑒4

128
− 21𝑒6

512
− 347𝑒8

8192
− 995𝑒10

32768
) sin 4𝐸+

+ (3𝑒5

32
+ 𝑒7

256
− 25𝑒9

2048
− 875𝑒11

65536
) sin 5𝐸+

+ ( 65𝑒6

1536
+ 25𝑒8

2048
+ 5𝑒10

131072
) sin 6𝐸+

+ ( 5𝑒7

256
+ 85𝑒9

8192
+ 245𝑒11

65536
) sin 7𝐸+

+ ( 595𝑒8

65536
+ 1855𝑒10

262144
) sin 8𝐸+

+ ( 35𝑒9

8192
+ 287𝑒11

65536
) sin 9𝐸+

+ 1323𝑒10

655360
sin 10𝐸 + 63𝑒11

65536
sin 11𝐸] ,

δ𝑒 = 𝔗
ϰ2

⎡⎢⎢⎢⎢⎣
(2+ 5𝑒2

4
+ 7𝑒4

32
+ 49𝑒6

512
+ 445𝑒8

8192
+ 2303𝑒10

65536
)×

× sin𝐸+

+(𝑒
2
+ 𝑒

3

4
+ 33𝑒5

256
+ 5𝑒7

64
+ 1715𝑒9

32768
+ 2457𝑒11

65536
) sin 2𝐸+

+ (𝑒
2

4
+ 9𝑒4

64
+ 45𝑒6

512
+ 245𝑒8

4096
+ 2835𝑒10

65536
) sin 3𝐸+

+ (3𝑒
3

32
+ 21𝑒5

256
+ 65𝑒7

1024
+ 805𝑒9

16384
+ 40635𝑒11

1048576
) sin 4𝐸+

+ (3𝑒4

64
+ 25𝑒6

512
+ 175𝑒8

4096
+ 4725𝑒10

131072
) sin 5𝐸+

+ ( 5𝑒5

256
+ 5𝑒7

192
+ 5215𝑒9

196608
+ 3255𝑒11

131072
) sin 6𝐸+

+ ( 5𝑒6

512
+ 245𝑒8

16384
+ 2205𝑒10

131072
) sin 7𝐸+

+ ( 35𝑒7

8192
+ 1015𝑒9

131072
+ 10269𝑒11

1048576
) sin 8𝐸+

+ ( 35𝑒8

16384
+ 567𝑒10

131072
) sin 9𝐸+

+ ( 63𝑒9

65536
+ 1449𝑒11

655360
) sin 10𝐸+

+ 63𝑒10

131072
sin 11𝐸 + 231𝑒11

1048576
sin 12𝐸

⎤⎥⎥⎥⎥⎦
+

+𝔑
ϰ2

⎡⎢⎢⎢⎢⎣

𝑒

2
− 3𝑒3

16
− 9𝑒5

128
− 79𝑒7

2048
− 819𝑒9

32768
− 4665𝑒11

262144
+

+ (1 − 3𝑒2

8
− 9𝑒4

64
− 79𝑒6

1024
− 819𝑒8

16384
− 4665𝑒10

131072
)×

× cos𝐸+

+ ( 𝑒
2

24
+ 𝑒4

384
− 7𝑒6

3072
− 71𝑒8

24576
− 1061𝑒10

393216
) cos 3𝐸+

+ ( 3𝑒4

640
+ 13𝑒6

5120
+ 51𝑒8

40960
+ 741𝑒10

1310720
) cos 5𝐸+

+ ( 5𝑒6

7168
+ 165𝑒8

229376
+ 1065𝑒10

1835008
) cos 7𝐸+

+ ( 35𝑒8

294912
+ 427𝑒10

2359296
) cos 9𝐸+

+ 63𝑒10

2883584
cos 11𝐸

⎤⎥⎥⎥⎥⎦
, (C1)

