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В настоящей работе рассмотрены несколько новых моделей слоисто-неоднородной эллиптической
галактики, имеющей форму либо трехосного эллипсоида, либо сжатого или вытянутого сфероида,
и состоящей из барионной массы и темной материи с разными законами распределения плотности —
профилями. На основе этих моделей определены некоторые ключевые динамические параметры ЭГ:
гравитационная (потенциальная) энергия и кинетическая энергия вращения, распределение
углового момента и удельные угловые моменты в зависимости от профилей плотности. Установлены
равновесие и устойчивость (неустойчивость) ЭГ как динамической системы согласно известным
критериям. Найдены критические значения параметра семейства сфероидов, определяющие
границы устойчивости (или неустойчивости) динамической системы по значениям удельных
угловых моментов в зависимости от профилей плотности. Полученные результаты применены
к более шестидесяти модельным ЭГ с параметрами, точно совпадающими с реально существующими
и приведены в виде таблиц и рисунков.
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1. ВВЕДЕНИЕ

В работах [1, 2] рассмотрены три новые модели
слоисто-неоднородной эллиптической галактики
(ЭГ), состоящей из барионной массы (БМ) и тем-
ной материи (ТМ). Согласно этим моделям, эллип-
тическая галактика вместе с гало (другой вариант ––
без него) считается двухслойным неоднородным эл-
липсоидом вращения –– вытянутым сфероидом. На
основе этих моделей определены ключевые динами-
ческие параметры ЭГ [1] и исследовано простран-
ственное движение пассивно-гравитирующего тела
(ПГТ) в гравитационном поле такой галактики [2].
Полученные результаты применены к модельным
эллиптическим галактикам, параметры которых точ-
но совпадают с параметрами реально существую-
щих.

В работе [3] рассмотрены другие модели слоисто-
неоднородной эллиптической галактики. Соглас-
но этим моделям ЭГ состоит из БМ и ТМ
и представляет собой либо слоисто-неоднородной
трехосный эллипсоид с полуосями 𝑎 > 𝑏 > 𝑐 (Мо-
дель I), либо cлоисто-неоднородной сжатый сфе-
роид –– сфероид Маклорена, 𝑎 = 𝑏 > 𝑐 (Модель II),
либо слоисто-неоднородной вытянутый сфероид𝑎 > 𝑏 = 𝑐 (Модель III). При этом законом рас-
пределения плотности –– профилем БМ –– является

ρ1(𝑚), а профилем ТМ –– ρ2(𝑚). На основе этих
моделей определены некоторые ключевые дина-
мические параметры ЭГ и установлены соотно-
шения: {масса-размеры}, {масса-дисперсия ско-
ростей}, {размер-дисперсия скоростей-светимость
(поверхностная яркость)}. Исследованы эволюци-
онные сценарии образования ЭГ согласно этим
моделям.

Упомянутые выше модели предназначены для
решения задач небесной механики и частично астро-
физики. Для получения точных результатов во всех
моделях потенциалы в ряд не разлагаются, а берут-
ся их точные выражения. При этом условные гра-
ницы ЭГ определяются по значениям величин 𝐷25
и 𝑅25 [4].

Эти модели не могут претендовать на полноту
охвата проблемы ТМ в целом, но сделана еще одна
попытка исследовать влияние ТМ на кинематику
и динамику ПГТ.

Во всех моделях в качестве профиля ρ1(𝑚)
берется “астрофизический закон” распределения
плотности. Такое название профиля дано в книге
[5, cтр. 354], он получается из закона распределения
поверхностной яркости, открытого Хабблом [6], по-
средством решения интегрального уравнения Абе-
ля. В качестве профиля ρ2(𝑚) использован один из
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аналогов профилей NFW и Хернквиста, введенные
нами в работах [1–3]. Эти профили названы анало-
гами, так как они получены из оригинальных про-
филей NFW [7] и Хернквиста [8] путем адаптации
их к эллиптическим галактикам.

В настоящей работе на основе моделей I, II и III
(см. [3]) найдены явные выражения полной грави-
тационной (потенциальной) энергии и кинетиче-
ской энергии вращения ЭГ, распределения углового
момента и удельного углового момента в зависимо-
сти от профилей плотности. Исследуется устойчи-
вость динамической системы согласно критерию
Пиблса–Острайкера [9], [10, c. 189], по критерию
неустойчивости Вандерворта [11], а также по зна-
чениям удельных угловых моментов [12]. Найдены
критические значения параметра семейства сферо-
идов, определяющие границы устойчивости (или
неустойчивости) динамической системы по значе-
ниям удельных угловых моментов в зависимости от
профилей плотности.

Следует отметить, что устойчивость звездных
систем были исследованы в работах других авторов.
В частности, в работе [13] устойчивость исследует-
ся методом матричных уравнений, который в книге
[14, cтр. 419] назван матричным методом Калнайса.
Аналогичные исследования по устойчивости звезд-
ных систем проведены в работах [15–17], а в рабо-
те [18] анализируется природа неустойчивости ра-
диальной орбиты в сферически-симметричных бес-
столкновительных звездных системах.

2. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ
И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩЕНИЯ

СЛОИСТО-НЕОДНОРОДНОЙ
ЭЛЛИПТИЧЕСКОЙ ГАЛАКТИКИ.

ОБЩИЕ ФОРМУЛЫ
Пусть эллиптическая галактика (ЭГ) представля-

ет собой трехосный слоисто-неоднородный эллип-
соид с полуосями 𝑎, 𝑏 и 𝑐, состоящий из барионной
массы (БМ) и темной материи (ТМ). Под слоисто-
неоднородным эллипсоидом подразумевается эл-
липсоид с гомотетическим (эллипсоидальным) за-
коном распределения плотности –– профилем. По-
ложим, что ρ1(𝑚) и ρ2(𝑚)–– законы распределения
плотности БМ и ТМ данного эллипсоида соответ-
ственно. Эти профили являются функциями только
параметра 𝑚 семейства эллипсоидальных поверхно-
стей

𝑚2
=
𝑥2𝑎2 + 𝑦2𝑏2 + 𝑧2𝑐2 , (𝑎 > 𝑏 > 𝑐, 0 ⩽ 𝑚 ⩽ 1). (1)

Здесь значение 𝑚 = 0 соответствует центру ЭГ,
а 𝑚 = 1 –– эллипсоидальной поверхности, которой
ограничена ЭГ.

Полная гравитационная (потенциальная) энер-
гия 𝑊 и кинетическая энергия вращения 𝑇 слоисто-
неоднородного эллипсоида с полуосями 𝑎, 𝑏, 𝑐,
плотностью ρ (𝑚) и массой 𝑀 (𝑚) в случае изо-

тропного давления определяются общей формулой
[12, стр. 115, 120] 𝑊 = − 2𝐴0𝐽0 ψ (1),𝑇 = 𝐴0𝐽1ψ (1), (2)𝐴0 = π𝐺𝑎𝑏𝑐2 ,
где

ψ (𝑚) = 𝑚2
∫0

ρ (𝑢)𝑀 (𝑢) 𝑑𝑢2,
𝑀 (𝑚) = 4π𝑎𝑏𝑐 𝑚

∫0
𝑢2 ρ (𝑢) 𝑑𝑢, (𝑘 = 1, 2), (3)

𝐽0 = ∞
∫0

𝑑𝑢Δ (𝑢) = 2√𝑎2
− 𝑐2 𝐹 (φ0, 𝑛),

𝐽1 = 𝐽0 − 3𝑐2𝐾0, (4)

𝐾0 =
∞
∫0

𝑑𝑢(𝑐2
+𝑢)Δ (𝑢) = 2𝑏2

−𝑐2 [−𝐸 (φ0, 𝑛)√𝑎2
−𝑐2 +

𝑏𝑎𝑐] . (5)

Здесь 𝐹 (φ0, 𝑛), 𝐸 (φ0, 𝑛)–– неполные эллиптические
интегралы 1-го и 2-го рода. Кроме того, аргумент φ0
и модуль 𝑛 этих интегралов, а также функция Δ (𝑢)
равны

sinφ0 =
√𝑎2

− 𝑐2𝑎 , 𝑛 =¿ÁÁÀ𝑎2
− 𝑏2𝑎2
− 𝑐2 ,

Δ (𝑢) =√(𝑎2
+ 𝑢)(𝑏2

+ 𝑢)(𝑐2
+ 𝑢). (6)

Теперь применим формулу (2) к слоисто-неодно-
родному промежуточному эллипсоиду, состояще-
му из барионной массы с профилем ρ1(𝑚), массой𝑀1(𝑚) и темной материи с профилем ρ2(𝑚), мас-
сой 𝑀2(𝑚). Для этого в указанной формуле вместо
профиля ρ (𝑚) и массы 𝑀 (𝑚) следует пользоваться
общим профилем и общей массой, т. е. положитьρ (𝑚) = ρ1(𝑚) + ρ2(𝑚),𝑀 (𝑚) = 𝑀1(𝑚) +𝑀2(𝑚). (7)

При этом массы 𝑀1(𝑚) и 𝑀2(𝑚) определяются по
формуле (3) заменой профиля ρ (𝑚) на соответству-
ющий, а полная масса –– при 𝑚 = 1. Кроме того,
формулу (2) в этом случае можно переписать в виде𝑊 = − 2𝐴0𝐽0 ψ (1),𝑇 = 𝐴0𝐽1ψ (1), (8)

ψ (𝑚) = 4∑𝑛=1ψ𝑛(𝑚),
где

ψ1(𝑚) = 𝑚2
∫0

ρ1(𝑢)𝑀1(𝑢) 𝑑𝑢2,
ψ2(𝑚) = 𝑚2

∫0
ρ1(𝑢)𝑀2(𝑢) 𝑑𝑢2, (9)
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ψ3(𝑚) = 𝑚2
∫0

ρ2(𝑢)𝑀1(𝑢) 𝑑𝑢2,
ψ4(𝑚) = 𝑚2

∫0
ρ2(𝑢)𝑀2(𝑢) 𝑑𝑢2. (10)

3. ЯВНЫЕ ВЫРАЖЕНИЯ ЭНЕРГИЙ
В ЗАВИСИМОСТИ ОТ ПРОФИЛЕЙ

В этом разделе вычислим полные потенциаль-
ную энергию 𝑊 и кинетическую энергию враще-
ния 𝑇 слоисто-неоднородной эллиптической галак-
тики в зависимости от конкретных профилей ρ1(𝑚)
барионной массы и ρ2(𝑚) темной материи, а также
от формы галактики. Последовательно будем рас-
сматривать следующие формы ЭГ:

1) трехосный эллипсоид 𝑎 > 𝑏 > 𝑐,
2) сжатый сфероид 𝑎 = 𝑏 > 𝑐 и
3) вытянутый сфероид 𝑎 > 𝑏 = 𝑐.

Очевидно, что трехосный эллипсоид представляет
собой более сложную и общую форму, чем другие.
Поэтому его следует рассмотреть более подробно;
случаи 2) и 3) являются частными случаями первого.

3.1. Эллиптическая галактика
как слоисто-неоднородный трехосный эллипсоид

В качестве закона распределения плотности
(профиля) для барионной массы (БМ) эллиптиче-
ской галактики как слоисто-неоднородного трехос-
ного эллипсоида возьмем “астрофизический закон”
распределения плотности ρ1(𝑚), связанный с про-
филем поверхностной яркостью 𝐼1(𝑚) [6] посред-
ством интегрального уравнения Абеля:

ρ1(𝑚) = ρ0𝑤3 ,𝐼1(𝑚) = 𝐼0𝑤2 ,𝑤 =√1 + β𝑚2,
(11)

где 𝑚 определяется равенством (1), ρ0 –– плотность
в центре эллиптической галактики, 𝐼0 –– централь-
ная поверхностная яркость, а параметр β ≫ 1 для
каждой ЭГ выбирается отдельно и находится вырав-
ниванием данных фотометрии [19]. Если известен
соответствующий профиль с поверхностной ярко-
стью 𝐼2(𝑚), то из интегрального уравнения Абеля
аналогичным образом определяется профиль ρ2(𝑚).
Можно решить и обратную задачу: при заданном
профиле ρ2(𝑚) с помощью упомянутого выше инте-
грального уравнения находится профиль 𝐼2(𝑚).

Масса 𝑀1(𝑚) промежуточного эллипсоида, со-
стоящего из БМ с профилем ρ1(𝑚), вычисляется по

формуле (3) и равна

𝑀1(𝑚) = 4πρ0 𝑎𝑏𝑐β√β [φ1(𝑚) − √𝑤2
− 1𝑤 ] ,

φ1(𝑚) = ln (𝑤 +√𝑤2
− 1) , (12)

причем полная масса ЭГ с БМ равна 𝑀1 ≡≡ 𝑀 (𝑚 = 1), а 𝑤 определен выше.

Если ЭГ состоит только из БМ, тоψ2(𝑚) = ψ3(𝑚) = ψ4(𝑚) ≡ 0,ψ (𝑚) ≡ ψ1(𝑚) = 4πρ20𝑎 𝑏 𝑐 𝑓1(𝑚), (13)

где

𝑓1(𝑚) = 1β2√β
⎡⎢⎢⎢⎢⎣arctg

√𝑤2
− 1−

−

2φ1(𝑚)𝑤 +

√𝑤2
− 1𝑤2
⎤⎥⎥⎥⎥⎦.

(14)

Тогда подставив выражение (13) функции ψ (𝑚)
в формулу (8) для полной потенциальной энергии𝑊
и кинетической энергии вращения 𝑇 такой галакти-
ки получим:

𝑊 = − 2𝑊0𝐽0ρ20𝑓1(1),𝑇 = 𝑊0𝐽1ρ20𝑓1(1),𝑊0 = 2π2𝐺𝑎2𝑏2𝑐2, (15)

где коэффициенты 𝐽0, 𝐽1 определяются равен-
ством (4), а функция 𝑓1(𝑚)–– равенством (14).

Заметим, что из выражений энергий (2) и (15)
следует, что отношение

𝑡 ≡ 𝑇∣𝑊∣ = 𝐽12𝐽0 = 12 ⎛⎝1 − 3𝑐2𝐾0𝐽0 ⎞⎠ (16)

не зависит от распределения массы неоднородно-
го эллипсоида, а зависит только от его формы или
размеров.

Теперь положим, что ЭГ состоит из БМ и ТМ,
причем профиль БМ ρ1(𝑚) определяется равен-
ством (11). В качестве профиля ТМ будем рассмат-
ривать один из аналогов профилей NFW и Херн-
квиста, приведенных в работах [1–3]. Оригиналы
этих профилей, рассмотренных в работах NFW [8]
и Хернквиста [9], предназначены для сферически
симметричных галактик. Для применения этих про-
филей к ЭГ мы внесли соответствующие изменения
и назвали их аналогами этих профилей [1–3].
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Сначала рассмотрим аналог профиля NFW
[1–3]: ρ2(𝑚) = 𝐾𝑔2(𝑔 − 1) ,

𝑔 = 1 + μ𝑚,
μ = 3√𝑎𝑏𝑐𝑟𝑠 ,

(17)

где 𝑟𝑠 –– радиус-шкала ЭГ. Масса промежуточного
эллипсоида 𝑀2(𝑚) при этом будет равна

𝑀2(𝑚) = 4π𝐾𝑟3𝑠 (ln 𝑔 − 𝑔 − 1𝑔 ) .
Далее, вычислив функции ψ𝑘(𝑚) (𝑘 = 2, 3, 4)

с учетом выражения ψ1(𝑚) для энергий 𝑊 и 𝑇, полу-
чим следующие выражения:𝑊 = − 2𝑊0𝐽0Φ71(1),𝑇 = 𝑊0𝐽1Φ1(1), (18)

где коэффициенты 𝐽0, 𝐽1 и 𝑊0 приведены выше,
а функция Φ1(𝑚) равнаΦ1(𝑚) = ρ20𝑁1(𝑚) + 2𝐾ρ0𝑁2(𝑚) + 𝐾2𝑁3(𝑚),𝑁1(𝑚) ≡ 𝑓1(𝑚). (19)

Здесь функция 𝑓1(𝑚) определяется равен-
ством (14), а

𝑁2(𝑚) = 1β μ3𝑤⎡⎢⎢⎢⎢⎣𝑔 − 1𝑔 −

μ𝑤√β 𝑔 lnφ1(𝑚)+
+

μ𝑤2√β + μ2 ln
φ2(𝑚)φ2(0) − ln 𝑔⎤⎥⎥⎥⎥⎦, (20)

𝑁3(𝑚) = 1μ5 (1 − 1𝑔2 − ln 𝑔2𝑔 ) , (21)

причем функция φ1(𝑚) определена выше равен-
ством (12), а

φ2(𝑚) = 𝑤√μ2
+ β + β𝑚 − μ𝑤√μ2
+ β − β𝑚 + μ ,[14𝑝𝑡]φ2(0) = φ2(𝑚 = 0). (22)

Согласно аналогу профиля Хернквиста [1] имеемρ2(𝑚) = 𝑀2π ̄𝑎3 1̄𝑔3( ̄𝑔 − 1) ,
𝑀2(𝑚) = 𝑀 ( ̄𝑔 − 1)2̄𝑔2 ,

̄𝑔 = 1 + μ̄𝑚,
μ̄ = 3√𝑎𝑏𝑐̄𝑎 .

(23)

Здесь 𝑀–– полная масса галактики, а ̄𝑎–– шкала мас-
штабирования галактики.

Аналогично вычисляем энергии𝑊 = − 2𝑊0𝐽0Φ2(1),𝑇 = 𝑊0𝐽1Φ2(1), (24)

где 𝑊0 определен в (15), аΦ2(𝑚) =ρ20𝐻1(𝑚) + 2𝑀ρ0𝐻2(𝑚) +𝑀2𝐻3(𝑚),𝐻1(𝑚) ≡𝑓1(𝑚). (25)

Здесь

𝐻2(𝑚) = 18πμ̄2 ̄𝑎3
⎡⎢⎢⎢⎢⎣

1(μ̄2
+ β)3/2 ln

φ2(𝑚)φ2(0) −
−

2 lnφ1(𝑚)β√β ̄𝑔2 +

2μ̄ φ3(𝑚)β(μ̄2
+ β)⎤⎥⎥⎥⎥⎦, (26)

𝐻3(𝑚) = ( ̄𝑔 − 1)3(3 + ̄𝑔)48π2μ̄5 ̄𝑎6 ̄𝑔4 ,
φ3(𝑚) = 1 + 1𝑤 + ( ̄𝑔 − 1) (2β + 𝑤2

− 2)̄𝑔2𝑤 , (27)

где функции φ1(𝑚) и φ2(𝑚) определены выше.

3.2. ЭГ как слоисто-неоднородный сжатый сфероид
(сфероид Маклорена)

В этом случае соответствующие потенциальные
энергии 𝑊 и кинетические энергии вращения 𝑇 так-
же будут определяться формулами (15), (18) и (24).
Однако коэффициенты 𝐽0, 𝐽1, 𝑊0, а также парамет-
ры 𝑚, μ, μ̄ вычисляются иначе:𝐽0 = 2𝑎𝑒 arcsin 𝑒 ,

𝐽1 = 1𝑎𝑒2 [𝑎(3 − 2𝑒2) 𝐽0 − 6√1 − 𝑒2],
𝑒2
= 1 − 𝑐2𝑎2 , (𝑎 = 𝑏),

(28)

𝑊0 = 2π2𝐺𝑎4𝑐2,
𝑚2
=

𝑥2
+ 𝑦2𝑎2 +

𝑧2𝑐2 ,
μ = 3√𝑎2𝑐𝑟𝑠 ,
μ̄ = 3√𝑎2𝑐̄𝑎 .

(29)

3.3. ЭГ как слоисто-неоднородный вытянутый
сфероид

В этом случае в соответствующих форму-
лах (15), (18) и (24) для энергий 𝑊 и 𝑇 следует
учесть 𝐽0 = 1𝑎𝑒 ln 1 + 𝑒1 − 𝑒 ,𝐽1 = 12𝑎𝑒2 [𝑎(3 − 𝑒2) 𝐽0 − 6], (30)
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𝑊0 = 2π2𝐺𝑎2𝑐4,
𝑏 = 𝑐, 𝑚2

=
𝑥2𝑎2 + 𝑦2

+ 𝑧2𝑐2 ,
μ = 3√𝑎𝑐2𝑟𝑠 , μ̄ = 3√𝑎𝑐2̄𝑎 .

4. КРИТЕРИИ РАВНОВЕСИЯ
И УСТОЙЧИВОСТИ ДИНАМИЧЕСКОЙ

СИСТЕМЫ
4.1. Критерии равновесия

Для существования неоднородной ЭГ как фи-
гуры равновесия должно удовлетворяться необхо-
димое условие для угловой скорости вращения Ω––
неравенство Пуанкаре [20]:Ω2 ⩽ 2π𝐺 ̄ρ, (Ω2 ⩽ π𝐺ρ0, Ω2 ⩽ 0.45π𝐺 ̄ρ). (31)
Здесь 𝐺–– гравитационная постоянная, а ̄ρ–– сред-
няя плотность неоднородной эллиптической галак-
тики. Выполнение неравенства Пуанкаре гарантиру-
ет направление полной силы тяжести внутрь и неот-
рицательность давления. В скобках указаны более
строгие неравенства Крудели и Кондратьева соот-
ветственно [12, с. 325]. В неравенстве Крудели ρ0 ––
плотность в центре галактики и она убывает от цен-
тра к периферии. При этом о направлении силы
тяжести речь не идет и согласно теореме вириала
должно выполняться неравенство

2𝑇 +𝑊 < 0, или 𝑡 ≡ 𝑇∣𝑊∣ < 12 .
Здесь энергии 𝑊 и 𝑇 определены формулой (15).

Теперь рассмотрим сфероиды Маклорена, для
которых нормированная угловая скорость вращенияΩ̃ равна [12, cтр. 357]:

Ω̃2 ≡ Ω2π𝐺 ̄ρ = 2√1 − 𝑒2𝑒3 ×
×[(3 − 2𝑒2) arcsin 𝑒 − 3𝑒√1 − 𝑒2 ], (32)

(Ω̃2
= 0.37423),

где в скобках указано значение Ω̃2 критической кон-
фигурации равновесия. Из (32) заключаем, что сфе-
роид Маклорена –– однопараметрическая фигура от-
носительного равновесия; его характеристики зави-
сят только от сжатия фигуры ε, или от эксцентриси-
тета 𝑒: ε = 1 − 𝑐𝑎 ,𝑒2

= 1 − 𝑐2𝑎2 = 1 − (1 − ε)2.
Как указано в монографии [12, cтр. 358], еще

Симпсон и Даламбер заметили, что в интервале0 ⩽ Ω̃2
< 0.4493 для каждого значения Ω̃2 существу-

ют два сфероида сплюснутости. Однако это не зна-
чит, что чем быстрее вращение фигуры, тем силь-
нее она будет сжата с полюсов. На самом деле, чем

быстрее вращение фигуры, тем меньше сплюсну-
тость, или сжатие. Сфероид с критическим сжати-
ем ε = 0.632 вращается с максимально возможной
для всей последовательности Маклорена угловой
скоростью Ωmax = 0.6703. Оказывается, что нель-
зя заставить сфероид Маклорена вращаться быст-
рее. Кроме того, А. М. Ляпунов доказал, что приΩ > Ωmax = 0.6703 не существуют эллипсоидальных
(или близких к ним) фигур равновесия. К такому
выводу А. М. Ляпунов пришел при решении зада-
чи, которую ему предложил П. Л. Чебышев: выяс-
нить, могут ли существовать новые фигуры равно-
весия, вращающиеся быстрее указанного пределаΩmax [12, cтр. 360].

4.2. Критерии устойчивости
Сфероиды Маклорена остаются вековым об-

разом устойчивыми вплоть до критической кон-
фигурации со значением 𝑒 = 0.81267, получен-
ным как решение соответствующего уравнения.
При Ω̃2

= 0.37423 сфероид Маклорена становится
неустойчивым в вековом отношении [12, cтр. 362].
Установлено, что в точке 𝑒 = 0.81267 от последова-
тельности сфероидов Маклорена ответвляется по-
следовательность трехосных фигур равновесия, на-
званных эллипсоидами Якоби [12, cтр. 364]. Са-
ми же сфероиды Маклорена в отсутствии диссипа-
ции остаются динамически устойчивыми вплоть до𝑒 = 0.95289 [12, cтр. 364].

По выражению Дарвина: при наличии диссипа-
тивных сил природа “делает посадку”, т. е. от сфе-
роидов Маклорена в этой точке неизбежно происхо-
дит бифуркация эллипсоидов Якоби. Однако в кни-
ге [12, cтр. 364] доказано, что никакой неизбежности
делать в природе указанную посадку (по Дарвину)
в точке Ω̃2

= 0.37423 нет, если в жидкой фигуре со-
храняется циркуляция. Кроме того, при дополни-
тельном, не учтенном классиками условии сохране-
ния циркуляции установлено, что [12, cтр. 367]:

a) ответвление эллипсоидов в точке 𝑒 = 0.81267
невозможно;

б) точка динамической неустойчивости𝑒 = 0.95289 сфероида Маклорена превращается
в нейтральную точку по отношению к превраще-
нию сфероида в трехосный эллипсоид. Однако
в точке 𝑒 = 0.95289 такое ответвление невозможно,
поскольку в ней (и за ней) сфероиды Маклорена
становятся уже динамически неустойчивыми.

Заметим, что еще Пуанкаре и Ляпунову было
известно, что эллипсоид Якоби для параметров𝑏𝑎 ⩽ 0.432232,𝑐𝑎 ⩽ 0.345069, (33)

Ω̃2
=

Ω2π𝐺ρ ⩾ 0.284030
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имеет нейтральную точку относительно грушевид-
ной моды. Ляпунов доказал, что начиная с этой точ-
ки эллипсоиды являются вековым образом неустой-
чивыми [12, cтр. 364].

Критерием устойчивости изолированной осе-
симметричной конфигурации согласно гипотезе
Пиблса–Острайкера [9] и [10, cтр. 189] является вы-
полнение неравенства для отношения 𝑡 (см. выше)𝑡 < 𝑡crit ≈ 0.14 ± 0.03. (34)

При этом критерий (34) Пиблса–Острайкера
об устойчивости не применим к трехосному
эллипсоиду как динамической системе. Если
потенциал тела имеет квадратичную форму, то для
установления устойчивости такой системы приме-
няются другие формулы [12, с. 419], содержащие
тензор дисперсии скоростей. Квадратичную форму
потенциала имеет только однородный трехосный
эллипсоид. Потенциал неоднородного трехосного
эллипсоида имеет более сложную форму и содержит
эллиптические интегралы.

Далее, положим, что ЭГ представляет собой
слоисто-неоднородный сжатый (𝑎 = 𝑏 > 𝑐), или вы-
тянутый сфероид (𝑎 > 𝑏 = 𝑐), состоящий из БМ
и ТМ. Для БМ берется “астрофизический” про-
филь (11), а для ТМ –– один из аналогов профилей
NFW и Хернквиста.

В качестве примера взяты 60 модельных ЭГ, име-
ющих формы либо сжатого, либо вытянутого сферо-
ида с параметрами, точно совпадающими с реально
существующими. Оказалось, что условие равнове-
сие (32) выполняется: отношение Ω2π𝐺ρ0 составля-
ет от 0.007 до 0.01 для обоих типов сфероидов.

Отношение (34) — критерий устойчивости
Пиблса–Острайкера выполняется в случае сжа-
тых сфероидов: параметр 𝑡 изменяется от 0.0061
до 0.1068. Для установления устойчивости (или
неустойчивости) вытянутых сфероидов можно поль-
зоваться другим критерием, а именно: какое значе-
ние принимает отношение 𝑡𝐴 = 𝐿𝐵/𝐿𝐶 удельных уг-
ловых моментов 𝐿𝐶 сжатого и 𝐿𝐵 вытянутого сферо-
идов. Значение 𝑡𝐴 < 1 соответствует устойчивости,
а 𝑡𝐴 > 1 –– наоборот.

Исходя из этих соображений ниже приведены
формулы вычисления распределения углового мо-
мента и удельного углового момента в сфероиде Ма-
клорена с полуосями 𝑎 = 𝑏 ⩾ 𝑐 и в вытянутом сфе-
роиде с полуосями 𝑎 ⩾ 𝑏 = 𝑐.

Примечание 1. Отметим, что параметр 𝑡, фигу-
рирующий в критерии устойчивости (34) Пиблса–
Острайкера не зависит от распределения вещества
(от профиля ρ (𝑚)), а зависит, только от формы
и размеров ЭГ. В то же самое время, удельные уг-
ловые моменты сжатого и вытянутого сфероидов
(𝐿𝐶 и 𝐿𝐵), а значит, и их отношение 𝑡𝐴, зависят
и от формы и размеров ЭГ, и от распределения в них
вещества.

4.3. Распределение углового момента и удельный
угловой момент в сфероиде Маклорена

В монографии [12] подробно описан метод полу-
чения формулы вычисления удельного углового мо-
мента 𝑙 (𝑅) сначала для однородного сфероида Ма-
клорена, а затем и для слоисто-неоднородного сфе-
роида Маклорена с плотностью ρ (𝑚) методом син-
теза элементарных оболочек [12, cтр. 103]. Для при-
менения этого метода к данному сфероиду в нем
выделяется элементарная цилиндрическая оболоч-
ка с радиусом 𝑅0 = 𝑚0𝑎 и единичной толщиной. За-
тем, применив к этой оболочке математический ме-
тод, примененный в [12, cтр. 598], находим удель-
ный угловой момент 𝑙 (𝑚0)и параметр 𝑞 для слоисто-
неоднородного (состоящего из гомотетических сло-
ев с постоянной сплюснутостью) сфероида Макло-
рена с плотностью ρ (𝑚) в виде

𝑙 (𝑚0) = 15𝑚02𝑎 𝐿𝑇(1 − 𝑞20)Φ1(𝑚0),
𝑞30 = Φ2(𝑚0)Φ2(0) ⩽ 1, (35)

Φ2(0) ≡ Φ2(𝑚0 = 0),
где

Φ1(𝑚0) = √1 − 𝑒2 1
∫𝑚0

𝑚ρ (𝑚) 𝑑𝑚√𝑚2
−𝑚20

⩾ 0,
Φ2(𝑚0) = 3√1 − 𝑒2 1

∫𝑚0
𝑚ρ (𝑚)√𝑚2

−𝑚20 ×
× 𝑑𝑚 ⩾ 0, (36)

Φ2(0) = 3√1 − 𝑒2 1
∫0

𝑚2ρ (𝑚) 𝑑𝑚 > 0,
𝑒2
= 1 − 𝑐2𝑎2 .

Неотрицательность функций Φ1(𝑚0) и Φ2(𝑚0)
очевидна, так как подынтегральные функции
в формулах (36) положительны. Условие 0 < 𝑞0 ⩽ 1
вытекает из неравенства 0 < Φ2(𝑚0) < Φ2(0),
которое в свою очередь следует из неравенства𝑚ρ (𝑚)√𝑚2

−𝑚20 ⩽ 𝑚2ρ (𝑚), выполняющегося
для подынтегральных функций.

Далее, учтем, что полный угловой момент 𝐿𝑇
слоисто-неоднородного сфероида Маклорена с про-
филем ρ (𝑚), его полный момент инерции 𝐼𝑇 отно-
сительно оси вращения𝑂𝑧, а также полная масса𝑀𝑇
равны 𝐿𝑇 = Ω 𝐼𝑇,𝐼𝑇 = 2𝑀𝑇5 𝑎2,

𝑀𝑇 = 4π𝑎2𝑐 1
∫0

𝑚2ρ (𝑚) 𝑑𝑚.
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Тогда выражение (35) можно переписать в виде

α (𝑚0) ≡ 𝑙 (𝑚0)Ω𝑀𝑇 = 3𝑚0𝑎 (1 − 𝑞20)Φ1(𝑚0) > 0, (37)

(0 < 𝑞0 < 1),
где неотрицательные функции Φ1(𝑚0), Φ2(𝑚0) и па-
раметр 𝑞0 определены выше.

4.4. Распределение углового момента и удельный
угловой момент в вытянутом сфероиде

Теперь об однородном вытянутом сфероиде,
ограниченном сфероидальной поверхностью𝑥2𝑎2 + 𝑟2𝑐2 = 1,𝑟2

= 𝑦2
+ 𝑧2, (38)

𝑟2
= 𝑐2 (1 − 𝑥2𝑎2) .

Пусть цилиндрическая поверхность с радиу-
сом 𝑅 выделяет в данном сфероиде объем 𝑉 (𝑅)
(рис. 1).

Точки𝐴 (−𝐻, 𝑅),𝐵 (𝐻, 𝑅),𝐶 (−𝐻,−𝑅)и𝐷 (−𝐻, 𝑅)
находятся на поверхности данного сфероида, т. е.
их координаты должны удовлетворять уравнению
этой поверхности:𝐻2𝑎2 + 𝑅2𝑐2 = 1, 𝐻 = 𝑎𝑞,

𝑞 =¿ÁÁÀ1 − 𝑅2𝑐2 , 𝑅2
= 𝑐2(1 − 𝑞2). (39)

По аналогии со сжатым сфероидом найдем объ-
ем заштрихованной части 𝑉 (𝑅) вытянутого сфе-
роида с полуосями 𝐿𝑂 = 𝑂𝑃 = 𝑎 и 𝑆𝑂 = 𝑂𝑁 = 𝑐 (см.
рис. 1). Этот объем равен сумме объемов цилиндра
и двух сегментов:𝑉 (𝑅) = 𝑉cyl + 2𝑉seg, 𝑉cyl = 2π𝑅2𝐻.
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Рис. 1. Сечение вытянутого сфероида с полуосями𝐿𝑂 = 𝑂𝑃 = 𝑎 и 𝑆𝑂 = 𝑂𝑁 = 𝑐. Заштрихована пло-
щадь, состоящая из сечений цилиндра 𝐴𝐵𝐶𝐷 с ради-
усом 𝑅 = 𝐵𝐾 = 𝐾𝐷, высотой 2𝐻 = 𝐹𝐸 и двух равных
сфероидальных сегментов (точнее сегментов параболи-
да вращения) высотой ℎ = 𝐿𝐹 = 𝐸𝑃

Здесь 𝑉cyl –– объем цилиндра с радиусом основа-
ния 𝑅 = 𝐾𝑂 = 𝑂𝑀 и высотой 2𝐻 = 𝐹𝐸, а 2𝑉seg –– объ-
ем двух равных сегментов 𝐴𝐿𝐶 и 𝐵𝑃𝐷 с высотойℎ = 𝐿𝐹 = 𝐸𝑃 (см. рис. 1), образованных частями сфе-
роида (39) и плоскостями 𝑥 = 𝐻 и 𝑥 = 𝑎, а также𝑥 = − 𝑎 и 𝑥 = −𝐻. Эти сегменты также можно счи-
тать параболоидами вращения.

Вычислим объем 𝑉seg сегмента 𝐴𝐿𝐶 (или 𝐵𝑃𝐷)
в силу равенств (38) и (39):

𝑉seg=π 𝑎
∫𝐻 𝑟2𝑑𝑥=π 𝑎

∫𝐻 𝑐2 (1 − 𝑥2𝑎2) 𝑑𝑥= π𝑎𝑐23 (2−3𝑞+𝑞3).
Следовательно, для искомого объема 𝑉 (𝑅) находим

𝑉 (𝑅) = 𝑉cyl+2𝑉seg = 2π𝐻𝑅2
+

4π𝑎𝑐23 (1 − 32 𝑞 + 12 𝑞3) .
С учетом выражений 𝐻 и 𝑅 для 𝑉 (𝑅) окончательно
находим𝑉 (𝑅) = 4π𝑎𝑐23 (1 − 𝑞3) = 𝑉𝑇(1 − 𝑞3),

𝑉𝑇 = 43 π𝑎𝑐2,
где 𝑉𝑇 –– полный объем вытянутого сфероида.

Таким образом, масса заштрихованной части𝑀 (𝑅) определится равенством𝑀 (𝑅) = ρ 𝑉 (𝑅) = ρ 𝑉𝑇(1 − 𝑞3) = 𝑀𝑇(1 − 𝑞3),
𝑞3
= 1 − 𝑀 (𝑅)𝑀𝑇 ,

а масса 𝑀seg сегмента 𝐴𝐿𝐶𝐷 (или 𝐵𝑃𝐷) будет равна𝑀seg = ρ 𝑉seg =
πρ3 𝑎𝑐2(2 − 3𝑞 + 𝑞3) =

=

πρ3 𝑎𝑐2(1 − 𝑞)2(2 + 𝑞).
Теперь вычислим 𝐽𝑧 –– момент инерции заштри-

хованной части тела относительно оси 𝑂𝑧. По ана-
логии с случаем сфероида Маклорена он равен𝐽𝑧 = 𝐽cyl + 2𝐽seg,
где 𝐽cyl –– момент инерции цилиндра с плотностью ρ,
радиусом 𝑅 и высотой 2𝐻 относительно поперечной
оси 𝑂𝑧, перпендикулярной к продольной оси 𝑂𝑥
и проходящей через его центра масс, а 𝐽seg –– момент
инерции одного из сфероидальных сегментов 𝐴𝐿𝐶
(или 𝐵𝑃𝐷) относительно той же оси.

Согласно [5] момент инерции 𝐽cyl рассматривае-
мого цилиндра относительно поперечной оси, про-
ходящей через его центр тяжести, равен

𝐽cyl =
𝑀cyl12 (4𝐻2

+ 3𝑅2) =
=

π ρ𝑅2𝐻6 (4𝐻2
+ 3𝑅2), (40)

(𝑀cyl = ρ 𝑉cyl = 2ρ π𝑅2𝐻) .
Остается вычислить момент инерции 𝐽𝑂𝑧 ≡ 𝐽seg сег-
мента 𝐵𝑎1𝐷 (точнее параболоида вращения) с плот-
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ностью ρ и радиусом основания круга с радиу-
сом 𝑅 относительно оси вращения 𝑂𝑧 следующим
образом. Вырежем мысленно в сегменте 𝐵𝑎1𝐷 тон-
кий цилиндр с массой 𝑑𝑚, находящийся от оси
вращения 𝑂𝑧 на расстоянии 𝑥. Согласно теореме
Гюйгенса–Штейнера момент инерции 𝑑𝐽seg такого
цилиндра будет равен

𝑑𝐽seg = 𝑥2𝑑𝑚 + 𝑟24 𝑑𝑚,𝑑𝑚 = ρ 𝑑𝑉, 𝑑𝑉 = π𝑟2𝑑𝑥,
где второе слагаемое в выражении 𝑑𝐽seg представляет
собой момент инерции тонкого цилиндра (диска)
относительно оси, проходящей через его диаметр.
Для момента инерции всего сегмента получим

𝐽seg =

𝑎
∫𝐻 𝑥2𝑑𝑚 + 14

𝑎
∫𝐻 𝑟2𝑑𝑚 =

= πρ 𝑎
∫𝐻 𝑥2𝑟2𝑑𝑥 + πρ4

𝑎
∫𝐻 𝑟4𝑑𝑥.

Подставив в интегралы выражение 𝑟2 после интери-
рования, находим

𝐽seg =
2πρ𝑎𝑐2

15 [𝑎2
+ 𝑐2
−

12𝑞3(5 − 3𝑞2)𝑎2
−

−

𝑞8 (15 − 10𝑞2
+ 3𝑞4)𝑐2].

Так как

𝐽cyl =
π ρ𝑅2𝐻6 (4𝐻2

+ 3𝑅2) =
=

πρ𝑎𝑐2𝑞(1 − 𝑞2)6 [4𝑎2𝑞2
+ 3(1 − 𝑞2)𝑐2] ,

то искомый момент инерции 𝐽𝑧 заштрихованной ча-
сти тела относительно оси вращения 𝑂𝑧 вытянутого
сфероида будет равен

𝐽𝑧 = 4πρ𝑎𝑐2(𝑎2
+ 𝑐2)15 ×

× [1 − 52 𝑐2𝑎2
+ 𝑐2 𝑞3

+ (32 𝐴 − 𝑎2𝑎2
+ 𝑐2 ) 𝑞5] ,

или 𝐽𝑧 = 𝐽𝑇 [1 − 52 𝐴𝑞3
+

12 (5𝐴 − 2)𝑞5] ,
𝐽𝑇 = 𝑀𝑇5 (𝑎2

+ 𝑐2),
𝐴 = 𝑐2𝑎2

+ 𝑐2 ,
(41)

где

𝑟𝑙𝑀𝑇 = 4πρ𝑎𝑐2
3 ,

𝑞3
= 1 − 𝑀 (𝑅)𝑀𝑇 = 𝑐3√(1 − 𝑅2)3. (42)

Здесь 𝐽𝑇 –– полный момент инерции вытянутого сфе-
роида относительно оси 𝑂𝑧, а 𝑀𝑇 –– его полная
масса.

Таким образом, распределение углового момен-
та 𝐿 (𝑅) = Ω𝐽𝑧(𝑅) в вытянутом сфероиде примет вид𝐿 (𝑅) = 𝐿𝑇 [1 − 52 𝐴𝑞3

+
12 (5𝐴 − 2)𝑞5] ,

𝐿𝑇 = Ω𝐽𝑇 = Ω𝑀𝑇5 (𝑎2
+ 𝑐2),

Ω2
=

𝐺𝑀𝑇𝑎3 ,
(43)

где 𝐿𝑇 –– полный угловой момент вытянутого сферо-
ида.

Заметим, что при 𝐴 = 1 выражение 𝐿 (𝑅) совпа-
дает с его выражением для сжатого сфероида.

Для применения метода синтеза элементарных
оболочек к вытянутому однородному сфероиду с уг-
ловым моментом 𝐿 (𝑅), определяемым приведен-
ным выше равенством, выделим мысленно в нем
элементарную цилиндрическую оболочку с радиу-
сом 𝑅1 = 𝑚1𝑐 и единичной толщиной. Применив ма-
тематический аппарат, приведенный в работе [5],
найдем удельный угловой момент 𝑙 (𝑚1) и пара-
метр 𝑞1 для слоисто-неоднородного вытянутого сфе-
роида (с постоянной сплюснутостью) с профилемρ (𝑚) в виде

𝑙 (𝑚1) = 5𝑚12𝑐 𝐿𝑇 [3𝐴 − (5𝐴 − 2) 𝑞21]××Φ1(𝑚1) > 0,
𝑞31 = Φ2(𝑚1)Φ2(0) < 1, (44)

или с учетом выражений 𝐿𝑇 из (43), коэффициента𝐴
из (41) и тождества(𝑎2

+ 𝑐2) [3𝐴 − (5𝐴 − 2)𝑞21] = 3𝑐2
− (3𝑐2

− 2𝑎2)𝑞21
имеемβ (𝑚1)≡ 𝑙 (𝑚1)Ω𝑀𝑇 =

𝑚12𝑐 [3𝑐2
− (3𝑐2

− 2𝑎2) 𝑞21] Φ1(𝑚1),
или β (𝑚1) = 𝑚1𝑎2√1 − 𝑒2 [3 − 3𝑒2

− (1 − 3𝑒2) 𝑞21]××Φ1(𝑚1) > 0, (45)(0 < 𝑞1 < 1).
Функции Φ1(𝑚1) и Φ2(𝑚1), фигурирующие в (44)
и 45, определяются формулой 36.

Очевидно, что отношение функций α (𝑚0)
и β (𝑚1), определяемых равенствами (37) и (45), име-
ет видα (𝑚0)β (𝑚1) =

6√1 − 𝑒2(1 − 𝑞20)3 − 3𝑒2
− (1 − 3𝑒2) 𝑞21

𝑚0𝑚1
Φ1(𝑚0)Φ1(𝑚1) > 0,

(0 < 𝑞0 < 1, 0 < 𝑞1 < 1).
Кроме того, при 𝑚0 = 𝑚1 имеем 𝑞1 = 𝑞0. Поэтому
это соотношение зависит не только от параметра 𝑞0,
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но и от эксцентриситета 𝑒, т. е. от формы и размеров
сфероида:α (𝑚0)β (𝑚0) =

6√1 − 𝑒2(1 − 𝑞20)3 − 3𝑒2
− (1 − 3𝑒2) 𝑞20 > 0, (46)

(0 < 𝑞0 < 1).
Для определения устойчивости (или неустойчи-

вости) рассмотрим далее, слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид, состо-
ящие из барионной массы (БМ) и темной материи
(ТМ) с известными профилями плотностей.

4.5. Слоисто-неоднородные сфероиды
с “астрофизическим” профилем

Рассмотрим сначала слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид, со-
стоящие только из БМ с “астрофизическим”
профилем 11. В этом случае в формуле (36) профильρ (𝑚) заменяется на ρ1(𝑚) из (11) и вычисляют-
ся функции Φ1(𝑚0), Φ2(𝑚0) и Φ2(0). Затем по
формулам (35) и 37 определяются параметр 𝑞0
и нормированный удельный угловой момент α (𝑚0)
для слоисто-неоднородного сфероида Маклорена
с профилем ρ (𝑚), а по формулам (44) и (45) ––
параметр 𝑞1 и β (𝑚1) для слоисто-неоднородного
вытянутого сфероида с тем же профилем.

Итак, по формуле (36) в случае “астрофизическо-
го” профиля для функций Φ1(𝑚0), Φ2(𝑚0) и Φ2(0)
находим Φ1(𝑚0) = 𝐶1𝐹1(𝑚0) > 0,

𝐶1 = ρ0√1 − 𝑒2√1 + β ,
𝐹1(𝑚0) =

√1 −𝑚201 + β𝑚20 > 0,
Φ2(𝑚0) = 𝐶2𝐹2(𝑚0) > 0,Φ2(0) = 𝐶2𝐹2(0) > 0,𝐶2 = 3𝐶1,

где 𝐹2(𝑚0) = 12β√β [√1 + β ln 𝜂1(𝑚0)−
−

√1 + β ln(1 + β𝑚20) − 2√β√1 −𝑚20] > 0,
𝐹2(0) = 12β√β [√1 + β ln (√β +√1 + β)2

−

−2√β ] > 0,
а η1(𝑚0) = 1 + 2β − β𝑚20 + 2√β√1 + β√1 −𝑚20.