δ𝑖 = 𝑊
ϰ2 (𝐿1 sin σ + 𝐿2 cos σ) ,

δΩ = 𝑊

ϰ2 sin 𝑖
(𝐿2 sin σ − 𝐿1 cos σ) , где
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𝐿1 = (
𝑒

2
+ 𝑒

3

8
+ 𝑒5

16
+ 5𝑒7

128
+ 7𝑒9

256
+ 21𝑒11

1024
) +

+ (1 + 𝑒
2

4
+ 𝑒

4

8
+ 5𝑒6

64
+ 7𝑒8

128
+ 21𝑒10

512
) cos𝐸+

+ ( 𝑒
4
+ 𝑒

3

8
+ 5𝑒5

64
+ 7𝑒7

128
+ 21𝑒9

512
+ 33𝑒11

1024
) cos 2𝐸+

+ ( 𝑒
2

12
+ 𝑒4

16
+ 3𝑒6

64
+ 7𝑒8

192
+ 15𝑒10

512
) cos 3𝐸+

+ ( 𝑒
3

32
+ 𝑒5

32
+ 7𝑒7

256
+ 3𝑒9

128
+ 165𝑒11

8192
) cos 4𝐸+

+ ( 𝑒
4

80
+ 𝑒6

64
+ 𝑒8

64
+ 15𝑒10

1024
) cos 5𝐸+

+ ( 𝑒5

192
+ 𝑒7

128
+ 9𝑒9

1024
+ 55𝑒11

6144
) cos 6𝐸+

+ ( 𝑒6

448
+ 𝑒8

256
+ 5𝑒10

1024
) cos 7𝐸+

+ ( 𝑒7

1024
+ 𝑒9

512
+ 11𝑒11

4096
) cos 8𝐸+

+ ( 𝑒8

2304
+ 𝑒10

1024
) cos 9𝐸+

+ ( 𝑒9

5120
+ 𝑒11

2048
) cos 10𝐸+

+ 𝑒10

11264
cos 11𝐸 + 𝑒11

24576
cos 12𝐸,

𝐿2 = (1 −
𝑒2

4
− 𝑒

4

4
− 15𝑒6

64
− 7𝑒8

32
− 105𝑒10

512
) sin𝐸+

+ ( 𝑒
4
+ 𝑒

3

8
+ 5𝑒5

64
+ 7𝑒7

128
+ 21𝑒9

512
+ 33𝑒11

1024
) sin 2𝐸+

+ ( 𝑒
2

12
+ 𝑒4

16
+ 3𝑒6

64
+ 7𝑒8

192
+ 15𝑒10

512
) sin 3𝐸+

+ ( 𝑒
3

32
+ 𝑒5

32
+ 7𝑒7

256
+ 3𝑒9

128
+ 165𝑒11

8192
) sin 4𝐸+

+ ( 𝑒
4

80
+ 𝑒6

64
+ 𝑒8

64
+ 15𝑒10

1024
) sin 5𝐸+

+ ( 𝑒5

192
+ 𝑒7

128
+ 9𝑒9

1024
+ 55𝑒11

6144
) sin 6𝐸+

+ ( 𝑒6

448
+ 𝑒8

256
+ 5𝑒10

1024
) sin 7𝐸+

+ ( 𝑒7

1024
+ 𝑒9

512
+ 11𝑒11

4096
) sin 8𝐸+

+ ( 𝑒8

2304
+ 𝑒10

1024
) sin 9𝐸+

+ ( 𝑒9

5120
+ 𝑒11

2048
) sin 10𝐸+

+ 𝑒10

11264
sin 11𝐸 + 𝑒11

24576
sin 12𝐸 ,

δσ = 𝔗
ϰ2

⎡⎢⎢⎢⎢⎣
− 1 + 𝑒

2

8
+ 5𝑒4

64
+ 57𝑒6

1024
+ 699𝑒8

16384
+

+ 4491𝑒10

131072
+ 29809𝑒12

1048576
−

− (2
𝑒
− 𝑒

4
− 5𝑒3

32
− 57𝑒5

512
− 699𝑒7

8192
−

− 4491𝑒9

65536
− 29809𝑒11

524288
) cos𝐸−

− (1
2
+ 𝑒

2

8
+ 11𝑒4

256
+ 15𝑒6

1024
+ 87𝑒8

32768
−

− 393𝑒10

131072