Теперь обозначим через α1(𝑚0) и β1(𝑚1) нор-
мированные удельные угловые моменты слоисто-
неоднородного сфероида Маклорена и вытянутого

сфероида с “астрофизическим” профилем. Тогда
в силу (37) и (45) для этих функций, а по форму-
лам (35) и (44) для параметра 𝑞3 получимα1(𝑚0) = 𝐴1(𝑞0)𝑚0𝐹1(𝑚0) > 0,

𝑞30 = 𝐹2(𝑚0)𝐹2(0) < 1, (47)

β1(𝑚1) = 𝐵1(𝑞1)𝑚1𝐹1(𝑚1) > 0,
𝑞31 = 𝐹2(𝑚1)𝐹2(0) < 1, (48)

где функции 𝐹1(𝑚0), 𝐹2(𝑚0) и 𝐹2(0) определены
выше, а

𝐴1(𝑞0) = 3𝑎 ρ0√1 − 𝑒2√1 + β (1 − 𝑞20) > 0,
𝐵1(𝑞1) = ρ0𝑎2√1 + β [3 − 3𝑒2

− (1 − 3𝑒2) 𝑞21] > 0.
Легко проверить, что контрольные условияΦ1 (1) ≡ 𝐹1 (1) = 0 и Φ2(1) ≡ 𝐹2 (1) = 0 удовлетворя-

ются. Кроме того, при 𝑚0 = 𝑚1 имеем 𝑞1 = 𝑞0, а от-
ношение α1(𝑚0)/β1(𝑚0) имеет точно такой же вид,
что и (46).

4.6. Слоисто-неоднородные сфероиды с аналогом
профиля NFW

Теперь положим, что слоисто-неоднородные
сфероид Маклорена и вытянутый сфероид состо-
ят из БМ с аналогом профиля NFW. В этом слу-
чае в формуле (36) следует заменить профиль ρ (𝑚)
на аналог профиля NFW ρ2(𝑚), определяемый ра-
венством (17). После вычисления соответствующих
интегралов в (36) находим функции Φ1(𝑚0), Φ2(𝑚0)
и Φ2(0): Φ1(𝑚0) = 𝐷1𝑁1(𝑚0, μ) > 0,𝐷1 = 𝐾√1 − 𝑒2,

𝑁1(𝑚0, μ) = 12μ 𝑢30 [ℎ2(𝑚0) − 2μ𝑢0𝑣01 + μ ] > 0,
Φ2(𝑚0) = 𝐷2𝑁2(𝑚0, μ) > 0,Φ2(0) = 𝐷2𝑁2(0, μ) > 0,𝐷2 = 3𝐷1,

(49)

где𝑁2(𝑚0, μ) = 1μ3 [− ℎ2(𝑚0)2𝑢0 −

μ 𝑣01 + μ + ln
1 + 𝑣0𝑚0 ] > 0,

𝑁2(0, μ) = 1μ3 (ln(1 + μ) − μ1 + μ) > 0,
ℎ2(𝑚0) = ln

1 + μ𝑚20 + 𝑢0𝑣01 + μ𝑚20 − 𝑢0𝑣0 ,𝑢0 =
√1 − μ2𝑚20, 𝑣0 =

√1 −𝑚20.
После чего по формулам (37) и (45) определяем
нормированные удельные угловые моменты α2(𝑚0)
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для слоисто-неоднородного сфероида Маклорена
и β2(𝑚1) для вытянутого сфероида с аналогом про-
филя NFW, а по формулам (35) и 44 параметр 𝑞3:

α2(𝑚0) = 𝐴2(𝑞0)𝑚0𝑁1(𝑚0, μ0) > 0,
𝑞30 = 𝑁2(𝑚0, μ0)𝑁2(0, μ0) < 1, (50)

μ0 =
3√𝑎2𝑐𝑟𝑠 ,

β2(𝑚1) = 𝐵2(𝑞1)𝑚1𝑁1(𝑚1, μ1) > 0,
𝑞31 = 𝑁2(𝑚1, μ1)𝑁2(0, μ1) < 1, (51)

μ1 =
3√𝑎𝑐2𝑟𝑠 ,

где функции 𝑁1(𝑚, μ), 𝑁2(𝑚, μ) определены выше, а

𝐴2(𝑞0) = 3𝐾𝑎√1 − 𝑒2 (1 − 𝑞20) > 0,𝐵2(𝑞1) = 𝐾𝑎2 [3 − 3𝑒2
− (1 − 3𝑒2) 𝑞21] > 0.

Контрольные условия Φ1 (1) ≡ 𝑁1 (1) = 0
и Φ2(1) ≡ 𝑁2 (1) = 0 удовлетворяются. Кроме
того, при 𝑚0 = 𝑚1 отношение α2(𝑚0)/β2(𝑚0)
по аналогии с (46) при 𝑚0 = 𝑚1 имеет вид:

α2(𝑚0)β2(𝑚0) =
6√1−𝑒2(1 − 𝑞20)3−3𝑒2

−(1−3𝑒2) 𝑞21
𝑁1(𝑚0, μ0)𝑁1(𝑚0, μ1) >0, (52)

(0 < 𝑞0 < 1, 0 < 𝑞1 < 1).
Отличие отношения (52) от (46) связано с парамет-
рами μ0 и μ1, которые для сфероида Маклорена и вы-
тянутого сфероида определяются по разному.

4.7. Слоисто-неоднородные сфероиды с аналогом
профиля Хернквиста

Пусть теперь слоисто-неоднородные сфероид
Маклорена и вытянутый сфероид состоят из БМ
с аналогом профиля Хернквиста. В этом слу-
чае в формулах (36) и (37) следует положитьρ (𝑚) = ρ2(𝑚), где аналог профиля Хернквистаρ2(𝑚) определяется равенством (23). После вычис-
ления интегралов в (36) находим функции Φ1(𝑚0),Φ2(𝑚0) и Φ2(0):Φ1(𝑚0) = 𝐸1𝐻1(𝑚0, μ̄0) > 0,Φ2(𝑚0) = 𝐸2𝐻2(𝑚0, μ̄0) > 0, (53)Φ2(0) = 𝐸2𝐻2(0, μ̄0) > 0,

где

𝐻1(𝑚0, μ̄0) = 14μ̄0𝑢̄50𝐵𝑖𝑔[(2 + μ̄20𝑚20) ̄ℎ2(𝑚0)−
−

2μ̄0 𝑢̄0 ̄𝑣0(1 + μ̄0)2 (4 + 3μ̄0 − μ̄20𝑚2)] > 0,
𝐻2(𝑚0, μ̄0) = 12μ̄0(1 + μ̄0)2𝑢̄30 [(1 + μ̄0𝑚20) 𝑢̄0 ̄𝑣0 −

−

𝑚20(1 + μ̄0)22 ̄ℎ2(𝑚0)] > 0,
𝐻2(0, μ̄0) = 12μ̄0(1 + μ̄0)2 > 0,
̄ℎ2(𝑚0) = ln

1 + μ̄0𝑚20 + 𝑢̄0 ̄𝑣01 + μ̄0𝑚20 − 𝑢̄0 ̄𝑣0 ,
𝐸1 = 𝑀√1 − 𝑒22π ̄𝑎3 , 𝐸2 = 3𝐸1,

𝑢̄0 =
√1 − μ̄20𝑚20, ̄𝑣0 =

√1 −𝑚20.
Аналогичным образом определяем нормирован-

ные удельные угловые моменты α3(𝑚0) для слоисто-
неоднородного сфероида Маклорена и β3(𝑚1) для
вытянутого сфероида с аналогом профиля Хернкви-
ста, а также параметр ̄𝑞3:α3(𝑚0) = 𝐴3( ̄𝑞0)𝑚0𝐻1(𝑚0, μ̄0) > 0,

̄𝑞30 = 𝐻2(𝑚0, μ̄0)𝐻2(0, μ̄0) < 1,
μ̄0 =

3√𝑎2𝑐̄𝑎 ,β3(𝑚1) = 𝐵3( ̄𝑞1)𝑚1𝐻1(𝑚1, μ̄1) > 0,
̄𝑞31 = 𝐻2(𝑚1, μ̄1)𝐻2(0, μ̄1) < 1,

μ̄1 =
3√𝑎𝑐2̄𝑎 ,

(54)

где

𝐴3( ̄𝑞0) = 3𝑀𝑎√1 − 𝑒22π ̄𝑎3 (1 − ̄𝑞20) > 0,
𝐵3( ̄𝑞1) = 𝑀𝑎4π ̄𝑎3 [3 − 3𝑒2

− (1 − 3𝑒2) ̄𝑞21] > 0.
При этом отношение α3(𝑚0)/β3(𝑚0) по аналогии
с (46) при 𝑚0 = 𝑚1 имеет вид:

α3(𝑚0)β3(𝑚0) =
6√1−𝑒2(1− ̄𝑞20)3−3𝑒2
−(1−3𝑒2) ̄𝑞21

𝐻1(𝑚0, μ̄0)𝐻1(𝑚0, μ̄1) > 0, (55)

(0 < ̄𝑞0 < 1, 0 < ̄𝑞1 < 1).
Отличие отношения (55) от (46) также объясняется
с различием параметров μ̄0 и μ̄1.
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4.8. Слоисто-неоднородные сфероиды, состоящие
из барионной массой и темной материи

Заметим, что приведенные выше выраженияα𝑘(𝑚0) и β𝑘(𝑚0) соответствуют случаю, когда
слоисто-неоднородный сфероид (сжатый и вытяну-
тый) состоит, например, только из барионной мас-
сы (БМ) с профилем ρ (𝑚). Если данные сфероиды
состоят из БМ и ТМ с профилями ρ1(𝑚) и ρ2(𝑚)
соответственно, то в формуле (50) для функцийΦ1(𝑚0) и Φ2(𝑚0) профиль ρ (𝑚) следует заменить
на сумму ρ1(𝑚) + ρ2(𝑚). При этом в качестве про-
филя ρ1(𝑚) для БМ возьмем “астрофизический про-
филь”, а вместо профиля ρ2(𝑚) для ТМ один из ана-
логов профилей NFW и Хернквиста (см. раздел 3).
В этом случае нормированные удельные угловые мо-
менты слоисто-неоднородных сфероида Маклорена
и вытянутого сфероида будут определяться иначе.
По этой причине обозначим через α̃𝑘(𝑚0), β̃𝑘(𝑚0)
и 𝑞3(𝑚0) соответствующие нормированные удель-
ные угловые моменты и параметр. Ниже приведены
соответствующие формулы для вычисления этих ве-
личин: α̃𝑘(𝑚0) = 3𝑚0𝑎 (1 − 𝑞20) 𝑆1(𝑚0) > 0,

𝑞30 = 𝑆2(𝑚0)𝑆2(0) < 1, (56)

β̃𝑘(𝑚1) = 𝑚12𝑐 [3𝑐2
− (3𝑐2

− 2𝑎2) 𝑞21] 𝑆1(𝑚1) > 0,
𝑞31 = 𝑆2(𝑚1)𝑆2(0) < 1, (57)

где

𝑆1(𝑚0) = √1 − 𝑒2 1
∫𝑚0

𝑚 [ρ1(𝑚) + ρ2(𝑚)]√𝑚2
−𝑚20

𝑑𝑚 ⩾ 0,
𝑆2(𝑚0) = 3√1 − 𝑒2 1

∫𝑚0
𝑚 [ρ1(𝑚) + ρ2(𝑚)]×

×√𝑚2
−𝑚20 𝑑𝑚 ⩾ 0, (58)𝑆2(0) ≡ 𝑆2(𝑚0 = 0) ⩾ 0.

Здесь для краткости приведены формулы для функ-
ций 𝑆1(𝑚0) и 𝑆2(𝑚0) с аргументом 𝑚0. Эти же функ-
ции для аргумента 𝑚1 легко получаются из них за-
меной 𝑚0 на 𝑚1.

Сначала для БМ возьмем “астрофизический
профиль”, а для ТМ –– аналог профиля NFW. В этом
случае функции α̃1(𝑚0) и β̃1(𝑚0) в силу формул (56)
и (57) можно представить в виде:α̃1(𝑚0) = 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0)+

+ 𝐴2(𝑞0)𝑁1(𝑚0, μ0)] ⩾ 0,β̃1(𝑚1) = 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1)+
+ 𝐵2(𝑞1)𝑁1(𝑚1, μ1)] ⩾ 0.

(59)

Аналогично в случае аналога профиля Хернквиста:α̃2(𝑚0) = 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0)+
+ 𝐴3(𝑞0)𝐻1(𝑚0, μ̄0)] ⩾ 0,β̃2(𝑚1) = 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1)+
+ 𝐵3(𝑞1)𝐻1(𝑚1, μ̄1)] ⩾ 0.

(60)

Фигурирующие в равенствах (59) и (60) коэф-
фициенты 𝐴𝑘(𝑞), 𝐵𝑘(𝑞) и функции 𝐹𝑘(𝑚), 𝑁𝑘(𝑚)
и 𝐻𝑘(𝑚) (𝑘 = 1, 2) приведены выше.

Теперь определим параметры 𝑞30 и 𝑞31 по форму-
лам (56) и (57). Для этого достаточно вычислить
функции 𝑆2(𝑚0) и 𝑆2(0). В случае “астрофизиче-
ского профиля” для БМ и аналога профиля NFW
для ТМ получим:

𝑞30 = 𝐶2𝐹2(𝑚0) + 𝐷2𝑁2(𝑚0, μ0)𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ0) < 1,
𝑞31 = 𝐶2𝐹2(𝑚1) + 𝐷2𝑁2(𝑚1, μ1)𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ1) < 1.

В случае “астрофизического профиля” для БМ
и аналога профиля Хернквиста для ТМ получаем:

𝑞30 = 𝐶2𝐹2(𝑚0) + 𝐸2𝐻2(𝑚0, μ̄0)𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄0) < 1,
𝑞31 = 𝐶2𝐹2(𝑚1) + 𝐸2𝐻2(𝑚1, μ̄1)𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄1) < 1,

где коэффициенты 𝐶𝑘, 𝐷𝑘 и 𝐸𝑘, а также функции𝐹𝑘(𝑚0), 𝑁𝑘(𝑚𝑛, μ𝑘) и 𝐻𝑘(𝑚𝑛, μ̄𝑘) (𝑛 = 0, 1, 𝑘 = 1, 2)
приведены выше.

Отношения функций α̃𝑘(𝑚0)/β̃𝑘(𝑚0) при𝑚1 = 𝑚0 примут вид:α̃1(𝑚0)β̃1(𝑚0) =
𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ0)𝐵1(𝑞1)𝐹1(𝑚0) + 𝐵2(𝑞1)𝑁1(𝑚0, μ1) =
=

6√1 − 𝑒2(1 − 𝑞20)3 − 3𝑒2
− (1 − 3𝑒2)𝑞21×

×ρ0𝐹1(𝑚0) + 𝐾√1 + β𝑁1(𝑚0, μ0)ρ0𝐹1(𝑚0) + 𝐾√1 + β𝑁1(𝑚0, μ1) > 0, (61)

где

𝑞30 = ρ0𝐹2(𝑚0) + 𝐾√1 + β𝑁2(𝑚0, μ0)ρ0𝐹2(0) + 𝐾√1 + β𝑁2(0, μ0) < 1,
𝑞31 = ρ0𝐹2(𝑚0) + 𝐾√1 + β𝑁2(𝑚0, μ1)ρ0𝐹2(0) + 𝐾√1 + β𝑁2(0, μ1) < 1, (62)

α̃2(𝑚0)β̃2(𝑚0) =
𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴3(𝑞0)𝐻1(𝑚0, μ̄0)𝐵1(𝑞1)𝐹1(𝑚0) + 𝐵3(𝑞1)𝐻1(𝑚0, μ̄1) =
=

6√1 − 𝑒2(1 − 𝑞20)3 − 3𝑒2
− (1 − 3𝑒2)𝑞21 ×

×2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄0)2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄1) > 0,
(63)
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𝑞30 = 2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀√1 + β𝐻2(𝑚0, μ̄0)2π ̄𝑎3ρ0𝐹2(0) +𝑀√1 + β𝐻2(0, μ̄0) < 1,
𝑞31 = 2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀√1 + β𝐻2(𝑚0, μ̄1)2π ̄𝑎3ρ0𝐹2(0) +𝑀√1 + β𝐻2(0, μ̄1) < 1. (64)

При этом если μ0 = μ1 ≡ μ и μ̄0 = μ̄1 ≡ μ̄, то𝑞0 = 𝑞1 ≡ 𝑞 и эти соотношения упростятся:α̃1(𝑚0)β̃1(𝑚0) =
6√1 − 𝑒2(1 − 𝑞2)3 − 3𝑒2

− (1 − 3𝑒2)𝑞2 ,
𝑞3
=

ρ0𝐹2(𝑚0) + 𝐾√1 + β𝑁2(𝑚0, μ)ρ0𝐹2(0) + 𝐾√1 + β𝑁2(0, μ) < 1,
α̃2(𝑚0)β̃2(𝑚0) =

6√1 − 𝑒2(1 − 𝑞2)3 − 3𝑒2
− (1 − 3𝑒2)𝑞2 ,

𝑞3
=

2π ̄𝑎3ρ0𝐹2(𝑚0) +𝑀√1 + β𝐻2(𝑚0, μ̄)2π ̄𝑎3ρ0𝐹2(0) +𝑀√1 + β𝐻2(0, μ̄) < 1.
Итак, мы рассмотрели два варианта слоисто-

неоднородных сжатых и вытянутых сфероидов. Пер-
вый вариант соответствует случаю, когда эти сферо-
иды состоят только из БМ, а во втором варианте они
состоят из БМ и ТМ. В первом варианте мы опре-
делили нормированные удельные угловые момен-
ты α𝑘(𝑚0) и β𝑘(𝑚0) слоисто-неоднородных сжатых
и вытянутых сфероидов (табл. 1).

Во втором варианте эти величины обозначены
как α̃𝑘(𝑚0) и β̃𝑘(𝑚0) (табл. 2).

Величины α𝑘(𝑚0), β𝑘(𝑚0), α̃𝑘(𝑚0) и β̃𝑘(𝑚0) име-
ют размерность поверхностной плотности (в массах
Солнца на квадратный парсек). При этом удельный
угловой момент 𝑙 (𝑚0) выражается в 𝑀2⊙/пк2/Myr,
где 𝑀⊙ –– масса Солнца, а Myr –– млн лет.

4.9. Критические значения параметров 𝑚0 и 𝑚1
Очевидно, что при 𝑚0 = 𝑚1 могут выполняться

неравенстваα𝑘(𝑚0)β𝑘(𝑚0) > 1, α̃𝑛(𝑚0)β̃𝑛(𝑚0) > 1, (65)

0 ⩽ 𝑚0 ⩽ 1, 𝑘 = 1, 2, 3, 𝑛 = 1, 2.
В этом случае будем считать, что имеет место устой-
чивость слоисто-неоднородного вытянутого сферо-
ида при соответствующих профилях (при одина-
ковой массе). Если же не выполняются неравен-
ства (65), т. е. нормированные значения удельно-
го углового момента вытянутого сфероида β𝑘(𝑚0)
и β̃𝑛(𝑚0) превышают аналогичные значения сфе-
роида Маклорена α𝑘(𝑚0) и α̃𝑛(𝑚0) соответствен-
но, то имеет место неустойчивость вытянутого
сфероида.

Пусть при некотором значении 𝑚0 имеют ме-
сто равенства α𝑘(𝑚0) = β𝑘(𝑚0) и α̃𝑛(𝑚0) = β̃𝑛(𝑚0).
Такое значение параметра 𝑚0 назовем критиче-
ским (или переходным) и обозначим его через 𝑚̃0.
Например, в случае “астрофизического профиля”
в силу (47) и (48) получим:α1(𝑚0) = β1(𝑚0),𝑞20 = 𝑞21 = 6√1 − 𝑒2

+ 3𝑒2
− 36√1 − 𝑒2

+ 3𝑒2
− 1 =

= 1 − 26√1 − 𝑒2
+ 3𝑒2

− 1 .
При аналоге профиля NFW это условие в силу (52)
примет вид: α2(𝑚0) = β2(𝑚0),

6√1 − 𝑒2 (1 − 𝑞20)𝑁1(𝑚0, μ0) =
= [3 − 3𝑒2

− (1 − 3𝑒2) 𝑞21𝑁1(𝑚0, μ1) ] .
Таблица 1. Явные выражения нормированных удельных угловых моментов α (𝑚0) и β (𝑚1) слоисто-неоднородных
сжатых и вытянутых сфероидов в зависимости от профиля 𝜌 (𝑚) в соответствии с первым вариантомρ(𝑚) α(𝑚0) β(𝑚1)

ρ0(1 + β𝑚2)3/2
𝐴1(𝑞0)𝑚0𝐹1(𝑚0) 𝐵1(𝑞1)𝑚1𝐹1(𝑚1)𝑞30 = 𝐹2(𝑚0)𝐹2(0) 𝑞31 = 𝐹2(𝑚1)𝐹2(0)

𝐾μ𝑚 (1 + μ𝑚)2
𝐴2(𝑞0)𝑚0𝑁1(𝑚0, μ0) 𝐵2(𝑞1)𝑚1𝑁1(𝑚1, μ1)

𝑞30 = 𝑁2(𝑚0, μ0)𝑁2(0, μ0) , μ0 =
3√𝑎2𝑐𝑟2 𝑞31 = 𝑁2(𝑚1, μ1)𝑁2(0, μ1) , μ1 =

3√𝑎𝑐2𝑟𝑠
𝑀2π ̄𝑎 1μ̄𝑚 (1 + μ̄𝑚)3

𝐴3( ̄𝑞0)𝑚0𝐻1(𝑚0, μ̄0) 𝐵3( ̄𝑞1)𝑚1𝐻1(𝑚1, μ̄1)
̄𝑞30 = 𝐻2(𝑚0, μ̄0)𝐻2(0, μ̄0) , μ̄0 =

3√𝑎2𝑐̄𝑎 ̄𝑞31 = 𝐻2(𝑚1, μ̄1)𝐻2(0, μ̄1) , μ̄1 =
3√𝑎𝑐2̄𝑎

Примечание. Функции𝐴𝑛(),𝐵𝑛(), (𝑛 = 1, 2, 3),𝐹𝑘(),𝑁𝑘(),𝐻𝑘() (𝑘 = 1, 2) определяются соответствующими равенствами
и приведены в тексте.
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Таблица 2. Явные выражения нормированных удельных угловых моментов α̃(𝑚0) и β̃(𝑚1) слоисто-неоднородных
сжатых и вытянутых сфероидов в зависимости от профиля ρ(𝑚) = ρ1(𝑚)+ρ2(𝑚) в соответствии со вторым вариантомρ1(𝑚) + ρ2(𝑚) α̃(𝑚0) β̃(𝑚1)ρ0(1 + β𝑚2)3/2+ 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ0)] 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) + 𝐵2(𝑞1)𝑁1(𝑚1, μ1)]
+

𝐾μ𝑚(1 + μ𝑚)2 ̄𝑞30 = 𝐶2𝐹2(𝑚0) + 𝐷2𝑁2(𝑚0, μ0)𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ1) ̄𝑞31 = 𝐶2𝐹2(𝑚1) + 𝐷2𝑁2(𝑚1, μ1)𝐶2𝐹2(0) + 𝐷2𝑁2(0, μ0)ρ0(1 + β𝑚2)3/2+ 𝑚0 [𝐴1(𝑞0)𝐹1(𝑚0) + 𝐴2(𝑞0)𝑁1(𝑚0, μ̄0)] 𝑚1 [𝐵1(𝑞1)𝐹1(𝑚1) + 𝐵2(𝑞1)𝑁1(𝑚1, μ̄1)]
+
𝑀2π ̄𝑎 1μ̄𝑚(1 + μ̄𝑚)3 ̄𝑞30 = 𝐶2𝐹2(𝑚0) + 𝐸2𝐻2(𝑚0, μ̄0)𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄1) ̄𝑞31 = 𝐶2𝐹2(𝑚1) + 𝐸2𝐻2(𝑚0, μ̄1)𝐶2𝐹2(0) + 𝐸2𝐻2(0, μ̄0)

Примечание. Функции 𝐴𝑘(), 𝐵𝑘(), 𝐹𝑘(), 𝑁𝑘() и 𝐻𝑘(), а также параметры μ𝑘, μ̄𝑘 (𝑘 = 1, 2) те же самые, что и в табл. 1.
Коэффициенты 𝐶2, 𝐷2 и 𝐸2 приведены в тексте.

При аналоге профиля Хернквиста в силу (55) нахо-
дим α3(𝑚0) = β3(𝑚0),6√1 − 𝑒2 (1 − ̄𝑞20)𝐻1(𝑚0, μ̄0) =

= [3 − 3𝑒2
− (1 − 3𝑒2) ̄𝑞21𝐻1(𝑚0, μ̄1) ] .

Наконец, при смешанных профилях в силу (61)
и (63) получим: α̃1(𝑚0) = β̃1(𝑚0),

[6√1 − 𝑒2(1 − 𝑞20)] ×× [ρ0𝐹1(𝑚0) + 𝐾√1 + β𝑁1(𝑚0, μ0)] =
= [3 − 3𝑒2

− (1 − 3𝑒2)𝑞21] ×× [ρ0𝐹1(𝑚0) + 𝐾√1 + β𝑁1(𝑚0, μ1)] ,α̃2(𝑚0) = β̃2(𝑚0),
[6√1 − 𝑒2(1 − 𝑞20)] ×× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄0)] =

= [3 − 3𝑒2
− (1 − 3𝑒2)𝑞21] ×× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄1)] .α̃2(𝑚0) = β̃2(𝑚0),

[6√1 − 𝑒2(1 − 𝑞20)] ×× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄0)] =
= [3 − 3𝑒2

− (1 − 3𝑒2)𝑞21] ×× [2π ̄𝑎3ρ0𝐹1(𝑚0) +𝑀√1 + β𝐻1(𝑚0, μ̄1)] .
Очевидно, что при 𝑚0 ⩽ 𝑚̃0, или 𝑚0 > 𝑚̃0 нера-

венства в (65) либо будут выполняться, либо нет.
В разделе 7 (табл. 3) найдено критическое значе-
ние 𝑚̃0 для некоторых модельных эллиптических га-
лактик (МЭГ) и установлена устойчивость (неустой-

чивость) в смысле выполнения (или невыполнение)
неравенства (65).

Таким образом, мы рассмотрели три крите-
рия устойчивости эллипсоидальных тел: крите-
рий Пиблса–Острайкера, выраженный неравен-
ством (34), критерий (65) по значениям норми-
рованного удельного углового момента и нера-
венство (33) для отношений полуосей такого те-
ла и угловой скорости вращения. В следующих
разделах рассмотрим критерии неустойчивости
Вандерворта.

5. КРИТЕРИЙ НЕУСТОЙЧИВОСТИ
ВАНДЕРВОРТА. СЛУЧАЙ ТРЕХОСНОГО

ЭЛЛИПСОИДА
Критерий неустойчивости трехосного эллипсо-

ида с полуосями 𝑎1 ⩾ 𝑎2 > 𝑎3 как динамической си-
стемы в работе [11] представлен в виде

𝑡𝑒 ≡ 𝐿22 (𝐼11 + 𝐼22 ) ∣𝑊∣ > (2 + 𝑃)
3

27 𝐼 𝑎21𝐴1𝑄2 , (66)

который назовем критерием Вандерворта. В ле-
вой части неравенства (66) 𝐿–– угловой момент, 𝐼11
и 𝐼22 –– тензоры момента инерции, 𝑊–– гравитаци-
онная (потенциальная) энергия системы (см. ниже).
В правой части неравенства (66) положено:

𝑃 = − 2𝑉12∶12𝑉11 , 𝑄 = 2 − 𝑃 Ω𝑃Ω𝐿 ,Ω𝐿 = 𝐿2𝐼11 , Ω𝑃 = 𝑊12∶12𝑉12∶12 Ω, (67)

и

𝐼 = 𝑎1𝑎2𝑎3
∞
∫0

𝑑𝑢Δ (𝑢) ,
𝐴𝑖 = 𝑎1𝑎2𝑎3

∞
∫0

𝑑𝑢(𝑢 + 𝑎2𝑖 )Δ (𝑢) , (68)

Δ2(𝑢) = (𝑎21 + 𝑢)(𝑎22 + 𝑢)(𝑎23 + 𝑢).
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Таблица 3. Критические значения параметра 𝑚̃0, определяемые в зависимости от профилей ρ1(𝑚) БМ и ρ2(𝑚) ТМ
для модельных эллиптических галактик (МЭГ), имеющих форму вытянутого сфероида с полуосями 𝑎 и 𝑏 = 𝑐 [кпк]

МЭГ
Полуоси Профили Параметр𝑚̃0𝑎 𝑏 = 𝑐 ρ1(𝑚) ρ2(𝑚)

NGC 4374 E1
(M 84) 17.373 15.131 ρ0(1 + β𝑚2)3/2

0 0.15524𝐾μ𝑚(1 + μ𝑚)2 0.16043
𝑀2π ̄𝑎3 1μ̄(1 + μ̄)3 0.15598

NGC 4406 E3
(M 86) 28.055 20.324 ρ0(1 + β𝑚2)3/2

0 0.13422𝐾μ𝑚(1 + μ𝑚)2 0.15211
𝑀2π ̄𝑎3 1μ̄(1 + μ̄)3 0.13498

NGC 4472 E2
(M 49) 25.450 22.069 ρ0(1 + β𝑚2)3/2

0 0.15923𝐾μ𝑚(1 + μ𝑚)2 0.16656
𝑀2π ̄𝑎3 1μ̄(1 + μ̄)3 0.16002

Примечание. В первой строке в столбце ρ2(𝑚) цифра 0 означает, что ЭГ состоит только из БМ с профилем ρ1(𝑚). При𝑚0 > 𝑚̃0 вытянутый сфероид становится устойчивым, а при 𝑚0 < 𝑚̃0 –– неустойчивым согласно критерию (65).

Здесь для удобства использованы переобозначения:𝑎1 ≡ 𝑎, 𝑎2 ≡ 𝑏 и 𝑎3 ≡ 𝑐.
Далее, тензор момента инерции 𝐼𝑖𝑗 равен [5, 13]𝐼𝑖𝑗 = δ𝑖𝑗𝑀̃𝑎2𝑖 𝐽 (1),

𝐽 (𝑚) = 𝑚
∫0

𝑚4ρ (𝑚)𝑑𝑚, (69)

𝑀̃ = 43π 𝑎1𝑎2𝑎3,
где δ𝑖𝑗 –– символ Кронекера. При этом из фор-
мул (68) и (69) следует

3∑𝑘=1 𝑎2𝑘𝐴𝑘 = 𝐼,
1 − 𝐼33𝐼11 = 1 − 𝑎23𝑎21 = 𝑒2, (70)

𝐼11 + 𝐼22 = 𝑀̃ (𝑎21 + 𝑎22)𝐽 (1).
Тензоры 𝑉𝑖𝑗, 𝑉𝑖𝑗∶𝑖𝑗 и 𝑊12∶12 в равенстве (67) определя-
ются формулами [13]:𝑉𝑖𝑗 = −𝑉0𝑎2𝑖𝐴𝑖δ𝑖𝑗ψ (1),𝑉𝑖𝑗∶𝑖𝑗 = 𝑉0𝑎2𝑖 (𝐴𝑖 − 𝑎2𝑗 𝐴𝑖𝑗)ψ (1), (71)𝑉0 = π2𝐺𝑎1𝑎2𝑎3,

𝑊12∶12 = 12 Ω2𝐼11,

𝐴𝑖𝑗 = 𝑎1𝑎2𝑎3
∞
∫0

𝑑𝑢(𝑢 + 𝑎2𝑖 )(𝑢 + 𝑎2𝑗 )Δ (𝑢) , (72)

ψ (1) ≡ ψ (𝑚 = 1),
ψ (𝑚) = 𝑚

∫0
[𝐹 (𝑚2)]2 𝑑𝑚,

𝐹 (𝑚2) = 1
∫𝑚2

ρ (𝑚2) 𝑑𝑚2, (73)

𝑚2
=
𝑥2𝑎21 +

𝑦2𝑎22 +
𝑧2𝑎23 .

Очевидно, что для осесимметричного тела𝑎1 = 𝑎2 > 𝑎3 имеют место равенства:𝐴1 = 𝐴2, 𝐴12 = 𝐴21,𝐼22 = 𝐼11, 𝑉22 = 𝑉11,𝑉12∶12 = 𝑉21∶21, Ω𝐿 = Ω. (74)

Кроме того, для потенциальной энергии 𝑊 и кине-
тической энергии вращения 𝑇 помимо (2) можно
пользоваться и другими формулами, приведенными
в работе [13]:

𝑊 = 𝑉𝑖𝑖𝐼𝑎2𝑖𝐴𝑖 = −π2𝐺𝑎1𝑎2𝑎3𝐼 ψ (1),
𝑇 = Ω𝐿2 , 𝐿 = Ω (𝐼11 + 𝐼22 ) . (75)
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Коэффициент 𝐼 и функция ψ (𝑚) определены
выше.

Если в (66) учесть выражения (75) для углово-
го момента 𝐿 и кинетической энергии вращения 𝑇,
то выражение 𝑡𝑒 будет точно совпадать с выражени-
ем 𝑡 из (16), т. е. 𝑡𝑒 ≡ 𝑡 = 𝑇/∣𝑊∣. Кроме того, с учетом
выражений (75) для потенциальной энергии 𝑊 и уг-
лового момента 𝐿, критерий (66) Вандерворта мож-
но переписать в виде

𝑡𝑒 ≡ Ω22 𝐼11 + 𝐼22∣𝑉11∣ >
227 (1 + 𝑆)3(1 + 𝑈)2 ≡ 𝑡1, (76)

где с учетом выражений 𝐿, 𝑉11, 𝑉12∶12, Ω𝑃 и Ω𝐿 вели-
чины 𝑃 и 𝑄 представлены в виде:𝑃 = 2𝑆, 𝑄 = 2(1 + 𝑈),

𝑆 = 1 − 𝑎22𝐴12𝐴1 , (77)

𝑈 = Ω2𝐼211𝑉11 (𝐼11 + 𝐼22 ) .
Для проверки выполнения критерия неустойчи-

вости –– неравенства (76) –– необходимо определить
следующие величины: 𝑡𝑒, 𝐴1, 𝐼, 𝑆 и 𝑈. Отношение 𝑡𝑒
нам известно, так как полная гравитационная энер-
гия 𝑊 и кинетическая энергия вращения 𝑇 опреде-
лены выше формулой (2), причем для 𝑇 имеем еще
вторую формулу (75). Следовательно, остается опре-
делить четыре последние.

После вычисления интегралов в (68), (69) и (72)
для 𝐼, 𝐴1 и 𝐴12 получим:𝐼 = 𝑎1𝑎2𝑎3𝐽0,

𝐴1 = 2𝑎1𝑎2𝑎3
(𝑎21 − 𝑎22)√𝑎21 − 𝑎23

×
× [𝐹 (φ0, 𝑛) − 𝐸 (φ0, 𝑛)] , (78)

𝐴12 = − 2𝑎23(𝑎21 − 𝑎22)(𝑎22 − 𝑎23)+
+

2𝑎1𝑎2𝑎3
(𝑎21 − 𝑎22)2(𝑎22 − 𝑎23)√𝑎21 − 𝑎23

×
×[(𝑎21 + 𝑎22 − 2𝑎23)𝐸 (φ0, 𝑛)−
−2 (𝑎22 − 𝑎23)𝐹 (φ0, 𝑛) ]. (79)

Здесь 𝐽0 определяется равенством (4), а аргумент φ0
и модуль 𝑛 эллиптических интегралов –– равен-
ством (6), в котором следует учесть обозначения𝑎 ≡ 𝑎1, 𝑏 ≡ 𝑎2 и 𝑐 ≡ 𝑎3.

Вычисленные выше интегралы (78) и (79) позво-
ляют определить отношение𝐴1/𝐼и величину 𝑆. Оста-
ется вычислить величину𝑈, которая содержит тензо-
ры момента инерции 𝐼11, 𝐼22 и тензор𝑉11. Эти величи-
ны зависят исключительно от профиля плотности,

т. е. их можно вычислить только при заданном про-
филе ρ (𝑚). В подразделах 5.1, 5.2, 5.3 и 5.4 рассмот-
рены конкретные профили плотности ρ (𝑚), соот-
ветствующие современным требованиям к структу-
ре галактик.

Примечание 2. Как мы выше отмечали
(см. Примечание 1), отношение кинетической энер-
гии вращения к модулю потенциальной энергии
в критерии устойчивости Пиблса–Острайкера (34)
не зависит от распределения вещества в галактике,
т. е. от профиля ρ (𝑚), но зависит только от формы
и размеров ЭГ. Однако согласно другому критерию
устойчивости, отношение удельных угловых мо-
ментов сжатого и вытянутого сфероидов зависит
и от формы и размеров ЭГ, и от распределения
в них вещества. В силу критерия неустойчивости 76
Вандерворта отношения 𝑡𝑒 и 𝑡1 (см. выше) также
зависят от профиля ρ (𝑚).

5.1. Критерий неустойчивости ЭГ
при “астрофизическом” профиле

Положим, что ЭГ состоит только из БМ, с “аст-
рофизическим” профилем ρ (𝑚), определяемый
равенством (11). Нам следует определить следую-
щие величины. Сначала подставим выражение (11)
в формулу (72) и находим функции 𝐹1(𝑚2) ≡ 𝐹 (𝑚2)
и ψ1(𝑚2) ≡ ψ (𝑚2):

𝐹1(𝑚2) = 1
∫𝑚2

ρ0√(1 + β𝑚2)3𝑑𝑚2
=

=

2ρ0β ⎛⎝ 1√1 + β𝑚2 −
1√1 + β ⎞⎠ ,

(80)

ψ1(𝑚)= 4ρ20β2
𝑚
∫0
⎛⎝ 1√1+β𝑚2 −

1√1+β⎞⎠
2 𝑑𝑚 =

=

4ρ20β2(1 + β)√β [√β𝑚 − 2√1 + β φ1(𝑚)+
+(1 + β) arctan (√β𝑚) ], (81)

где функция φ1(𝑚) определена в равенстве (12). Да-
лее, по формуле 71 вычисляем тензор𝑉11 = −π2𝐺𝑎31𝑎2𝑎3𝐴1ψ1(1),ψ1(1) = ψ1(𝑚 = 1). (82)

Здесь функция ψ1(𝑚) определяется равенством (81),
а 𝐴1 –– равенством (77).

Теперь вычислим тензоры 𝐼11 и 𝐼22. Для этого вы-
ражение профиля из (11) подставим в формулу (70).
Это нам даст: 𝐼11 = 𝑀̃𝑎21𝐽1(1),𝐼22 = 𝑀̃𝑎22𝐽1(1),𝐼11 + 𝐼22 = 𝑀̃ (𝑎21 + 𝑎22)𝐽1(1), (83)
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где

𝐽1(𝑚)= ρ02β2√β
⎡⎢⎢⎢⎢⎣
√β𝑚 (3 + β𝑚2)√1 + β𝑚2 − 3φ1(𝑚)⎤⎥⎥⎥⎥⎦ . (84)

Здесь функция φ1(𝑚) та же самая, что и в равен-
стве (81).

Итак, определив равенствами (82) и (83) тензоры𝑉11, 𝐼11 и 𝐼22, вычисляем по формуле (79) значение 𝑈.
Итак, все необходимые величины определены.

Таким образом, в случае “астрофизического”
профиля можно проверить выполнение крите-
рия (66), или (76).

5.2. Критерий неустойчивости ЭГ при аналоге
профиля NFW

Пусть теперь ЭГ состоит только из БМ
с аналогом профиля NFW, определяемого равен-
ством (17). Поступим аналогично приведенному
в подразделе 5.1. Определяем сначала функции

𝐹2(𝑚2) = 1
∫𝑚2

𝐾(1 + μ𝑚)2 μ𝑚 𝑑𝑚2
=

=
2𝐾μ2 ( 11 + μ𝑚 − 11 + μ ) ,

(85)

ψ2(𝑚) = 4𝐾2μ4
𝑚
∫0
( 11 + μ𝑚 − 11 + μ )2 𝑑𝑚 =

=
4𝐾2μ5(1 + μ) ⎡⎢⎢⎢⎢⎣ − 2 ln(1 + μ𝑚)+

+μ𝑚 ( 11 + μ + 1 + μ1 + μ𝑚) ⎤⎥⎥⎥⎥⎦. (86)

Далее, тензор 𝑉11 также определяется равен-
ством (71), но функция ψ (𝑚) ≡ ψ2(𝑚)–– форму-
лой (86). Затем по формуле (70), в которой ρ (𝑚)
заменяется на аналог профиля NFW, вычисляем
функцию 𝐽 (𝑚) ≡ 𝐽2(𝑚):𝐽2(𝑚) = 𝐾2μ5 [6 ln(1 + μ𝑚)−

−

μ𝑚1 + μ𝑚 (6 + 3μ𝑚 − μ2𝑚2)], (87)

после чего определяем тензоры 𝐼11 и 𝐼22 по форму-
ле (70), заменив в ней 𝐽 (1) на 𝐽2(1).

5.3. Критерий неустойчивости эллиптической
галактики при аналоге профиля Хернквиста

Наконец, положим, что ЭГ состоит только из БМ
с аналогом профиля Хернквиста, определяемого ра-
венством (23). Определяем сначала функции

𝐹3(𝑚2) = 𝑀2π ̄𝑎3
1
∫𝑚2

𝑑𝑚2μ̄ 𝑚 (1 + μ̄ 𝑚)3 =
=

𝑀2πμ̄ ̄𝑎3(1 + μ̄)2 (1 −𝑚)(2 + μ̄ + μ̄ 𝑚)(1 + μ̄ 𝑚)2 , (88)

ψ3(𝑚) = 𝑀24π2μ̄2 ̄𝑎6(1 + μ̄)4 ×
× 𝑚
∫0
(1 −𝑚)2(2 + μ̄ + μ̄ 𝑚)2(1 + μ̄ 𝑚)4 𝑑𝑚 =

=
𝑀24π2μ̄5 ̄𝑎6(1 + μ̄)4 ⎡⎢⎢⎢⎢⎣μ̄𝑚 − (1 + μ̄)43(1 + μ̄ 𝑚)3 +

+

2(1 + μ̄)21 + μ̄ 𝑚 +

(1 + μ̄)43 − 2(1 + μ̄)2⎤⎥⎥⎥⎥⎦, (89)

причем

ψ3(1) = 𝑀2(4 + μ̄)12π2μ̄2 ̄𝑎6(1 + μ̄)4 . (90)

Далее, тензор𝑉11 также определится равенством (71),
но функция ψ3(𝑚)–– формулой (89). Затем по фор-
муле (70), в которой ρ (𝑚) заменяется на ана-
лог профиля Хернквиста, вычисляем функцию𝐽 (𝑚) ≡ 𝐽3(𝑚):

𝐽3(𝑚) = 𝑀4πμ̄5 ̄𝑎3
⎧⎪⎪⎨⎪⎪⎩ − 6 ln(1 + μ̄ 𝑚)+

+ μ̄ 𝑚 [2 + 41 + μ̄ 𝑚 + μ̄ 𝑚(1 + μ̄ 𝑚)2 ] ⎫⎪⎪⎬⎪⎪⎭, (91)

после чего определяем тензоры 𝐼11 и 𝐼22 по форму-
ле (70), заменив в ней 𝐽 (1) на 𝐽3(1).

5.4. Критерий неустойчивости ЭГ, состоящей
из барионной массы и темной материи

Пусть теперь ЭГ состоит из барионной массы
(БМ) с профилем ρ1(𝑚) и темной материи (ТМ)
с профилем ρ2(𝑚). Рассмотрим два случая: а) в ка-
честве профиля ТМ ρ2(𝑚) берется аналог профиля
NFW, б) в качестве ρ2(𝑚) берется аналог профиля
Хернквиста. В обоих случаях в качестве профиля БМρ1(𝑚) берется “астрофизический” профиль (11). Да-
лее, для удобства обозначим через 𝐹4(𝑚2), ψ4(𝑚)
и 𝐽4(𝑚) функции 𝐹 (𝑚2), ψ (𝑚) и 𝐽 (𝑚), соответству-
ющие случаю а). В случае б) эти функции обозначим
через 𝐹5(𝑚2), ψ5(𝑚) и 𝐽5(𝑚). Тогда согласно нашим
обозначениям имеем

а) 𝐹4(𝑚2) =𝐹1(𝑚2) + 𝐹2(𝑚2),ψ4(𝑚) =ψ1(𝑚) + ψ2(𝑚) + 2ψ12(𝑚), (92)𝐽4(𝑚) = 𝐽1(𝑚) + 𝐽2(𝑚),
б) 𝐹5(𝑚2) =𝐹1(𝑚2) + 𝐹3(𝑚2),ψ5(𝑚) =ψ1(𝑚) + ψ3(𝑚) + 2ψ13(𝑚), (93)𝐽5(𝑚) = 𝐽1(𝑚) + 𝐽3(𝑚),
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где функции 𝐹𝑘(𝑚2), ψ𝑘(𝑚) и 𝐽𝑘(𝑚), (𝑘 = 1, 2, 3)
определены выше, а

ψ12(𝑚) = 𝑚
∫0

𝐹1(𝑚2)𝐹2(𝑚2) 𝑑𝑚,
ψ13(𝑚) = 𝑚

∫0
𝐹1(𝑚2)𝐹3(𝑚2) 𝑑𝑚. (94)

Следовательно, нам остается вычислить только
функции ψ12(𝑚) и ψ13(𝑚). Учитывая выраже-
ния (80), (85) и (88) функций 𝐹𝑘(𝑚2), для ψ12(𝑚)
и ψ13(𝑚) получим следующие выражения:

ψ12(𝑚) = 4𝐾ρ0βμ2
⎧⎪⎪⎨⎪⎪⎩

12√β + μ2 [ lnφ2(𝑚)−
− lnφ2(𝑚 = 0)] − lnφ1(𝑚)(1 + μ)√β +
+

𝑚
(1 + μ)√1 + β − ln(1 + μ𝑚)μ√1 + β

⎫⎪⎪⎬⎪⎪⎭,ψ13(𝑚) = 𝑀ρ0πμ̄β ̄𝑎3(1 + μ̄)2 ×
×⎧⎪⎪⎨⎪⎪⎩ (1 + μ̄)2β2μ̄√(β + μ̄2)3 [ ln φ̄2(𝑚)−
− ln φ̄2(𝑚 = 0)] − φ1(𝑚)μ̄√β +
+

(1 + μ̄)2(β + μ̄2) ⎛⎝1 − √1 + β𝑚21 + μ̄ 𝑚 ⎞⎠ +
+

𝑚(𝑚 − 2 − μ̄)√1 + β (1 + μ̄ 𝑚)
⎫⎪⎪⎬⎪⎪⎭,

где функция φ1(𝑚) определяется равенством (12), а

φ2(𝑚) = √β + μ2√1 + β𝑚2
+ β𝑚 − μ√β + μ2√1 + β𝑚2
− β𝑚 + μ,

φ̄2(𝑚) = √β + μ̄2√1 + β𝑚2
+ β𝑚 − μ̄√β + μ̄2√1 + β𝑚2
− β𝑚 + μ̄ .