− 48673𝑒12

8388608
) cos 2𝐸−

− ( 𝑒
4
+ 7𝑒3

64
+ 29𝑒5

512
+ 131𝑒7

4096
+

+ 1235𝑒9

65536
+ 23521𝑒11

2097152
) cos 3𝐸−

− (3𝑒2

32
+ 9𝑒4

128
+ 101𝑒6

2048
+ 287𝑒8

8192
+

+ 26665𝑒10

1048576
+ 78947𝑒12

4194304
) cos 4𝐸−

− (3𝑒3

64
+ 23𝑒5

512
+ 151𝑒7

4096
+ 3851𝑒9

131072
+

+ 49045𝑒11

2097152
) cos 5𝐸−

− ( 5𝑒4

256
+ 25𝑒6

1024
+ 1555𝑒8

65536
+ 5595𝑒10

262144
+

+ 156469𝑒12

8388608
) cos 6𝐸−

− ( 5𝑒5

512
+ 235𝑒7

16384
+ 2045𝑒9

131072
+ 16013𝑒11

1048576
) cos 7𝐸−

− (35𝑒6

8192
+ 245𝑒8

32768
+ 4823𝑒10

524288
+ 20713𝑒12

2097152
) cos 8𝐸−

− ( 35𝑒7

16384
+ 553𝑒9

131072
+ 5957𝑒11

1048576
) cos 9𝐸−
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− ( 63𝑒8

65536
+ 567𝑒10

262144
+ 26943𝑒12

8388608
) cos 10𝐸−

− ( 63𝑒9

131072
+ 2499𝑒11

2097152
) cos 11𝐸−

− ( 231𝑒10

1048576
+ 2541𝑒12

4194304
) cos 12𝐸−

− 231𝑒11

2097152
cos 13𝐸 − 429𝑒12

8388608
cos 14𝐸

⎤⎥⎥⎥⎥⎦
+

+ 𝔑
ϰ2

⎡⎢⎢⎢⎢⎣
(1
𝑒
+ 11𝑒

8
+ 63𝑒3

64
+ 831𝑒5

1024
+ 11613𝑒7

16384
+

+ 83745𝑒9

131072
+ 616011𝑒11

1048576
) sin𝐸+

+ (𝑒
2

8
+ 5𝑒4

32
+ 171𝑒6

1024
+ 699𝑒8

4096
+

+ 22455𝑒10

131072
+ 89427𝑒12

524288
) sin 2𝐸+

+ ( 𝑒
24
+ 5𝑒3

128
+ 35𝑒5

1024
+ 245𝑒7

8192
+

+ 3465𝑒9

131072
+ 99099𝑒11

4194304
) sin 3𝐸+

+ ( 3𝑒4

256
+ 21𝑒6

1024
+ 437𝑒8

16384
+ 2035𝑒10

65536
+

+ 287145𝑒12

8388608
) sin 4𝐸+

+ ( 3𝑒3

640
+ 7𝑒5

1024
+ 63𝑒7

8192
+ 2079𝑒9

262144
+

+ 33033𝑒11

4194304
) sin 5𝐸+

+ ( 5𝑒6

3072
+ 15𝑒8

4096
+ 4435𝑒10

786432
+ 23335𝑒12

3145728
) sin 6𝐸+

+ ( 5𝑒5

7168
+ 45𝑒7

32768
+ 495𝑒9

262144
+ 4719𝑒11

2097152
) sin 7𝐸+

+ ( 35𝑒8

131072
+ 385𝑒10

524288
+ 10983𝑒12

8388608
) sin 8𝐸+

+ ( 35𝑒7

294912
+ 77𝑒9

262144
+ 1001𝑒11

2097152
) sin 9𝐸+

+ ( 63𝑒10

1310720