6. КРИТЕРИЙ НЕУСТОЙЧИВОСТИ
ВАНДЕРВОРТА. СЛУЧАЙ

ОСЕСИММЕТРИЧНОГО ТЕЛА
В случае сфероида Маклорена 𝑎 = 𝑏 > 𝑐 малые

параметры μ и μ̄ определяются равенством (29), а

𝐼 = 2𝑎𝑐𝑒 arcsin 𝑒, 𝑒2
= 1 − 𝑐2𝑎2 , (95)

𝐴1 = 𝐴2 = 𝑎2𝑐 ∞
∫0

𝑑𝑢
(𝑢 + 𝑎2)2√𝑢 + 𝑐2 =

=
1𝑒3 [
√1 − 𝑒2 arcsin 𝑒 − 𝑒(1 − 𝑒2)] , (96)

𝐴3 = 𝑎2𝑐 ∞
∫0

𝑑𝑢
(𝑢 + 𝑎2) (𝑢 + 𝑐2)√𝑢 + 𝑐2 =

=
2𝑒3 (𝑒 −√1 − 𝑒2 arcsin 𝑒) ,

𝐴11 = 𝐴12 = 𝑎2𝑐 ∞
∫0

𝑑𝑢
(𝑢 + 𝑎2)3√𝑢 + 𝑐2 =

=

√1 − 𝑒24𝑎2𝑒5 [3 arcsin 𝑒 − 𝑒 (3 + 2𝑒2)√1 − 𝑒2] . (97)

Критерий Вандерморта в этом случае запишется
так:

𝑡𝑒 ≡ Ω2𝐼112∣𝑉11∣ >
127 (1 + 𝑆)3(1 + 𝑈)2 ≡ 𝑡1,

𝑆 = 1 − 𝑎21𝐴11𝐴1 ,
𝑈 = 𝐼11Ω2

2𝑉11 ,
(98)

где 𝐴1 и 𝐴11 определяются равенствами (96) и (97),
а тензоры 𝐼11 и 𝑉11 –– формулами (69) и (70) соот-
ветственно. При этом функции 𝐽 (𝑚) и ψ (𝑚), фи-
гурирующие в выражениях 𝐼11 и 𝑉11, также задают-
ся формулами (69) и (70), в которых следует учесть𝑎1 = 𝑎2 и тождество (73). Это связано с тем, что дан-
ные функции зависят только от профиля ρ (𝑚).

Теперь рассмотрим случай вытянутого сферои-
да 𝑎 > 𝑏 = 𝑐. В этом случае малые параметры μ и μ̄
определяются равенством (31). Кроме того,

𝐼 = 𝑐2𝑒 ln 1 + 𝑒1 − 𝑒 , 𝑒2
= 1 − 𝑐2𝑎2 , (99)

𝐴1 = 𝑎𝑐2 ∞
∫0

𝑑𝑢
(𝑢 + 𝑐2)(𝑢 + 𝑎2)√𝑢 + 𝑎2 =

=
1 − 𝑒2𝑒3 (ln 1 + 𝑒1 − 𝑒 − 2𝑒) ,

𝐴2 = 𝐴3 = 𝑎𝑐2 ∞
∫0

𝑑𝑢
(𝑢 + 𝑐2)2√𝑢 + 𝑎2 =

=
1 − 𝑒22𝑒3 ( 2𝑒1 − 𝑒2 − ln 1 + 𝑒1 − 𝑒) ,

(100)

𝐴12 = 𝐴13 = 𝑎𝑐2 ∞
∫0

𝑑𝑢
(𝑢 + 𝑐2)2(𝑢 + 𝑎2)√𝑢 + 𝑎2 =

=
12𝑎2𝑒5 [2𝑒(3 − 2𝑒2) − 3(1 − 𝑒2) ln 1 + 𝑒1 − 𝑒] . (101)

Критерий Вандерморта в этом случае тождестве-
нен неравенству (76). Однако в выражении парамет-
ров 𝑆 и𝑈, фигурирующих в этом неравенстве и опре-
деляемых равенством (77), следует учесть выраже-
ния (100) и (101) для величин 𝐴1 и 𝐴12. Тензоры 𝐼11,𝐼22 и 𝑉11 задаются также формулами (69) и (70) с уче-
том равенства 𝑎2 = 𝑎3 и выражений (100) и (101).
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7. ПРИМЕРЫ И ВЫВОДЫ

Для применения полученных нами результатов
рассмотрим 64 модельные эллиптические галакти-
ки (МЭГ) с параметрами, точно совпадающими
с параметрами реальных галактик, имеющие фор-
му слоисто-неоднородного сжатого (сфероида Ма-
клорена) или вытянутого сфероида, или слоисто-
неоднородного трехосного эллипсоида Якоби с со-
ответствующими профилями (см. выше). При этом
полуоси этих галактик определены по значениям
величин 𝐷25 и 𝑅25 из каталога [4].

Проверено, что выполняется необходимое усло-
вие: неравенство Пуанкаре для существования
неоднородной галактики как фигуры равновесия
для всех рассмотренных МЭГ. При этом нормиро-
ванная угловая скорость для всех МЭГ как сферо-
идов Маклорена не превышает критического зна-
чения, т. е. Ω̃2

< 0.37423. Кроме того, установлено,
что условие устойчивости для МЭГ, имеющих фор-
му слоисто-неоднородного сжатого или вытянутого
сфероида, по критерию (34) Пиблса–Острайкера
выполняется. При этом значения параметра 𝑡
из критерия устойчивости Пиблса–Острайкера (34)
для слоисто-неоднородных вытянутых сфероидов
оказались меньше, чем их значения для сжатых
сфероидов, как и показано в книге [12]. Поэтому
устойчивость (или неустойчивость) галактик, имею-
щих форму вытянутого сфероида, можно установить
по другим критериям. Таковыми являются критерий
выполнения неравенства (65) для отношения зна-
чений нормированных удельных угловых моментов
сжатого и вытянутого сфероида (см. подраздел 4.9),
или критерий Вандерворта (см. разделы 5 и 6).

Если установить устойчивость (или не устой-
чивость) в зависимости от выполнения неравен-
ства (65), то при всех значениях параметра 𝑚0, удо-
влетворяющих неравенству𝑚0 ⩾ 𝑚̃0, мы заключаем,
что выполняется условие устойчивости таких галак-
тик с соответствующими профилями. В противном
случае вытянутый сферорид с соответствующими
профилями будем считать неустойчивым. Следова-
тельно, вытянутый сфероид с полуосями 𝑎0 = 𝑚0𝑎
и 𝑐0 = 𝑚0𝑐 будет устойчивым, если его полуоси удо-
влетворяют условию 𝑎0 > 𝑎1 = 𝑚̃0𝑎 и 𝑐0 > 𝑐1 = 𝑚̃0𝑐.
В противном случае будем считать его неустойчи-
вым. Как определяется параметр 𝑚̃0 мы рассмотрели
в подразделе 4.9, а полуоси 𝑎 и 𝑐 каждой конкретной
галактики взяты из каталога [4]. Возможно, такое
определение устойчивости (или неустойчивости) га-
лактик, имеющих форму вытянутого сфероида, но-
сит условный характер, так как является необходи-
мым, но недостаточным условием устойчивости.

В табл. 3 приведены критические значения па-
раметра 𝑚̃0, определяемые в зависимости от про-
филей ρ1(𝑚) БМ и ρ2(𝑚) ТМ для трех МЭГ. Значе-
ния 𝑎 и 𝑐–– большой и малой полуосей этих галак-
тик –– взяты из каталога Вокулера и др. [4]. Фигу-

рирующие в выражениях профилей ρ1(𝑚) и ρ2(𝑚)
ключевые параметры –– плотность в центре галакти-
ки ρ0, параметр β, нормализующий коэффициент 𝐾
и радиус-шкала 𝑟𝑠, а также масса 𝑀 определены в ра-
ботах [1, 7, 8].

Далее, на рис. 2, 3 и 4 приведены графики
функций 𝑇𝑘(𝑚0) в зависимости от профилей плот-
ности барионной массы (БМ) и темной материи
(ТМ), параметра 𝑚0, а также от формы галактики
МЭГ NGC 4472. Для краткости записи на рисунках
через 𝑇𝑘(𝑚0) обозначены:𝑇𝑘(𝑚0) = {𝑃𝑘(𝑚0), 𝑄𝑘(𝑚0), 𝑃𝑛(𝑚0), 𝑄𝑛(𝑚0)}, (102)(𝑘 = 1, 2, 3; 𝑛 = 1, 2),
0.6

T
k
(m

0
)

m
0

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

Рис. 2. График функций 𝑇𝑘(𝑚0) в зависимости
от параметра 𝑚0 МЭГ NGC 4472. Сплошная ли-
ния соответствует функции 𝑃1(𝑚0) ≡ 10−3𝛼1(𝑚0), т. е.
слоисто-неоднородному сжатому, а штриховая –– функ-
ции𝑄1(𝑚0) ≡ 10−3𝛽1(𝑚0) слоисто-неоднородному вы-
тянутому сфероиду с “астрофизическим” профилем,
пунктирная линия –– функции 𝑃1(𝑚0) ≡ 10−3𝛼1(𝑚0)
слоисто-неоднородному сжатому, а штрих-пунктирная
линия –– функции 𝑄1(𝑚0) ≡ 10−3𝛽1(𝑚0) или слоисто-
неоднородному вытянутому сфероиду с суммарным
профилем “астрофизическим” для БМ и аналогом про-
филя NFW для ТМ
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Рис. 3. График функций 𝑇𝑘(𝑚0) в зависимости от па-
раметра 𝑚0 МЭГ NGC 4472. Сплошная линия соответ-
ствует функции 𝑃2(𝑚0) ≡ 10−3𝛼2(𝑚0), или слоисто-
неоднородному сжатому, а штриховая –– функции𝑄2(𝑚0) ≡ 10−3𝛽2(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с “астрофизическим” профилем.
Пунктирная и штрих-пунктирная линии то же, что
на рис. 2
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Рис. 4. График функций 𝑇𝑘(𝑚0) в зависимости
от параметра 𝑚0 МЭГ NGC 4472. Сплошная линия
соответствует функции 𝑃3(𝑚0) ≡ 10−3𝛼3(𝑚0) слоисто-
неоднородному сжатому, а штриховая –– функции𝑄3(𝑚0) ≡ 10−3𝛽3(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с аналогом профиля Хернквиста,
пунктирная линия –– функции 𝑃2(𝑚0) ≡ 10−3𝛼2(𝑚0)
слоисто-неоднородному сжатому, а штрих-пунктирная
линия –– функции 𝑄2(𝑚0) ≡ 10−3𝛽2(𝑚0), или слоисто-
неоднородному вытянутому сфероиду с суммарным
профилем “астрофизическим” для БМ и аналогом
профиля Хернквиста для ТМ

где 𝑃𝑘(𝑚0) = 10−3α𝑘(𝑚0),𝑄𝑘(𝑚0) = 10−3β𝑘(𝑚0),(𝑘 = 1, 2, 3)𝑃𝑛(𝑚0) = 10−3α̃𝑛(𝑚0),𝑄𝑛(𝑚0) = 10−3β̃𝑛(𝑚0),𝑛 = (1, 2).
Кроме того, функции α𝑘(𝑚0), β𝑘(𝑚0) (𝑘 = 1, 2, 3)

и α̃𝑛(𝑚0), β̃𝑛(𝑚0) (𝑛 = 1, 2) определены выше равен-
ствами (48), (50), (53), (60) и (61) соответственно.

На рис. 2 сплошная линия соответствует
функции 𝑃1(𝑚0) ≡ 10−3α1(𝑚0), т. е. слоисто-неод-
нородному сжатому, а штриховая — функции𝑄1(𝑚0) ≡ 10−3β1(𝑚0) слоисто-неоднородному
вытянутому сфероиду с “астрофизическим”
профилем, пунктирная линия — функции𝑃1(𝑚0) ≡ 10−3α̃1(𝑚0) слоисто-неоднородному
сжатому, а штрих-пунктирная линия — функции𝑄1(𝑚0) ≡ 10−3β̃1(𝑚0), или слоисто-неоднородному
вытянутому сфероиду с суммарным профилем
“астрофизическим” для БМ и аналогом профиля
NFW для ТМ.

На рис. 3 сплошная линия соответствует
функции 𝑃2(𝑚0) ≡ 10−3α2(𝑚0), или слоисто-
неоднородному сжатому, а штриховая –– функции𝑄2(𝑚0) ≡ 10−3β2(𝑚0) слоисто-неоднородному вытя-
нутому сфероиду с “астрофизическим” профилем.
Обозначения пунктирной и штрих-пунктирной
линий совпадают с обозначениями на рис. 2.

На рис. 4 сплошная линия соответствует
функции 𝑃3(𝑚0) ≡ 10−3α3(𝑚0) слоисто-неод-

нородному сжатому, а штриховая –– функции𝑄3(𝑚0) ≡ 10−3β3(𝑚0) слоисто-неоднородному
вытянутому сфероиду с аналогом профиля
Хернквиста, пунктирная линия –– функции𝑃2(𝑚0) ≡ 10−3α̃2(𝑚0) слоисто-неоднородному
сжатому, а штрих-пунктирная линия –– функции𝑄2(𝑚0) ≡ 10−3β̃2(𝑚0), или слоисто-неоднородному
вытянутому сфероиду с суммарным профилем
“астрофизическим” для БМ и аналогом профиля
Хернквиста для ТМ.

Теперь о критерии неустойчивости Вандервор-
та (см. разделы 5 и 6). В случае вытянутого сферо-
ида с соответствующими профилями согласно это-
му критерию имеем следующее. Если галактика со-
стоит только из барионной массы с “астрофизи-
ческим” профилем, то только модельные галакти-
ки NGC 3610 и NGC 4660 являются неустойчивыми
по критерию Вандерворта. Если же галактика с фор-
мой вытянутого сфероида состоит из БМ с “астро-
физическим” профилем и ТМ с аналогом профиля
NFW, то согласно этому критерию следующие 10 мо-
дельных эллиптических галактик (МЭГ) являются
неустойчивыми: NGC 0661, 0680, 3610, 3641, 4278,
4283, 4434, 4473, 4660 и 5173. Наконец, в случае га-
лактики с формой вытянутого сфероида, состоящей
из БМ с “астрофизическим” профилем и ТМ с ана-
логом профиля Хернквиста, то следующие 5 МЭГ
являются неустойчивыми: NGC 0680, 4283, 4434,
4473 и 4660.

8. ЗАКЛЮЧЕНИЕ
Рассмотрены несколько новых моделей слоисто-

неоднородной эллиптической галактики (ЭГ), име-
ющей форму либо трехосного эллипсоида, либо сжа-
того или вытянутого сфероида. При этом полагает-
ся, что ЭГ состоит из барионной массы (БМ) и тем-
ной материи (ТМ) с разными законами распределе-
ния плотности –– профилями. Во всех моделей в ка-
честве профиля БМ берется “астрофизический за-
кон” распределения плотности, а в качестве профи-
ля ТМ –– один из аналогов профилей NFW и Херн-
квиста.

На основе этих моделей определены некоторые
ключевые динамические параметры ЭГ: гравита-
ционная (потенциальная) энергия и кинетическая
энергия вращения, распределение углового момента
и удельные угловые моменты в зависимости от про-
филей плотности.

В качестве примера взяты более шестидесяти
модельных эллиптических галактик с параметрами,
точно совпадающими с реально существующими.
Проверено, что выполняется с достаточной гаран-
тией необходимое условие: неравенство Пуанкаре
для существования неоднородной ЭГ как фигуры
равновесия. Кроме того, установлена устойчивость
(неустойчивость) ЭГ как динамической системы
согласно критерию Вандерворта и проверено вы-
полнение критерия Пиблса–Острайкера. Найдены
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критические значения параметра семейства сферо-
идов, определяющие границы устойчивости (или
неустойчивости) динамической системы по значе-
ниям удельных угловых моментов в зависимости
от профилей плотности.

Полученные результаты приведены в виде таб-
лиц и рисунков.
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ON THE STABILITY OF A LAYERED INHOMOGENEOUS ELLIPTICAL
GALAXY AS DYNAMIC SYSTEM
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In this paper, we consider several new models of a layered inhomogeneous elliptical galaxy (EG) having
the shape either a triaxial ellipsoid or an oblate or prolate spheroid and consisting of baryonic mass (BM)
and dark matter (DM) with different laws of density distribution — profiles. Based on these models, some
key dynamic parameters of the EG were determined: gravitational (potential) energy and rotational kinetic
energy, angular momentum distribution and specific angular momentum depending on density profiles. The
equilibrium and stability (instability) of the EG as a dynamic system have been established according to
known criteria. Critical values found parameters of the family of spheroids that determine the boundaries of
stability (or instability) dynamic system based on the values of specific angular momentum depending on the
density profiles. The results obtained were applied to sixty model EGs with parameters exactly matching
those that actually exist and are presented in the form of tables and figures.

Keywords: elliptical galaxies, fundamental parameters, the equilibrium and stability (instability)
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Метод синтеза кривых блеска двойных систем в модели Роша является мощным и широко
распространенным инструментом анализа. Однако в своем исходном виде он не подходит
для анализа кривых блеска двойных систем, в которых один или оба компонента обладают мощными
звездными ветрами. Ранее нами была предложена модель двойной системы, основанная на методе
синтеза, и включающая ветер у одного из компонентов. В настоящей работе предложено обобщение
модели на случай, когда ветер присутствует у обоих компонентов двойной системы. Поверхность,
разделяющая два ветра (контактная поверхность), рассчитывается в рамках стационарной модели
столкновения звездных ветров. При вычислении кривой блеска учитывается поглощение излучения
компонентов в ветрах, а также в слоях охлаждения, находящихся по обе стороны контактной
поверхности. Структура слоев охлаждения и их поверхностная плотность рассчитываются в рамках
радиативного приближения. Алгоритм позволяет учесть асимметрию контактной поверхности,
возникающую благодаря силе Кориолиса, а также (с привлечением заранее рассчитанных таблиц)
радиативное замедление ветров в тесных двойных системах. Приведены результаты численных
расчетов в различных тестовых моделях, наглядно показывающие необходимость учета влияния
ветров компонентов на оптические кривые блеска в системах WR + WR, WR + O, O + O.

Ключевые слова: затменные двойные системы, звезды Вольфа–Райе, звездный ветер, столкновение
звездных ветров, методы синтеза
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1. ВВЕДЕНИЕ

Двойные системы являются одним из самых на-
дежных источников информации о фундаменталь-
ных параметрах звезд –– их массах, радиусах и свети-
мостях. В настоящее время при исследовании двой-
ных систем широко применяются методы синтеза
кривых блеска и кривых лучевых скоростей. В от-
личие от геометрических методов, получивших наи-
большее развитие в работе Рассела и Меррилла [1],
метод синтеза основан на физической модели двой-
ной системы, в которой формы звезд рассчитыва-
ются с учетом приливного взаимодействия и других
эффектов. Поверхности звезд разбиваются на ты-
сячи элементарных площадок, излучение каждой
площадки рассчитывается с учетом физических эф-
фектов: потемнения к краю, гравитационного по-
темнения, эффекта “отражения”, геометрических
затмений и др. Суммарный поток излучения всех
видимых площадок определяет поток от системы
на данной фазе орбиты. Этот подход стал возмож-
ным с появлением первых общедоступных компью-

теров, и в начале 1970-х годов независимо рядом
авторов были предложены алгоритмы синтеза кри-
вых блеска двойных систем (см. [2–4] и др.). Наи-
более популярной в настоящее время является мо-
дель и соответствующая компьютерная программа
Вилсона и Девиннея [3, 5]. В ней формы поверх-
ностей обоих компонентов системы вычисляются
в модели Роша, учитывающей влияние приливных
и центробежных сил на тела звезд-компонентов си-
стемы. Предполагается, что оба компонента обла-
дают тонкими атмосферами. В дальнейшем мето-
ды синтеза совершенствовались и усложнялись, ря-
дом авторов были предложены новые модели (по-
дробные обзоры разработанных алгоритмов приве-
дены в статье Вилсона [6] и книге Каллрафа и Ми-
лоне [7]). В настоящее время исследователями двой-
ных систем активно используется пакет программ
PHOEBE (PHysics Of Eclipsing BinariEs), предложен-
ный в работах [8, 9], в его основе лежит алгоритм
Вилсона–Девиннея [3, 5].

Однако описанные модели двойных систем, со-
стоящих из компонентов с тонкими атмосфера-
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ми, плохо применимы к системам, содержащим
компоненты с мощными ветрами, например, звез-
ды Вольфа–Райе (WR), поскольку игнорируют по-
глощение в ветрах таких звезд. Тем не менее ино-
гда стандартный метод Вилсона–Девиннея исполь-
зуется в литературе для анализа кривых блеска
систем с ветрами, например, в работах [10, 11].
В моделях некоторых авторов учитывается погло-
щение в звездном ветре одного компонента систе-
мы в предположении постоянства скорости вет-
ра [12, 13]. Такое предположение упрощает рас-
четы, но в действительности скорость вещества
в звездном ветре горячих звезд переменна, что мо-
жет существенно повлиять на результаты анали-
за. В работе [14] авторы, анализируя кривые блес-
ка системы V444 Cyg (WN5 + O6 V) с помощью мо-
дели Вилсона–Девиннея, сделали еще более про-
стое предположение: они представили звездный ве-
тер компонента WR в виде сферической оболоч-
ки с постоянной плотностью и радиусом, равным
0.49 радиуса орбиты. Такая аппроксимация совер-
шенно неадекватна картине реального ветра WR
с переменной плотностью и приводит к неправиль-
ной оценке меняющегося поглощения в ветре с фа-
зой орбитального периода, а значит, к неверным
теоретическим кривым блеска. Неудивительно, что
авторы получили совершенно неадекватные оцен-
ки параметров звезды WR, противоречащие другим
исследованиям ([15–17] и др.): радиус звезды WR
переоценен более, чем в два раза, а ее температура
недооценена также более, чем в два раза. Этот при-
мер наглядно показывает необходимость адекват-
ного моделирования ветров звезд для корректного
решения кривых блеска и определения параметров
двойных систем, включающих компоненты со звезд-
ными ветрами.

Отметим, что существует и принципиально дру-
гой метод анализа кривых блеска систем со звездами
Вольфа–Райе, предложенный в работе [18], и усо-
вершенствованный в последние годы [17, 19–21].
Метод заключается в использовании регуляризиру-
ющих алгоритмов для решения интегральных урав-
нений, описывающих затмения в системе. С эти-
ми алгоритмами получены надежные параметры ря-
да звезд WR в составе двойных систем, но они мо-
гут применяться лишь к сравнительно разделенным
двойным системам, форма компонентов которых
близка к сферической. Использование возможно-
стей метода синтеза позволяет анализировать кри-
вые блеска систем с приливно-деформированными
компонентами.

Еще один метод анализа двойных систем, содер-
жащих один компонент со звездным ветром, был
предложен в статье [22]. В этой работе эмпирические
моменты кривой блеска (вычисляемые как некие
интегралы от наблюдаемой кривой [22]) сравнива-
ются с модельными, получаемыми с использовани-
ем простых аналитических выражений для распре-

деления яркости звезд по диску и непрозрачности
звездного ветра. Метод предполагает, что оба ком-
понента системы имеют сферическую форму, эф-
фект “отражения” не учитывается. Для определе-
ния эмпирических моментов кривой блеска требу-
ется очень гладкая кривая, что достигается сплайн-
аппроксимацией реальной наблюдаемой кривой. Та-
ким образом, метод может быть применен только
к кривым блеска, полученным с очень высокой точ-
ностью. Но даже в этом случае получаемые результа-
ты могут рассматриваться лишь в качестве грубого
приближения.

2. МОДЕЛЬ
Модель, учитывающая наличие звездного ветра

у одного из компонентов двойной системы, была
предложена нами в работах [23, 24] и использова-
на для анализа очень массивной двойной системы
с эллиптической орбитой WR 22 [25]. Эта модель
представляла собой обобщение нашей модели син-
теза кривых блеска тесных двойных систем в при-
ближении Роша [26–28]. Перечислим ее основные
особенности. Главный (первичный) компонент си-
стемы окружен звездным ветром. Основным отли-
чием этой модели от стандартной модели синтеза
является то, что для каждой элементарной площад-
ки на вторичном компоненте вычисляется оптиче-
ская толща ветра первичного компонента вдоль луча
зрения от этой площадки до наблюдателя. Эта оп-
тическая толща учитывается при вычислении окон-
чательного потока излучения от площадки. В оп-
тическом континууме оптическую толщу вещества
ветра первичной компоненты определяет электрон-
ное рассеяние. Поэтому ее величина вычислялась
по формуле

τ = ∞
∫𝑧0

σ𝑇𝑛𝑒(𝑧)𝑑𝑧 , (1)

где 𝑧 — координата вдоль луча зрения, σ𝑇 — сече-
ние Томсоновского рассеяния, 𝑛𝑒(𝑧) — электрон-
ная плотность ветра в точке 𝑧 на луче зрения, 𝑧0 —
координата на луче зрения площадки на поверхно-
сти вторичного компонента. Предполагая, что ветер
первичного компонента сферически симметричен
и используя уравнение неразрывности

𝑛𝑒(𝑟) = 𝑀̇4π𝑚𝑝 μ𝑒 𝑟2 𝑣(𝑟) , (2)

где 𝑀̇ — скорость потери массы первичным компо-
нентом, 𝑚𝑝 — масса протона, μ𝑒 — электронный
молекулярный вес (μ𝑒 ≃ 2/(1 + 𝑋), 𝑋 — содержание
водорода), 𝑣(𝑟) — скорость ветра на расстоянии 𝑟
от главной звезды, получим

τ = τ0
∞
∫𝑧0/𝑎

𝑑(𝑧/𝑎)(𝑟(𝑧)/𝑎)2 𝑣(𝑟(𝑧))/𝑉∞ . (3)
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Величины 𝑧0 и 𝑟(𝑧) легко вычисляются с использова-
нием формул, описывающих орбиту двойной систе-
мы (см. [25]). В качестве закона изменения скорости
ветра мы использовали общепринятый β-закон

𝑣(𝑟) = 𝑉∞ (1 − 𝑅∗𝑟 )β , (4)

где 𝑅
∗

— радиус первичного компонента, 𝑉∞ — ско-
рость ветра на бесконечности, β — параметр закона
скорости ветра. Из сказанного очевидно, чтоτ0 = σ𝑇𝑛0𝑎 , (5)
где 𝑎 — размер главной полуоси системы, 𝑛0 — ре-
ференсная электронная плотность (плотность ветра
на расстоянии 𝑎 от первичного компонента в пред-
положении, что скорость ветра в этой точке равна𝑉∞), равная

𝑛0 = 𝑀̇4π𝑚𝑝 μ𝑒 𝑎2 𝑉∞ . (6)

Очевидно, что поскольку оптическая толща ветра
пропорциональна отношению 𝑀̇ к 𝑉∞, эти пара-
метры не являются независимыми параметрами на-
шей модели. При прочих равных условиях, теоре-
тические кривые блеска с отличающимися 𝑀̇ и 𝑉∞,
но с одинаковым их отношением, будут идентич-
ны. Из этого также следует, что изменение теоре-
тической кривой блеска, например, при увеличе-
нии 𝑀̇, может быть также достигнуто соответствую-
щим уменьшением 𝑉∞.

В настоящей работе мы предлагаем дальнейшее
развитие этой модели, которое учитывает наличие
ветров вокруг обоих компонентов системы. В такой
двойной системе звездные ветра неизбежно стал-
киваются. Задача расчета взаимодействия ветров
в общем случае крайне сложна. Зона взаимодей-
ствия нестационарна из-за влияния ряда неустойчи-
востей [29–31]. Помимо этого, структура слоев охла-
ждения за фронтом ударной волны сильно зависит
от того, насколько эффективно охлаждение этого
вещества из-за высвечивания внутренней энергии.
Эффективность радиативного охлаждения в слое
характеризуется параметром [29]

χ = 𝑡cool𝑡esc
=

𝑣48 𝑑12𝑀̇
−7 ,

где 𝑣8 — скорость ветра в единицах 1000 км/с, 𝑑12 —
расстояние между звездами в единицах 1012 см,𝑀̇
−7 — скорость потери массы звездой в единицах10−7𝑀⊙/год, 𝑡cool — характерное время охлаждения,𝑡esc = 𝑑/𝑣𝑠 — характерное время оттекания горяче-

го газа от апекса поверхности, разграничивающей
два ветра (контактной поверхности, далее КП), 𝑣𝑠 —
скорость звука в слое охлаждения. Нестационарные
газодинамические модели показывают, что в случаеχ ≥ 3 слой охлаждения находится в адиабатическом
режиме, а в случае χ ≤ 3 — в радиативном. В зависи-
мости от параметров компонентов и их ветров в кон-

кретной двойной системе могут реализовываться
различные ситуации: (i) оба слоя (расположенные
по разные стороны КП) находятся в адиабатическом
(как правило, это широкие двойные системы) или
радиативном (тесные двойные системы) режимах;
(ii) один слой в адиабатическом, второй в радиатив-
ном режиме; (iii) если орбита системы эллиптиче-
ская, в разных ее частях один и тот же слой охлажде-
ния может находиться в разных режимах.

В первых работах по газодинамическому модели-
рованию столкновения ветров в двойных системах
(напр., [29]) предполагалось, что вплоть до момента
столкновения вещество ветров компонентов дви-
гается так, как будто второго компонента не суще-
ствует. Более того, чаще всего для упрощения рас-
четов предполагалось, что скорость каждого ветра
постоянна и равна 𝑉∞ для данного ветра. Однако та-
кие модели очень сильно переоценивали рентгенов-
скую светимость и жесткость рентгеновских спек-
тров, формируемых в слоях охлаждения. В действи-
тельности на элементарный объем вещества ветра
данной звезды действует не только сила лучевого
давления и гравитационного притяжения этой звез-
ды, но и такие же силы со стороны второй звезды
системы. Очевидно, что вдоль оси системы сила лу-
чевого давления второй звезды направлена в проти-
воположную сторону по отношению к силе лучевого
давления первой звезды. Таким образом, излучение
второй звезды замедляет ветер первой (и отклоняет
его от радиальных траекторий для вещества, нахо-
дящегося не на оси системы), и наоборот. Этот эф-
фект радиативного торможения (radiative inhibition)
был впервые рассмотрен в работе [32]. Он приво-
дит к тому, что скорость ветров в момент столкно-
вения может быть существенно меньше, чем в слу-
чае, когда радиативное торможение не учитывается.
Как следствие, кинетическая энергия ветров, пре-
образующаяся в тепловую энергию газа за фронтом
ударной волны, существенно уменьшается, что мо-
жет объяснить несоответствие первых газодинами-
ческих моделей и рентгеновских наблюдений. Оче-
видно, этот эффект должен сильнее проявляться
в тесных двойных системах. Авторы [33] рассмот-
рели тот же эффект в ситуации, когда ветер первой
звезды системы имеет подавляюще больший момент
по сравнению с ветром второй звезды. В традици-
онных моделях это означало, что баланса динами-
ческих давлений ветров не существует ни в одной
точке на оси системы между компонентами, и ве-
тер первой звезды сталкивается непосредственно
с поверхностью второй. Однако в работе [33] бы-
ло показано, что при определенных условиях веще-
ство первого ветра может сильно замедляться вбли-
зи поверхности второй звезды из-за того, что плот-
ность ее излучения в этой области резко возраста-
ет. Это приводит к увеличению плотности перво-
го ветра, что, в свою очередь, приводит к увели-
чению лучевого давления второй звезды. Возника-
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ет положительная обратная связь, и вещество пер-
вого ветра может остановиться вблизи поверхно-
сти второй звезды. В терминах КП это означает,
что баланс давлений даже в условиях преобладания
первого ветра может все-таки (при определенных
условиях) достигаться вблизи поверхности второй
звезды, и столкновения ветра первой звезды с по-
верхностью второй может не произойти. Этот эф-
фект получил название “радиативная остановка”
(radiative breaking).

Дальнейшее усложнение возникает из-за того,
что орбитальное движение компонентов двойной
системы приводит к закручиванию КП вокруг оси
вращения системы. При расчетах во вращающейся
системе координат это выражается в необходимости
учета влияния сил Кориолиса на движение вещества
ветров.

Учет перечисленных факторов при моделирова-
нии столкновения ветров в идеале требует создания
нестационарной трехмерной модели. Такие модели
требуют огромных компьютерных ресурсов, а рас-
четы даже на суперкомпьютерах занимают столь
долгое время, что их невозможно использовать для
поиска параметров конкретных двойных систем.
Обычно такие модели (чаще всего двумерные) ис-
пользуются для расчетов рентгеновских спектров
зоны взаимодействия ветров, для конкретной систе-
мы параметры не подбираются, а задаются равными
некоторым предполагаемым значениям. Такие мо-
дели оказались относительно успешными в случае
адиабатических ударных волн, когда размер зоны
столкновения велик и она может быть успешно ап-
проксимирована пространственной сеткой модели,
а перемешивание вещества относительно невелико.
В случае радиативных ударных волн, когда толщина
слоев охлаждения мала, в моделях возникают вы-
числительные проблемы, связанные с требуемым
разрешением сетки. Кроме того, как было отмече-
но в работе [34], в случае радиативной ударной вол-
ны современные газодинамические модели, помимо
вычислительных, сталкиваются с принципиальны-
ми трудностями. В значительной мере это связано
с проблемой корректного учета степени перемеши-
вания вещества за фронтом ударной волны.

Поскольку целью предлагаемой нами модели яв-
ляется возможность поиска за разумное время па-
раметров компонентов двойной системы и парамет-
ров их ветров, мы следуем подходу, предложенно-
му в нашей работе [34], а именно, вычисляем кон-
тактную поверхность и поверхностную плотность
слоев охлаждения в рамках стационарной модели
столкновения ветров. При этом форма КП воспро-
изводит усредненную по времени КП, вычисляе-
мую в нестационарных газодинамических моделях.
Дифференциальное уравнение, описывающее фор-
му КП (см. [34, уравнение (6)]), представляет со-
бой уравнение равенства динамических давлений
двух ветров. Дифференциальные уравнения, позво-

ляющие вычислить поверхностную плотность слоев
охлаждения, также приведены в [34].

Учет сил Кориолиса осуществляется аналогично
тому, как это было выполнено в статье [35]. В этой
работе авторы, с целью повышения эффективно-
сти вычислений, сравнили форму КП, получаемую
в нестационарной газодинамической модели, с фор-
мой КП, вычисленной в рамках стационарного при-
ближения. Оказалось, что (i) форма “стационар-
ной” КП хорошо воспроизводит усредненную фор-
му КП в газодинамической модели; (ii) КП может
быть разделена на две части: симметричную “вер-
хушку”, примыкающую к апексу КП и повернутую
на некоторый угол из-за действия сил Кориолиса,
и более далекие ветви, образующие спираль Архиме-
да вокруг центра масс системы. Спираль Архимеда
возникает при баллистическом движении вещества
во вращающейся системе координат. Угол поворота
“верхушки” может быть оценен из соотношения [35]

tan θ = 𝑣orb𝑉∞ ,
где 𝑣orb — орбитальная скорость второй звезды в си-
стеме координат с началом в центре первой звезды,
а 𝑉∞ — терминальная скорость более медленного
ветра. Авторы [35] определили, что точка, в кото-
рой силы Кориолиса становятся значимыми, то есть
симметричная “верхушка” переходит в спираль Ар-
химеда, определяется условием, что скорость оттока
вещества вдоль КП достигает 70–90% терминаль-
ной скорости более медленного ветра. Это условие
обычно выполняется на расстоянии нескольких ра-
диусов орбиты от апекса КП.

Таким образом, вместо трудоемких трехмер-
ных газодинамических вычислений, которые к то-
му же страдают от вычислительных и теоретиче-
ских проблем в случае радиативной ударной вол-
ны, мы можем использовать стационарную модель
столкновения ветров, вычислять форму КП без уче-
та сил Кориолиса, а затем поворачивать ее на угол θ.
При этом в случае известных параметров орбиты
и терминальных скоростей ветров может быть ис-
пользована фиксированная величина угла. В слу-
чае недостаточно хорошо известных параметров,
величина угла θ может использоваться как свобод-
ный параметр модели. Забегая вперед, отметим, что
для большинства разумных величин параметров
двойных систем, их компонентов и ветров, опти-
ческая толща ветров за пределами “верхушки” КП
очень мала. Поэтому в нашей модели мы вычис-
ляем лишь верхушку КП и ее поворот из-за дей-
ствия сил Кориолиса, и не учитываем баллистиче-
скую часть КП. Это существенно упрощает модель.
Однако в экстремальных случаях (чрезвычайно тес-
ные двойные системы с мощными ветрами) такое
предположение может быть некорректным. В буду-
щей версии модели будет включена баллистическая
часть КП.
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Учет влияния радиативного торможения на дви-
жение вещества в ветрах является трудоемкой зада-
чей, в общем случае требующей решения трехмер-
ных уравнений Навье–Стокса, включающих все дей-
ствующие на элементарный объем вещества силы.
В работе [36] эта задача была решена в стационар-
ном приближении и в предположении, что движение
вещества в ветрах компонентов осесимметрично от-
носительно линии центров системы. Это позволило
редуцировать задачу к системе двух дифференци-
альных уравнений в частных производных. Резуль-
татом решения является двумерное поле скоростей
в ветрах звезд, позволяющее рассчитать (осесиммет-
ричную) КП. Авторы [36] отмечают, что единичный
расчет двумерного поля скоростей при одном фик-
сированном наборе параметров модели занимает
около 9 часов на одном ядре современного процес-
сора. Очевидно, что непосредственное использова-
ние этого алгоритма в задаче минимизации невязок
между моделью и наблюдениями не реалистично.
Выходом из этой ситуации является предваритель-
ный расчет набора моделей (поля скоростей) на сет-
ке параметров и последующая интерполяция этих
результатов на текущие параметры модели в процес-
се поиска оптимальных параметров.

Необходимо сделать еще одно замечание. Излу-
чение звезды с ветром в оптическом континууме
формируется не только поверхностью основного те-
ла звезды (определяемой условием гидростатическо-
го равновесия), но и рассеянным излучением ветра.
Однако светимость такого рассеянного излучения
на много порядков величин меньше светимости са-
мой звезды, что подтверждается, например, эмпири-
ческим распределением яркости по диску компонен-
ты WR в системе V444 Cyg (WR + O), определенным
методом решения некорректных задач [17]. Поэтому
в нашей модели мы пренебрегаем этим эффектом.

Суммируя все сказанное выше, алгоритм, реа-
лизуемый в нашей модели двойной системы с двумя
ветрами, состоит в следующем:

1. Формы поверхности компонентов системы
вычисляются в модели Роша [26–28]. Орбита систе-
мы может быть круговой или эллиптической.

2. Излучение элементарной площадки на по-
верхности каждого компонента вычисляется стан-
дартным для метода синтеза образом с учетом по-
темнения к краю, гравитационного потемнения, эф-
фекта “отражения” [26–28]. Вычисляется монохро-
матический поток излучения; в примерах, приведен-
ных ниже, использована длина волны λ 4400 Å.

3. Контактная поверхность и поверхностная
плотность слоев охлаждения вычисляется, как опи-
сано выше, посредством решения дифференциаль-
ных уравнений, представленных в нашей работе [34].
Поворот КП из-за влияния сил Кориолиса может
быть задан фиксированным углом (при известных
параметрах орбиты и ветров) или рассматривать-
ся как свободный параметр модели. Для широких

систем, где радиативное торможение не играет су-
щественной роли, поле скоростей ветров рассчиты-
вается в соответствии с β-законом для каждого вет-
ра. Для тесных систем предусмотрена возможность
использования двумерных законов изменения ско-
рости в ветрах компонентов путем интерполяции
по таблице предварительно рассчитанных моделей,
учитывающих радиативное торможение.

4. Для каждой элементарной площадки на по-
верхности данной звезды, видимой для наблюдателя,
вычисляется точка пересечения луча зрения от этой
площадки с КП (если таковая имеется). Оптическая
толща ветра звезды 1 для площадок на звезде 2 вы-
числяется по формулам, приведенным выше, на ин-
тервале от точки пересечения до бесконечности. Так-
же учитывается оптическая толща слоев охлаждения.
Аналогично вычисляется оптическая толща ветра
звезды 2 для элементарных площадок на звезде 1.
Окончательный поток от каждой площадки вычис-
ляется с учетом этой оптической толщи.

5. Как и в стандартной реализации метода син-
теза, излучение всех площадок на обеих звездах си-
стемы суммируется с учетом геометрических затме-
ний, давая в результате общий поток от системы
на данной фазе орбитального периода.

3. МОДЕЛЬНЫЕ КРИВЫЕ БЛЕСКА
Учет радиативного торможения (особенно в тес-

ных двойных системах) является критически важ-
ным при расчетах рентгеновских спектров и светимо-
стей. Причиной является то, что рентгеновское из-
лучение систем со сталкивающимися ветрами фор-
мируется в слоях охлаждения по обе стороны от кон-
тактной поверхности. Температура плазмы за фрон-
том ударной волны пропорциональна квадрату ско-
рости набегающего ветра, и понижение скорости
из-за радиативного торможения ветров радикально
влияет на характеристики рентгеновского излуче-
ния. Как было отмечено в работе [32], радиативное
торможение существенно меняет скорости обоих
ветров в основном в области между компонентами
системы, близкой к линии центров. Свойства вет-
ров вдали от линии центров меняются значительно
меньше.

В нашей модели мы рассматриваем оптическое
излучение двойных систем со сталкивающимися
ветрами. В оптическом диапазоне основными ис-
точниками излучения являются звезды-компоненты
системы. Основная роль контактной поверхности —
определить границу раздела между ветрами. Из ска-
занного в предыдущем параграфе следует, что фор-
ма КП может измениться только вблизи линии цен-
тров системы. Более того, на форму КП влияют
не абсолютные скорости набегающих ветров, а со-
отношение их динамических моментов. Поскольку
обе звезды системы замедляют ветер друг друга, это
соотношение при учете радиативного замедления
меняется не слишком сильно по сравнению со слу-
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чаем, когда для обоих ветров используются стан-
дартные β-законы. Поэтому можно ожидать, что
форма КП в случае учета радиативного торможения
изменится не слишком сильно, а значит его влия-
ние на оптическое излучение системы не слишком
велико.

Учитывая то, что основной целью данной рабо-
ты было продемонстрировать алгоритм, обеспечива-
ющий инфраструктуру для вычисления оптических
кривых блеска двойных систем со сталкивающими-
ся ветрами, ниже мы показываем результаты толь-
ко для моделей, в которых скорости ветров до мо-
мента столкновения вычислялись с использовани-
ем β-законов и без учета радиативного торможения.
Как было отмечено выше, учет радиативного тормо-
жения представляет собой трудоемкую задачу, ко-
торую необходимо реализовывать отдельно от пред-
лагаемого нами алгоритма. При наличии табулиро-
ванных полей скоростей алгоритм предусматрива-
ет возможность их использования для расчета КП.
Задача расчета полей скоростей ветров с учетом ра-
диативного торможения будет являться предметом
отдельной работы.

Перечислим входные параметры задачи синте-
за теоретических кривых блеска двойных систем
со звездными ветрами (подробное описание пара-
метров приведено в работах [27, 28, 25], а также
в нашей первой статье по расчету пробных модель-
ных кривых блеска систем, содержащих два ком-
понента с ветрами [37]). Стандартные входные па-
раметры двойной системы и ее компонентов: ор-
битальный период 𝑃, наклонение орбиты 𝑖, экс-
центриситет орбиты 𝑒, долгота периастра первой
звезды ω, массы звезд 𝑀1, 𝑀2, средние эффектив-
ные температуры звезд 𝑇1, 𝑇2, коэффициенты за-
полнения полостей Роша μ1, μ2, коэффициенты
гравитационного потемнения β1𝑔, β2𝑔, коэффициен-
ты асинхронности вращения звезд 𝐹1, 𝐹2, боломет-
рические альбедо 𝐴1, 𝐴2, коэффициенты потемне-
ния к краю (𝑥, 𝑦)1, (𝑥, 𝑦)2, эффективная длина вол-
ны монохроматической кривой блеска λ. Парамет-
ры ветров: темпы потери массы звездами 𝑀̇1, 𝑀̇2,
скорости ветров на бесконечности 𝑉∞,1, 𝑉∞,2, па-
раметры в законе скорости ветров β1, β2, средние
электронные молекулярные веса вещества в вет-
рах μ𝑒,1, μ𝑒,2, угол поворота КП θ. При анализе кон-
кретной двойной системы многие параметры мо-
гут быть зафиксированы с учетом имеющейся ин-
формации о системе и физических характеристиках
ее компонентов.

Коэффициенты заполнения полостей Рошаμ1, μ2 используются как свободные параметры в про-
цессе поиска оптимального решения кривой блес-
ка. Они однозначно определяют формы поверхно-
стей звезд и, в частности, полярные радиусы ком-
понентов. Однако в качестве характерного радиуса
приливно-деформированной звезды разумно рас-
сматривать радиус равнообъемной сферы. Посколь-

ку в приводимых ниже примерах мы не решали об-
ратную задачу поиска оптимальных параметров мо-
дели по наблюдаемой кривой блеска, а лишь рассчи-
тывали теоретические кривые по заданному набору
параметров модели, в качестве входного параметра,
описывающего радиус компонента, мы использова-
ли не коэффициент заполнения для данного ком-
понента, а его радиус, который считался радиусом
равнообъемной сферы. Требуемый в модели коэф-
фициент заполнения подбирался так, чтобы соответ-
ствовать этому радиусу. Ниже показаны результаты
расчетов теоретических кривых блеска в нескольких
моделях с параметрами, характерными для различ-
ных типов систем.