+ 819𝑒12

5242880
) sin 10𝐸+

+ ( 63𝑒9

2883584
+ 273𝑒11

4194304
) sin 11𝐸+

+ 77𝑒12

8388608
sin 12𝐸 + 231𝑒11

54525952
sin 13𝐸

⎤⎥⎥⎥⎥⎦
−

− cos 𝑖 δΩ,

δ𝑀 = 𝔗

ϰ2(1 − 𝑒2)2

⎡⎢⎢⎢⎢⎣
1 + 23𝑒2

8
− 255𝑒4

64
+

+ 111𝑒6

1024
+ 57𝑒8

16384
− 75𝑒10

131072
+

+ (2
𝑒
+ 23𝑒

4
− 255𝑒3

32
+ 111𝑒5

512
+

+ 57𝑒7

8192
− 75𝑒9

65536
) cos𝐸+

+ (1
2
− 39𝑒2

16
+ 447𝑒4

256
+ 399𝑒6

2048
+

+ 147𝑒8

32768
− 489𝑒10

262144
) cos 2𝐸+

+ ( 𝑒
4
− 95𝑒3

192
+ 133𝑒5

768
+ 601𝑒7

12288
+

+ 2699𝑒9

196608
) cos 3𝐸+

+ (3𝑒2

32
− 183𝑒4

1024
+ 235𝑒6

4096
+

+ 1143𝑒8

65536
+ 6405𝑒10

1048576
) cos 4𝐸+

+ (3𝑒3

64
− 17𝑒5

256
+ 91𝑒7

20480
+ 3963𝑒9

655360
) cos 5𝐸+

+ ( 5𝑒4

256
− 157𝑒6

6144
− 37𝑒8

65536
+ 1015𝑒10

524288
) cos 6𝐸+

+ ( 5𝑒5

512
− 1035𝑒7

114688
− 4875𝑒9

1835008
) cos 7𝐸+

+ ( 35𝑒6

8192
− 3495𝑒8

1048576
− 6411𝑒10

4194304
) cos 8𝐸+

+ ( 35𝑒7

16384
− 2191𝑒9

2359296
) cos 9𝐸+

+ ( 63𝑒8

65536
− 3381𝑒10

13107200
) cos 10𝐸+

+ 63𝑒9

131072
cos 11𝐸 + 231𝑒10

1048576
cos 12𝐸

⎤⎥⎥⎥⎥⎦
+

+ 𝔑
ϰ2

⎡⎢⎢⎢⎢⎣
(−1

𝑒
+ 9𝑒

8
− 11𝑒3

64
− 55𝑒5

1024
−

− 389𝑒7

16384
− 1581𝑒9

131072
) sin𝐸+

+ (𝑒
2

8
+ 𝑒4

32
+ 11𝑒6

1024
+ 15𝑒8

4096
+ 87𝑒10

131072
) sin 2𝐸−
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− ( 𝑒
24
+ 7𝑒3

384
+ 29𝑒5

3072
+ 131𝑒7

24576
+ 1235𝑒9

393216
) sin 3𝐸+

+ ( 3𝑒4

256
+ 9𝑒6

1024
+ 101𝑒8

16384
+ 287𝑒10

65536
) sin 4𝐸−

− ( 3𝑒3

640
+ 23𝑒5

5120
+ 151𝑒7

40960
+ 3851𝑒9

1310720
) sin 5𝐸+

+ ( 5𝑒6

3072
+ 25𝑒8

12288
+ 1555𝑒10

786432
) sin 6𝐸−

− ( 5𝑒5

7168
+ 235𝑒7

229376
+ 2045𝑒9

1835008
) sin 7𝐸+

+ ( 35𝑒8

131072
+ 245𝑒10

524288
) sin 8𝐸−

− ( 35𝑒7

294912
+ 553𝑒9

2359296
) sin 9𝐸+

+ 63𝑒10

1310720
sin 10𝐸 − 63𝑒9

2883584
sin 11𝐸

⎤⎥⎥⎥⎥⎦
.