На рис. 1 показан набор контактных поверх-
ностей для некоторой условной двойной системы
со сталкивающимися ветрами. В качестве прото-
типа мы использовали модель системы с двумя
идентичными звездами O5 V, параметры кото-
рых взяты из работы [38]: массы компонентов𝑀1 = 𝑀2 = 37.28𝑀⊙, радиусы 𝑅1 = 𝑅2 = 11.08𝑅⊙,
температуры 𝑇1 = 𝑇2 = 41 540 K, терминальные
скорости ветров 𝑉∞,1 = 𝑉∞,2 = 2900 км/с, пара-
метры β-закона β1 = β2 = 1. Период системы был
принят равным 8 дней, что при заданных мас-
сах компонентов соответствует радиусу орбиты𝑎 = 70.84𝑅⊙. Орбита полагалась круговой. Для того
чтобы проиллюстрировать изменение формы КП
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Рис. 1. Несколько контактных поверхностей (КП) для
условной системы O5 V + O5 V (см. текст). Для избе-
жания загромождения рисунка показаны не трехмер-
ные поверхности, а их пересечения с плоскостью орби-
ты. Приливные искажения малы, поэтому компоненты
системы показаны окружностями, номера внутри них
обозначают номера звезд. Поворот КП из-за влияния
сил Кориолиса и радиативное торможение не учитыва-
лись. Для поверхностей 1–5 соотношение темпов поте-
ри массы звездами 𝑀̇2/𝑀̇1 составляет 1.0, 0.5, 0.4, 0.3,0.1 соответственно
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при изменении соотношения мощности ветров,
мы рассчитали КП для пяти моделей. В первой
модели скорости потери массы обоими компо-
нентами одинаковы 𝑀̇1 = 𝑀̇2 = 1.0 × 10−6𝑀⊙/год.
В последующих моделях скорость потери массы вто-
рой звездой уменьшается (см. рис. 1). Эти модели
несколько искусственны, поскольку значение 𝑀̇,
вообще говоря, связано с другими параметрами
звезды. Они были выбраны с целью продемонстри-
ровать влияние мощности ветров на форму КП,
отделив его от влияния других параметров. В этом
наборе моделей поворот КП из-за влияния сил
Кориолиса не учитывался.

В моделях 1–4 контактная поверхность находит-
ся в пространстве между компонентами системы.
В модели 5 ветер звезды 1 настолько преобладает
над вторым ветром (𝑀̇2/𝑀̇1 = 0.1), что в простран-
стве между звездами он полностью подавляет ветер
второй звезды и сталкивается с ее поверхностью.

На рис. 2 показано влияние сил Кориолиса
на поворот КП для модели 3. Угол поворота верхуш-
ки КП для данной модели составляет θ = 8.8○.

На рис. 3 (панели (a) и (b)) показана зависимость
кривых блеска для модели 1 (идентичные звезды
O5 V и их ветра) от скорости потери масс компонен-
тами. На панели (b) показаны те же кривые блес-
ка, что и на панели (a), но в увеличенном масшта-
бе. Влияние сил Кориолиса в моделях, показанных
на панелях (a), (b), не учитывалось. Для сравнения
показана кривая блеска без учета поглощения из-
лучения звезд ветрами. На внезатменных участках
этой кривой блеск системы практически постоя-
нен, поскольку система сравнительно разделенная,

1 2

Рис. 2. Влияние сил Кориолиса на угол поворота вер-
хушки контактной поверхности (КП) для модели 3 (см.
рис. 1). Слева: 3D модель системы при взгляде с полю-
са орбиты. Орбита системы показана черной окружно-
стью, звезда номер 1 находится в центре орбиты. Орби-
тальное движение происходит против часовой стрелки.
КП без учета сил Кориолиса помечена индексом “1”,
КП с учетом сил Кориолиса — индексом “2”. Спра-
ва: КП 2 для угла наклонения орбиты 70○ и орбиталь-
ной фазы 0.7. Сетки на КП разрежены для ясности ри-
сунков; плотность сеток в реальных расчетах намного
выше

и приливные искажения компонентов малы. Угол
наклона орбиты во всех моделях равен 𝑖 = 90○. Такой
угол позволяет наиболее наглядно показать влияние
поглощения в ветрах на кривую блеска, исключив
другие факторы. Поскольку звезды и их ветра иден-
тичны, на фазах квадратур (0.25 и 0.75) поглощение
излучения звезды в ветре соседки отсутствует (лучи
зрения от площадок на звезде к наблюдателю не пе-
ресекают КП), и общий блеск системы такой же, как
в случае модели без ветров. В моменты соединений
(фазы 0.0 и 0.5) происходит полное геометрическое
затмение компонентов друг другом. Поэтому блеск
системы на этих фазах также не зависит от наличия
ветров. Таким образом, поглощение в ветрах ком-
понентов проявляется только в изменении ширины
минимумов. Как видно из рис. 3 (a, b), при скорости
потери массы 𝑀̇1,2 = 1 × 10−6𝑀⊙/год, характерной
для звезд спектральных классов O, влияние погло-
щения в ветрах на кривую блеска минимально. При
увеличении 𝑀̇ до значения 1 × 10−5𝑀⊙/год (харак-
терного для звезд WR) изменения становятся суще-
ственными.

На рис. 3 (c) для модели 1 с принятыми значени-
ями 𝑀̇1,2 = 5 × 10−6𝑀⊙/год показано влияние учета
сил Кориолиса на кривую блеска. Оно проявляет-
ся в асимметрии минимумов, а также в смещении
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Рис. 3. Влияние величины скорости потери массы 𝑀̇
на кривую блеска в модели 1. Верхняя сплошная чер-
ная кривая — кривая блеска двойной системы, в ко-
торой у компонентов нет ветров (a). Сверху вниз:
сплошными цветными линиями показаны кривые
блеска для 𝑀̇1,2 = 1 × 10−6𝑀⊙/год, 5 × 10−6𝑀⊙/год,10 × 10−6𝑀⊙/год. (b): Те же кривые блеска в увеличен-
ном масштабе. Влияние сил Кориолиса в моделях, по-
казанных на панелях (a) и (b), не учитывалось. (c): Вли-
яние сил Кориолиса на асимметрию кривой блес-
ка для модели 1 (𝑃 = 8𝑑) при 𝑀̇1,2 = 5 × 10−6𝑀⊙/год,
см. текст. (d): Влияние сил Кориолиса на асиммет-
рию кривой блеска для модели, аналогичной модели 1
с 𝑀̇1,2 = 5 × 10−6𝑀⊙/год, но с периодом 𝑃 = 4𝑑
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максимумов кривой блеска от фаз 0.25 и 0.75. По-
скольку поворот КП из-за сил Кориолиса в данной
модели невелик, асимметрия кривой блеска также
мала. На панели (d) показана кривая блеска моде-
ли системы, параметры которой остались теми же,
что в модели с панели (c), за исключением орби-
тального периода, который уменьшен до 4 дней. Как
и на других панелях, для сравнения показана кри-
вая блеска без учета поглощения в ветрах (верхняя
кривая). Расстояние между компонентами в этой
модели составляет 44.63𝑅⊙. При таком расстоянии
компоненты системы испытывают заметное прилив-
ное искажение, что проявляется в эллипсоидальной
переменности верхней кривой блеска на внезатмен-
ных участках. Асимметрия нижней кривой блеска
(рассчитанной с учетом поглощения в ветрах и сил
Кориолиса) выражена все еще довольно слабо, по-
скольку угол поворота КП составляет θ = 11○. Более
выраженная асимметрия из-за влияния сил Корио-
лиса, очевидно, будет проявляться в очень тесных
двойных системах.

Более интересно то, что, как видно из рис. 3 (d),
поведение нижней кривой блеска (с учетом погло-
щения в ветрах) на внезатменных участках вполне
может быть интерпретировано в модели без ветров
как внезатменная эллипсоидальная переменность.
Поскольку величина этой переменности заметно
больше, чем истинная переменность из-за прилив-
ных искажений компонентов, анализ подобных кри-
вых блеска с использованием стандартного метода
синтеза (звезды с тонкими атмосферами) приведет
к переоценке размеров звезд системы.

Представляется интересным проверить, какая
кривая блеска будет получена с нашей моделью
для одной из известных систем с компонентом WR.
В качестве такой системы мы выбрали V444 Cyg,
которая часто рассматривается как “Rosetta stone”
систем WR + O. Система является затменной, что
позволяет достаточно надежно определять парамет-
ры компонентов, и при этом сравнительно разде-
ленной, что позволяет избежать трудностей, свя-
занных с учетом приливных искажений звезд. Как
следствие, система хорошо изучена по сравнению
с подобными. Ее компонентами являются звез-
да WR подтипа WN5 и звезда O6 V. Орбита системы
круговая, орбитальный период составляет 4.2 дня,
угол наклонения орбиты 𝑖 ≃ 78○, радиус орбиты𝑎 ≃ 40𝑅⊙ [15, 17]. Мы использовали типичные па-
раметры звезды O6 V из работы [38]:𝑀O = 30.98𝑀⊙,𝑅O = 10.11𝑅⊙, 𝑇eff,O = 38 867 K. Параметры ветра
также были приняты равными типичным для таких
звезд [36]: 𝑀̇O = 1 × 10−6𝑀⊙/год, 𝑉∞,O = 2900 км/с,βO = 1.0. Компонент WN5 является классической
звездой WR с гелиевым ядром, поэтому ее радиус
был принят равным 𝑅WR = 3𝑅⊙ [39]. Из третьего за-
кона Кеплера масса этого компонента при указан-
ных выше параметрах орбиты и звезды O составля-
ет 𝑀WR = 17.75𝑀⊙. Температура звезды WR опреде-

ляется наблюдательным отношением светимостей𝐿O/𝐿WR = 1.63 [16] и при принятых выше парамет-
рах составляет 𝑇eff,WR = 63 030 K. Терминальная ско-
рость ветра WR была определена в работе [40] по уль-
трафиолетовым спектральным линиям в спектрах,
полученных на спутнике IUE: 𝑉∞,WR = 2200 км/с
(взята скорость, определенная по линиям He II).
Скорость потери массы звездой WR была опреде-
лена по изменению орбитального периода в рабо-
те [41]: 𝑀̇WR = 7 × 10−6𝑀⊙/год. Ветра звезд WR уско-
ряются медленнее, чем звезд O, что соответствует
большим значениям показателя β в β-законе ско-
рости [17]. Поэтому значение этого показателя для
звезды WR было принято равным βWR = 1.5 [17]. На-
конец, химический состав (влияющий на величину
среднего электронного молекулярного веса веще-
ства в ветре μ𝑒) для звезды O был принят равным
Солнечному. Для звезды WR, преобладающим эле-
ментом в которой является гелий, полностью иони-
зованный в ветре, мы приняли простое предполо-
жение, что содержание водорода 𝑋 = 0 (и, следова-
тельно, μ𝑒 = 2).

На рис. 4 показаны кривые блеска, полученные
в нашей модели с указанными выше параметра-
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Рис. 4. Вверху: кривые блеска модели, параметры
которой аналогичны параметрам двойной системы
V444 Cyg (WR + O) (подробнее см. текст). Точками по-
казана наблюдаемая неректифицированная узкополос-
ная кривая блеска на длине волны λ 4244 Å. Нижняя
красная сплошная кривая — модельная кривая блеска
с учетом поглощения в ветрах компонентов, посчитан-
ная на той же длине волны. Верхняя черная сплошная
кривая — модельная кривая блеска с теми же парамет-
рами звезд и орбиты, но без учета поглощения в ветрах.
Внизу: проекция изображений звезд и контактной по-
верхности на плоскость орбиты. Звезда WR находится
в центре орбиты. Показано направление орбитального
вращения и фазы орбитального периода
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ми. Красная сплошная кривая (нижняя) показывает
кривую блеска с учетом поглощения в ветрах компо-
нентов. Черная сплошная кривая (верхняя) получе-
на при тех же параметрах модели, но без учета погло-
щения в ветрах. Для сравнения точками показана
наблюдаемая кривая блеска V444 Cyg в узкополос-
ном фильтре λ 4244 Å [17]. В нижней части рисунка
показана геометрия системы и КП при взгляде с по-
люса орбиты. Как видно, ветер WR преобладает на-
столько, что сталкивается с поверхностью звезды O.
Результаты, показанные на рисунке, позволяют сде-
лать несколько выводов:

1. Теоретическая кривая блеска, полученная
в нашей модели с учетом поглощения в ветрах,
очень хорошо описывает наблюдаемую кривую блес-
ка V444 Cyg. Это замечательный результат, учиты-
вая, что поиск параметров модели не проводился,
а использованные параметры орбиты, компонентов
и их ветров взяты из нескольких независимых лите-
ратурных источников.

2. Форма вторичного минимума практически
не отличается в модели с учетом и без учета погло-
щения в ветрах. Причиной этого является то, что
в данном минимуме звезда O находится впереди (на-
блюдатель смотрит на систему справа на нижней
панели рисунка). Соответственно в этом минимуме
происходит поглощение излучения звезды WR в вет-
ре звезды O. Для данной конфигурации системы
и ее компонентов, на фазе 0.5 происходит частичное
геометрическое затмение, при этом центр диска WR
находится внутри диска O, так что геометрически
видимая часть диска WR невелика. К тому же ее излу-
чение проходит через намного менее плотный ветер
звезды O. В результате, поглощение излучения звез-
ды WR в ветре звезды O незначительно. По этой же
причине во вторичном минимуме не проявляется
влияние поворота КП из-за сил Кориолиса (угол по-
ворота для данной конфигурации системы составля-
ет θ = 12.36○). В главном минимуме влияние сил Ко-
риолиса также пренебрежимо мало, поскольку угол
раскрытия КП мал и для излучения звезды O на со-
ответствующих фазах ветер звезды WR сферически-
симметричен (см. нижнюю панель рисунка).

3. Теоретическая кривая блеска, полученная
при тех же параметрах системы и ее компонентов,
но без учета поглощения в ветрах (верхняя сплошная
черная кривая), радикально отличается от кривой
блеска в полной модели (нижняя сплошная крас-
ная кривая) на внезатменных участках и в главном
минимуме. Интересно, что глубина главного мини-
мума верхней кривой на рис. 4 существенно мень-
ше, чем глубина вторичного минимума. Это связа-
но с тем, что геометрия затмений и перекрываемой
в них площади остается одинаковой в обоих миниму-
мах. Поэтому поток, затмеваемый на фазах главного
и вторичного минимумов, зависит от температуры
соответствующего компонента. Поскольку темпе-
ратура звезды WR заметно выше, чем температура

звезды O, поток с одинаковой площади WR (затмева-
емой во вторичном минимуме) заметно превышает
поток O (затмеваемой в главном минимуме).

4. Рисунок 4 наглядно демонстрирует, что ин-
терпретация кривой блеска системы WR + O стан-
дартным методом синтеза в модели звезд с тонкими
атмосферами приведет к радикально неверным па-
раметрам компонентов.

Необходимо отметить, что, строго говоря, в си-
стеме с параметрами V444 Cyg могут играть суще-
ственную роль эффекты радиативного торможения
и радиативной остановки. Поэтому полученные вы-
ше результаты следует рассматривать как предва-
рительные. С другой стороны, как было отмечено
выше, влияние радиативного торможения на фор-
му КП, вероятно, не слишком велико. Что касается
радиативной остановки, то даже в случае, если ве-
тер WR остановится недалеко от поверхности звез-
ды O, это существенно не изменит картину в це-
лом. Ветер WR все еще преобладает, а плотность вет-
ра O намного меньше плотности ветра WR. Неболь-
шие изменения формы и положения КП, скорее все-
го, приведут к незначительным изменениям кривой
блеска. Конечно, эти качественные аргументы тре-
буют проверки в соответствующим образом адапти-
рованной модели.

На рис. 5 представлен вариант предыдущей мо-
дели для угла наклонения орбиты 𝑖 = 70○. При таком
угле геометрических затмений тел звезд не происхо-
дит и оба затмения чисто атмосферные. Целью это-
го варианта было продемонстрировать изменение
кривой блеска в зависимости от скорости потери
массы звездой WR. Жирная черная кривая показы-
вает кривую блеска без учета поглощения в ветрах.
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Рис. 5. Теоретические кривые блеска, показывающие
зависимость формы кривых от величины скорости по-
тери массы первичным компонентом 𝑀̇1 для случая чи-
сто атмосферного затмения. Параметры системы и ком-
понентов такие же, как для модели V444 Cyg, за исклю-
чением угла наклонения орбиты (на данном рисунке𝑖 = 70○) и скорости потери массы звездой WR. Жир-
ная черная линия показывает кривую блеска без уче-
та поглощения в ветрах. Цветные тонкие линии, рас-
положенные сверху вниз в главном минимуме, пока-
зывают кривые блеска, соответствующие скоростям
потери массы 𝑀̇WR = (1, 2, 5, 7) × 10−6𝑀⊙/год. Штри-
ховой линией показана кривая блеска в модели, где
скорость потери массы звездой WR экстремально вели-
ка 𝑀̇WR = 5 × 10−5𝑀⊙/год (видна только верхняя часть
кривой, см. текст)
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Поскольку геометрические затмения отсутствуют,
вся переменность в этой модели связана с меняю-
щейся относительно наблюдателя ориентацией при-
ливно деформированных тел компонентов систе-
мы (эллипсоидальная переменность), а также отча-
сти с эффектом “отражения”. Кривые блеска, по-
казанные сплошными цветными линиями (сверху
вниз в главном минимуме), соответствуют скоро-
стям потери массы 𝑀̇WR = (1, 2, 5, 7) × 10−6𝑀⊙/год.
Поведение этих кривых блеска в области главно-
го минимума не вызывает вопросов: чем больше
скорость потери массы звездой WR, тем больше по-
глощение излучения звезды O в главном минимуме.
Поведение кривой блеска во вторичном минимуме
на первый взгляд нелогично. Если при минималь-
ной 𝑀̇WR = 1 × 10−6𝑀⊙/год кривая блеска в этом ми-
нимуме проходит ниже кривой в модели без ветров,
то с увеличением 𝑀̇WR она начинает проходить все
выше и выше. Объясняется это тем, что во всех вари-
антах модели, кроме минимального 𝑀̇WR, ветер WR
сталкивается с поверхностью звезды O, а угол рас-
крытия конуса КП достаточно мал. В результате да-
же на орбитальных фазах 0.3–0.4 излучение звез-
ды O поглощается в ветре WR (смотри нижнюю па-
нель рис. 4). Для того чтобы продемонстрировать
это наглядно, мы рассчитали модель с экстремаль-
но большим значением 𝑀̇WR = 5 × 10−5𝑀⊙/год. Со-
ответствующая кривая блеска показана на рисунке
штриховой линией (видна только верхняя часть кри-
вой, поскольку глубина главного минимума состав-
ляет 0.63𝑚). Форма крыльев главного минимума яс-
но показывает, что поглощение излучения звезды O
в ветре WR продолжается вплоть до орбитальной фа-
зы ∼ 0.4. В этой модели оно настолько велико, что
полностью маскирует эллипсоидальную перемен-
ность. В других, не столь экстремальных моделях,
поглощение на указанных фазах также присутству-
ет. Оно заметно понижает относительную высоту
максимумов на фазах ∼ 0.2 и ∼ 0.8, уменьшая тем
самым амплитуду переменности во вторичном ми-
нимуме (разницу звездных величин в максимумах
и на фазе 0.5). При этом повышение уровня кривых
блеска в области фазы 0.5 является следствием нор-
мировки теоретических кривых блеска на максимум.
В случае, если бы кривые рисовались в абсолютных
единицах, уровень блеска на фазе 0.5 для больших
значений 𝑀̇WR примерно совпадал бы с уровнем ре-
ференсной кривой блеска без учета ветров, а мак-
симумы на фазах ∼ 0.2 и ∼ 0.8 находились бы ниже
максимумов референсной кривой блеска.

На рис. 6 показаны кривые блеска системы с эл-
липтической орбитой. Для простоты в качестве ком-
понентов системы рассмотрены две идентичные
звезды, параметры которых совпадают с парамет-
рами звезды O6 V в модели для V444 Cyg, за исклю-
чением скорости потери массы, которая была увели-
чена до 𝑀̇1,2 = 5 × 10−6𝑀⊙/год для того, чтобы вли-
яние ветров было более выражено. Период систе-

Рис. 6. Теоретические кривые блеска для системы с экс-
центричной орбитой (𝑒 = 0.2) (см. текст). (a): угол на-
клонения орбиты 𝑖 = 75○. (b): угол наклонения орби-
ты 𝑖 = 65○. На обеих панелях черные (верхние) кривые
блеска показывают модели без учета поглощения в вет-
рах компонентов. Красные (нижние) кривые получены
при учете поглощения в звездных ветрах

мы остался таким же (4.2 дня), а эксцентриситет
орбиты и долгота периастра первого компонента
приняты равными 𝑒 = 0.2 и ω = 0.0. На панели (a)
верхней черной кривой показана референсная кри-
вая блеска системы без учета поглощения в ветрах
для угла наклонения орбиты 𝑖 = 75○. При этом угле
наблюдаются частичные геометрические затмения.
Фаза периастра равна 0.187, вблизи нее наблюдается
эллипсоидальная переменность. Вблизи апоастра
(на фазах после вторичного минимума) эта пере-
менность практически отсутствует. Нижняя крас-
ная кривая показывает кривую блеска с учетом по-
глощения в ветрах и сил Кориолиса. Влияние сил
Кориолиса на поворот КП проявляется в асиммет-
рии максимума кривой блеска с учетом поглощения
в ветрах в районе орбитальной фазы 0.22. На ниж-
ней панели рис. 6 показаны аналогичные кривые
блеска для угла наклонения орбиты 𝑖 = 65○. Геомет-
рические затмения отсутствуют, и вся переменность
обусловлена эллипсоидальными изменениями и по-
глощением в ветрах.

4. ЗАКЛЮЧЕНИЕ
В работе представлена модель и соответствую-

щий алгоритм, который позволяет рассчитывать оп-
тические кривые блеска двойных систем со сталки-
вающимися ветрами. Вычисления, выполненные
для ряда теоретических моделей с параметрами, ха-
рактерными для реальных систем, наглядно пока-
зывают, что учет поглощения в ветрах необходим
для получения максимально точных параметров си-
стем, их компонентов и ветров. Определение пара-
метров таких систем классическим методом синтеза
в модели Роша без учета ветров неизбежно приво-
дит к значительным погрешностям в получаемых
параметрах.

Представленная модель будет использоваться
в наших дальнейших работах по анализу кривых
блеска систем WR + WR, WR + O, O + O. Наиболее
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интересными кандидатами являются чрезвычайно
массивные системы (с суммарными массами,
превышающими 130𝑀⊙) WR20a (WN6 + WN6),
NGC 3603-A1 (WN6 + N6), WR21 (Of/WN + O)
и др.