ПРИЛОЖЕНИЕ D
Согласно работе [4] разность оскулирующего

и среднего радиуса-вектора может быть выражена
через разности элементов орбиты:

(𝑑r)2 = δ𝑟2 + 𝑟2(δ𝑢 + cos 𝑖δΩ)2 +
+ 𝑟2(sin 𝑢δ𝑖 − sin 𝑖 cos 𝑢δΩ)2, (D1)

где 𝑢 — аргумент широты,

δ𝑟 = 𝑟

𝑎
δ𝑎 + 𝑎

2

𝑟
(𝑒 − cos𝐸)δ𝑒 + 𝑎

2

𝑟
𝑒 sin𝐸 δ𝑀,

𝑟(δ𝑢 + cos 𝑖δΩ) = 𝑎
2

η𝑟
(2 − 𝑒2 − 𝑒 cos𝐸) ×

× sin𝐸δ𝑒 + 𝑟δσ + 𝑟 cos 𝑖 δΩ +
𝑎2η

𝑟
δ𝑀,

𝑟(sin 𝑢δ𝑖 − sin 𝑖 cos 𝑢δΩ) = 𝑎[(cos𝐸 − 𝑒)×
× sin σ + η sin𝐸 cos σ]δ𝑖−
−𝑎 sin 𝑖[(cos𝐸 − 𝑒) cos σ−
− η sin𝐸 sin σ]δΩ .

(D2)

Евклидова (среднеквадратичная по средней ано-
малии) норма вычисляется по формуле:

ϱ2 = ∥𝑑r∥2 = 1
2π

π

∫
−π

(𝑑r)2 𝑑𝑀 =

= 1
2π

π

∫
−π

(𝑑r)2(1 − 𝑒 cos𝐸) 𝑑𝐸 =

= 1
2π

π

∫
−π

(𝑑r)2 𝑟
𝑎
𝑑𝐸. (D3)
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DISPLACEMENT NORM IN THE PRESENCE OF AN INVERSE-SQUARE
PERTURBING ACCELERATION IN THE REFERENCE FRAME ASSOCIATED

WITH THE VELOCITY VECTOR
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The problem of motion of a zero-mass-point under the action of attraction to the central body and a small
perturbing acceleration P′ = P/𝑟2 is considered, where 𝑟 is the distance to the attracting center and
components of the vector P are assumed to be constant in a reference system with the axes directed along the
velocity vector, the main normal and the angular momentum vector. Previously, for this problem, equations
of motion in the mean elements and formulas for the transition from osculating elements to the mean ones in
the first order of smallness were found; second-order quantities are neglected. If the perturbing forces are
small, then the osculating orbit slightly deviates from the mean one. The difference 𝑑r between the position
vectors on the osculating and mean orbit is a quasi-periodic function of time. In this work, the Euclidean
(root-mean-square over the mean anomaly) norm ∥𝑑r∥2 of the displacement of the osculating orbit relative to
the mean one is obtained. It turned out that ∥𝑑r∥2 depends only on the components of the vector P (positive
definite quadratic form), the semi-major axis (proportional to the second power) and the eccentricity of
the osculating ellipse. The norm ∥𝑑r∥2 is obtained in the form of series in powers of eccentricity 𝑒. The
resulting expression holds up to 𝑒0 ≈ 0.995862; for 𝑒 > 𝑒0, ϱ =

√
∥𝑑r∥2 can take complex values. The results

are applied to the problem of the motion of model bodies under the action of perturbing acceleration caused
by the Yarkovsky effect. A comparison of the results with similar ones for the norm ∥𝑑r∥2 in the reference
system associated with the radius vector was also carried out.

Keywords: Yarkovsky effect, tangential acceleration, root-mean-square norm, displacement of the osculating
orbit from the mean orbit
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