Отдельное исследование будет посвящено раз-
работке по возможности эффективного вычисли-
тельного алгоритма, который позволит рассчиты-
вать поля скоростей в ветрах компонентов с уче-
том радиативного торможения и радиативной
остановки.
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LIGHT CURVE SYNTHESIS FOR COLLIDING WIND BINARY SYSTEMS
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The synthesis method which allows one to compute light curves of binary systems in the Roche model is
a powerful and widely used analysis tool. However, in its original form, it is not suitable for the analysis
of light curves of binary systems in which one or both components have powerful stellar winds. Previously,
we proposed a model of a binary system based on the synthesis method and including one component with
a wind. In the current paper, we propose a generalization of the model to the case when both components
of the binary system have winds. The surface separating the two winds (the contact surface) is calculated
within the framework of a steady state model of stellar wind collision. When calculating the light curve, the
absorption of stellar radiation in the winds, as well as in the cooling layers located on both sides of the contact
surface, is taken into account. The structure of the cooling layers and their surface density are calculated in
the radiative shock limit. The algorithm allows one to take into account the asymmetry of the contact surface
caused by the Coriolis force, as well as (using pre-calculated tables) the radiative inhibition of the winds
in close binary systems. The results of numerical calculations in various test models are presented, clearly
demonstrating the need to take into account the influence of the winds on optical light curves in WR + WR,
WR + O, O + O systems.

Keywords: eclipsing binary systems, Wolf-Rayet stars, stellar wind, wind-wind collision, synthesis methods
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планеты. Разработанную модель предполагается использовать для исследования наблюдательных
проявлений потенциального биомаркера NO в атмосферах экзопланет без собственного магнитного
поля.

Ключевые слова: Венера, численное моделирование, МГД, ионосфера, магнитосфера,
взаимодействие с солнечным ветром

DOI: 10.31857/S0004629925010034, EDN: HLVJYZ

1. ВВЕДЕНИЕ
1.1. Магнитосфера Венеры

Интерес к Венере во многом обусловлен ее рази-
тельными отличиями от Земли, несмотря на схожие
размеры и положение в Солнечной системе. Очевид-
но, что ее история включала в себя события и процес-
сы, которые были (а в некоторых случаях и остают-
ся) совершенно иными, или резко отличались от тех,
что происходили на нашей родной планете и в ее кос-
мическом окружении. У Венеры, подобно Марсу,
отсутствует собственное магнитное поле, и, соответ-
ственно, ее верхние атмосфера и ионосфера напря-
мую взаимодействуют с плазмой солнечного ветра.

Главной особенностью взаимодействия плазмы
солнечного ветра [1, 2] с немагнитными планетами
является формирование полости в солнечном вет-
ре, так называемой индуцированной магнитосфе-
ры. Индуцированная магнитосфера является пре-
пятствием для сверхзвукового потока плазмы и, сле-
довательно, перед планетой должна формировать-
ся головная (отошедшая) ударная волна. Возле под-
солнечной точки индуцированная магнитосфера от-
делена от плазмы солнечного ветра магнитным ба-
рьером — областью с увеличенным магнитным по-
лем. Внешняя граница магнитного барьера пример-
но соответствует границе индуцированной магни-
тосферы. Индуцированная магнитосфера наполне-

на ионами планетного происхождения. Планетные
ионы присутствуют также и в областях термализо-
ванного солнечного ветра (magnetosheath) и невоз-
мущенного солнечного ветра.

Головная ударная волна вызывает замедление
потока солнечного ветра от сверхзвуковой к дозвуко-
вой скорости (см., напр., [3]). Граница между замед-
ленным потоком солнечного ветра и индуцирован-
ной магнитосферой, часто называемая границей ин-
дуцированной магнитосферы (IMB), не полностью
препятствует проникновению плазмы солнечного
ветра в атмосферу. Гиро-радиусы частиц солнечного
ветра достаточно велики по сравнению с размера-
ми IMB, что позволяет частицам плазмы двигаться
по спирали вдоль сжатого магнитного поля и непо-
средственно взаимодействовать с верхними слоя-
ми венерианской атмосферы. Это уникальное свой-
ство малого размера индуцированной магнитосфе-
ры позволяет электронам и протонам солнечного
ветра проникать в атмосферу Венеры.

Высыпание заряженных и нейтральных частиц
в верхнюю атмосферу Венеры существенно отли-
чается от высыпания в верхнюю атмосферу Земли.
В случае Земли сильное магнитное поле планеты за-
щищает нейтральную атмосферу от прямого воздей-
ствия плазмы солнечного ветра, и только в области
магнитных каспов возможно проникновение заря-
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женных частиц с высокими кинетическими энерги-
ями на высоты нейтральной атмосферы. В отличие
от Земли на Венере граница между солнечным вет-
ром и отражающим препятствием, границей инду-
цированной магнитосферы IMB, расположена до-
статочно близко к планете. Следовательно, пересе-
кающие IMB электроны и ионы солнечного ветра
могут непосредственно взаимодействовать с ней-
тральной атмосферой.

Результатом данных особенностей во взаимодей-
ствии плазмы солнечного ветра с атмосферами Зем-
ли и Венеры является различие в характеристиках
высыпающихся частиц. Протоны и тяжелые ионы
из кольцевого тока Земли ускоряются до энергий по-
рядка десятков кэВ в магнитосфере, удерживаются
сильным внутренним магнитным полем и попадают
в нейтральную атмосферу лишь в высоких широ-
тах [4, 5]. В околопланетном пространстве Венеры
отсутствует кольцевой ток, поэтому энергии прото-
нов не превышают нескольких кэВ.

Наведенное магнитное поле у планет без внут-
реннего магнитного поля обычно является слабым
с типичными значениями напряженности поряд-
ка десятков нТл. Очевидно, что относительная важ-
ность столкновительных процессов между высыпа-
ющимися частицами и компонентами нейтральной
атмосферы также отличается для Венеры и Земли из-
за различия как в характеристиках высыпающихся
частиц, так и в составе нейтральной атмосферы [3].
Атмосфера Венеры непосредственно и глобально
подвержена влиянию солнечного ветра и, собствен-
но, прямое воздействие ветра представляет собой
один из способов передачи энергии от Солнца к ат-
мосфере планеты с течением времени, что, возмож-
но, изменяет ее структуру и химический состав.

Исследуя, что происходит сегодня, можно огра-
ничить возможные долгосрочные последствия воз-
действия солнечного ветра, чтобы разрешить про-
должающуюся дискуссию о планетных магнитных
полях как о “щитах” [5], защищающих атмосферы
планет от их потери. Более того, такие исследования
позволяют узнать больше о самых разных способах
взаимодействия планетных тел со своими централь-
ными звездами, что дает представление, в частности,
о возможных воздействиях звездных ветров роди-
тельской звезды на свою экзопланетную систему [6].

Рассмотрим имеющиеся экспериментальные
данные для плазменного окружения Венеры [7].
На основании данных прямых плазменных изме-
рений инструмента ASPERA-4 (Analyzer of Space
Plasma and Energetic Atoms) на борту космическо-
го аппарата ESA Venus Express (VEX) в работах [8, 9]
установлено, что протоны солнечного ветра могут
проникать в атмосферу Венеры лишь до высот гра-
ницы индуцированной магнитосферы или так назы-
ваемой ионопаузы, расположенной в условиях низ-
кой солнечной активности в диапазоне высот от 300
до 500 км. С точки зрения частиц магнитный барьер

перекрывает переходную область, называемую ман-
тией, где наблюдается смесь ионов солнечного ветра
и планетарных ионов [9]. Верхняя граница мантии
характеризуется внезапным и сильным уменьшени-
ем количества энергичных электронов. Эта граница
верхней мантии также называется границей индуци-
рованной магнитосферы (IMB). На рис. 1 показаны
наблюдения головной ударной волны, а также верх-
ней и нижней границ мантии.

Численные модели взаимодействия солнечного
ветра с ионосферой Венеры можно условно разде-
лить на три типа. К наиболее простым относятся гид-
родинамические модели (см., напр., [10]), в которых
обтекание Венеры плазмой солнечного ветра опи-
сывается без учета магнитного поля. В МГД моде-
лях учитывается магнитное поле ветра, наведенное
магнитное поле ионосферы, а в многокомпонент-
ных вариантах также процессы ионизации, реком-
бинации и перезарядки [11–18]. Наконец, к третьей
группе можно отнести гибридные модели [19–22].
В основе гибридной модели [23] лежат уравнения
движения отдельных ионов и квазигидродинамиче-
ские уравнения для электронов и нейтралов. При
этом для электронов используется приближение без-
массовой жидкости. Это позволяет выразить напря-
женность электрического поля, которое возника-
ет за счет движения электронов в магнитном поле
и градиента давления электронов. Столкновения-
ми ионов и электронов пренебрегается, но учиты-
ваются столкновения ионов с нейтралами. В нашей
недавней работе [24] мы проводили сравнение этих
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Рис. 1. Две границы — головная ударная волна (крас-
ная кривая) и граница индуцированной магнитосферы
(IMB; зеленая кривая), и плазменного окружения Ве-
неры по данным анализатора массы ионов (ASPERA-
4/IMA) и электронного спектрометра (ASPERA-4/ELS)
за первые 19 месяцев измерений на борту КА Venus
Express [9]. Пересечения BS (красные кружки) были
приведены к конической функции. Точки пересечения
UMB (зеленые ромбы) и LMB (синие треугольники)
были приближены окружностями на дневной стороне
и линейной регрессией на ночной стороне. Рисунок
заимствован из обзорной статьи [7]
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моделей для магнитосферы Марса. В данной работе
для моделирования магнитосферы Венеры мы ис-
пользуем трехмерную численную модель, основан-
ную на приближении многокомпонентной магнит-
ной гидродинамики.

1.2. Мотивация
Данная работа продолжает наши исследова-

ния [25–29], посвященные поиску молекул, кото-
рые могут являться потенциальными биомаркерами
в атмосферах экзопланет земного типа. Решение
этой задачи, в свою очередь, важно при исследова-
нии потенциально обитаемых миров. Ранее в рабо-
тах [30, 31] было показано, что одним из определяю-
щих условий потенциальной обитаемости1 является
наличие у экзопланеты N2 − O2 доминантной атмо-
сферы. Такой состав атмосферы может свидетель-
ствовать о геологической и биологической активно-
сти на планете. В работе [31], в свою очередь, были
выделены основные молекулы-индикаторы N2 − O2
атмосферы (а, следовательно, и потенциальные био-
маркеры), которые можно обнаружить с помощью
существующих и планируемых космических обсер-
ваторий. Это молекулы NO, NO2, N2O и N2 − O2
димеры.

В упомянутых выше наших работах [28, 29],
мы рассмотрели молекулу NO в качестве перспек-
тивного биомаркера и определили возможность
ее обнаружения в предполагаемых N2 − O2 атмосфе-
рах экзопланет земного типа в ближнем УФ диапа-
зоне длин волн с помощью планируемой к запуску
обсерватории Спектр-УФ [35, 36]. По результатам
расчетов было определено, что регистрация спек-
тральных признаков данной молекулы (γ-полосы
NO, 203–248 нм) в атмосферах типичных супер-
земель и суб-нептунов2 возможна, если они находят-
ся в ЗПО у родительских звезд спектральных клас-
сов G и K, поток в жестком УФ (XUV) диапазоне у ко-
торых в 5 и более раз превышает XUV поток Солн-
ца. Важным условием надежного обнаружения NO
является наличие у экзопланеты расширенной верх-
ней атмосферы с высоким содержанием данной мо-
лекулы. Эти факторы приводят к большему наблю-
даемому ослаблению потока родительской звезды,Δ𝐹 ≈ 𝑅2

pl/𝑅2
st = 𝑓(λ), где 𝑅pl и 𝑅st — радиусы планеты

и звезды соответственно, при спектральных наблю-
дениях экзопланеты во время первичного транзита.

1 В целом, существует большое количество условий потен-
циальной обитаемости (см., напр., [32, рис. 1]) экзопланет
земного типа. Среди них выделяют необходимое, но не доста-
точные условие: планета должна находиться в зоне потенци-
альной обитаемости (ЗПО) у своей родительской звезды [33].
Выполнение этого условия подразумевает [34], что на пла-
нете должна существовать вода в жидкой форме, а в ее атмо-
сфере должен отсутствовать сильный парниковый эффект.
2 В предположении, что у этих планет сформировалась вто-
ричная N2 − O2 атмосфера.

Источники и процессы формирования окиси
азота в верхней N2 − O2 атмосфере хорошо изуче-
ны из наблюдений атмосферы Земли (см., напр.,
[37, 38]). Наиболее значимым источником образо-
вания NO в полярных областях являются высыпа-
ния высокоэнергичных электронов магнитосферно-
го происхождения в верхнюю атмосферу. Высыпа-
ния приводят к диссоциации молекулярного азо-
та электронным ударом, N2 + e−(𝐸) → N(2𝐷, 4𝑆)+
+N(4𝑆) + e−(𝐸 ′), где 𝐸 и 𝐸 ′ — энергии электронов
до и после столкновения. Образованные в этой ре-
акции атомы азота в основном N(4𝑆) и метастабиль-
ном N(2𝐷) электронных состояниях являются ос-
новными компонентами химии нечетного азота, ко-
торая определяется жесткой системой химических
реакций, описывающей производство и потерю оки-
си азота [37, 38]. Согласно решению этой систе-
мы [39, 40], основным каналом образования NO
являются реакции N(4𝑆) и N(2𝐷) с молекулярным
кислородом O2, N(2𝐷, 4𝑆) + O2 → NO + O.

Существует также нетепловой канал образова-
ния молекулы NO. Диссоциация N2 электронным
ударом может приводить к образованию надтеп-
ловых атомов азота Nhot(4𝑆) с избытком кинети-
ческой энергии [41, 42]. Реакция Nhot(4𝑆) + O2 →
→ NO + O, в свою очередь, является дополнитель-
ной в жесткой системе реакций химии нечетного
азота и может существенно изменить решение этой
системы [43–47].

Ранее мы разработали несколько моделей, поз-
воляющих описать влияние высыпаний электро-
нов в N2 − O2 атмосферу экзопланеты земного ти-
па с собственным магнитным полем. Это модели
кинетики и переноса энергичных электронов [25]
и надтепловых атомов азота [26] в атмосфере. А так-
же модель химии нечетного азота с молекулярной
и турбулентной диффузией [27]. Результаты расче-
тов по этим моделям показали, что для экзопланет,
находящихся в ЗПО у более активных родительских
звезд, чем Солнце, и соответственно подверженных
более частым и сильным возмущениям со стороны
звездного ветра, вклад высыпания электронов в об-
разования NO может быть очень существенным. Так,
например, непрерывные высыпания с потоком энер-
гии электронов 𝑄e = 100 эрг ⋅ с−1 ⋅ см−2 могут при-
водить к увеличению концентрации NO на 1 и 3 по-
рядка величины в тепловом и нетепловом каналах
образования этой молекулы соответственно.

Тем не менее рост концентрации молекулы NO
при высыпаниях электронов в атмосферу планеты
с собственным магнитным полем локализован стро-
го в полярных областях. Несмотря на другие, менее
существенные источники пополнения NO в эква-
ториальных областях и средних широтах3, среднее

3 К этим источникам относятся, во-первых, мягкое рентге-
новское излучение звезды, под воздействием которого обра-
зуются высокоэнергичные фотоэлектроны. Эти фотоэлек-
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распределение концентрации этой молекулы в атмо-
сфере меньше, чем в наиболее “активных” поляр-
ных областях. Поэтому интересным с точки зрения
наблюдательных проявлений потенциального био-
маркера NO представляется исследование высыпа-
ний электронов в атмосферы экзопланет земного
типа без собственного магнитного поля (т. е. плане-
ты типа Венеры). Диффузные высыпания электро-
нов, которые могут формироваться в N2 − O2 атмо-
сферах таких экзопланет, потенциально могут при-
водить к существенному и равномерному по полу-
сфере росту концентрации NO. Наличие таких про-
цессов на экзопланетах, в свою очередь, может рас-
ширить наши возможности для обнаружения этой
молекулы на планируемой к запуску обсерватории
Спектр-УФ.

Основные цели данной работы следующие.
1. Построение трехмерной МГД модели взаимо-
действия звездного ветра с атмосферой экзопла-
неты земного типа, не обладающей собственным
магнитным полем (экзопланеты типа Венеры).
2. Валидация этой модели на примере атмосферы
Венеры. 3. Исследование структуры и параметров
электронных высыпаний в ее атмосферу. Эта работа
является нашим первым шагом в исследовании на-
блюдательных проявлений потенциального биомар-
кера NO в атмосферах экзопланет без собственного
магнитного поля. В дальнейшем построенная мо-
дель будет использована для того, чтобы определить
возможность обнаружения спектральных призна-
ков этой молекулы в N2 − O2 атмосферах подобных
экзопланет с помощью обсерватории Спектр-УФ.

Статья организована следующим образом.
В разделе 2 приведено описание основных уравне-
ний трехмерной численной модели. Используемый
численный метод кратко описан в разделе 3.
В разделе 4 представлены результаты нашего
трехмерного численного моделирования струк-
туры магнитосферы Венеры. В Заключении
сформулированы основные выводы по работе.

2. ОСНОВНЫЕ УРАВНЕНИЯ
Для описания процесса обтекания Венеры плаз-

мой солнечного ветра будем использовать много-
компонентную МГД модель [49], которую мы при-
меняли ранее для аналогичной задачи в случае Мар-
са [24]. Рассмотрим многокомпонентную плазму,
состоящую из электронов (e), ионов (i) различных
сортов и нейтралов (n) различных сортов. Будем по-
мечать все ионные компоненты индексом α. При
этом мы рассматриваем только однозарядные ио-
ны. Заряженный компонент плазмы определяется

троны впоследствии также “возбуждают” химию нечетного
азота в результате диссоциации N2 электронным ударом [48].
Данный источник приводит к образованию NO в экватори-
альных областях. И, во-вторых, горизонтальный перенос
молекулы NO из полярных областей в средние широты [38].

ионным компонентом и безмассовой электронной
жидкостью. Считаем, что средняя скорость𝑣𝑣𝑣α ионов
различных сортов является одинаковой и равной𝑣𝑣𝑣i. Концентрация 𝑛e и средняя скорость 𝑣𝑣𝑣e электро-
нов определяются из условия квазинейтральности
плазмы и выражения для плотности тока соответ-
ственно. Температура заряженного компонента вы-
ражается через температуры ионов 𝑇i и электронов𝑇e. В рамках описываемой модели 𝑇i и 𝑇e отдельно
не определяются и поэтому считаются одинаковыми.
Структура нейтрального компонента предполагает-
ся заданной.

В этом приближении картина течения определя-
ется следующей системой уравнений:𝜕ρα𝜕𝑡 + ∇ ⋅ (ραvi) = 𝐾α − 𝐿α, (1)

ρi [𝜕vi𝜕𝑡 + (vi ⋅ ∇) vi] = −∇𝑃c + ρig−

−

B × (∇ × B)4π + Rin − 𝐾i (vi − vn) , (2)

𝜕B𝜕𝑡 = ∇ × (vi × B) , (3)

𝜕𝜕𝑡 (ρiεc) + ∇ ⋅ (ρiεcvi) + 𝑃c∇ ⋅ vi = 𝐴in + 𝑄in. (4)

Здесь ρα — плотность ионов сорта α, ρi — полная
плотность ионов, 𝑃c и εc — давление и удельная внут-
ренняя энергия заряженного компонента, B — маг-
нитное поле, g — удельная сила гравитации плане-
ты, 𝐾α, 𝐿α, 𝐾i — функции источников, описываю-
щие процессы ионизации и рекомбинации, Rin —
сила трения между ионами и нейтралами,𝐴in и𝑄in —
функции нагрева, обусловленные работой сил тре-
ния и обменом энергией между ионами и нейтра-
лами. Давление 𝑃c, удельная внутренняя энергия εc
и температура 𝑇i удовлетворяют уравнениям состо-
яния идеального газа,

𝑃c = 𝑃e + 𝑃i =
2𝑘Bρi𝑇i𝑚i

,
εc =

2𝑘B𝑇i(γ − 1)𝑚i
, (5)

где 𝑃e и 𝑃i — парциальные давления электронов
и ионов, 𝑘B — постоянная Больцмана, 𝑚i — средняя
масса ионов, γ = 5/3 — показатель адиабаты. Плот-
ности и функции источников связаны соотношени-
ями ρi =∑α ρα, 𝐾i =∑α 𝐾α. (6)

Обменные члены определяются следующими выра-
жениями:

Rin = −ηinρiρn (vi − vn) , (7)

𝐴in =
𝑚n𝑚i +𝑚n

ηinρiρn (vi − vn)2 , (8)
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𝑄in = −
3𝑘B𝑚i +𝑚n

ηinρiρn (𝑇i − 𝑇n) , (9)

где ρn, 𝑇n и 𝑚n — плотность, температура и средняя
масса нейтралов соответственно, а ηin — коэффици-
ент столкновений.

Отметим, что уравнения (2) и (4) описывают из-
менение скорости и внутренней энергии заряженно-
го компонента плазмы. Они получаются суммирова-
нием соответствующих уравнений для электронов
и ионов. При этом, как указывалось выше, элек-
троны рассматриваются, как безмассовая жидкость
и, следовательно, в полученных уравнениях импульс
электронов можно не учитывать. Однако электрон-
ный компонент учитывается при вычислении дав-
ления и внутренней энергии плазмы. При выводе
уравнения индукции (3) мы пренебрегли давлени-
ем электронов (батарейный эффект) и эффектом
Холла.

С учетом условия квазинейтральности плазмы
можно написать𝑛e = 𝑛i, j = 𝑒𝑛e (vi − ve) , (10)
где 𝑒 — элементарный заряд, 𝑛i — концентрация
ионов, j — плотность тока. Используя уравнение
Максвелла, из второго уравнения находим

ve = vi −
𝑐4π𝑒𝑛e

∇ × B, (11)

где 𝑐 — скорость света.
Ионосфера планеты формируется процессами

ионизации, происходящими в верхней атмосфере.
Эксперименты, а также численные расчеты показы-
вают, что на дневной стороне Венеры нейтральная
корона состоит в основном из атомов водорода, ге-
лия и кислорода [50]. При этом каждый компонент
имеет холодную (тепловую) и горячую (надтепло-
вую) фракции. Структура нейтральной короны су-
щественно различается для дневной и ночной сторо-
ны [51, 52]. В нашей модели мы будем использовать
описание нейтральной короны для дневной сторо-
ны Венеры.

Концентрация некоторого нейтрального компо-
нента в верхней атмосфере на расстоянии 𝑟 от цен-
тра планеты с хорошей точностью может быть опи-
сана выражением

𝑛 = 𝑛1 exp [−η1 (1 − 𝑅pl𝑟 )]+
+𝑛2 exp [−η2 (1 − 𝑅pl𝑟 )], (12)

где коэффициенты

η = 𝐺𝑀pl𝑅pl

𝑚𝑘B𝑇 , (13)

𝑅pl,𝑀pl — радиус и масса планеты,𝐺— гравитацион-
ная постоянная, 𝑚 — масса атома. Параметры этих
распределений с учетом сравнения с эксперимен-
тальными данными представлены в табл. 1.

Сами профили показаны на рис. 2. Как вид-
но из рисунка, основной вклад в нейтральную
корону Венеры дает атомарный кислород. При
этом на высотах до 300 км доминирует холод-
ная фракция, а на больших высотах — горя-
чая. В нашей модели корону планеты будем счи-
тать гидростатической. Это означает, что ско-
рость нейтралов vn следует положить равной ну-
лю. Температура нейтралов 𝑇n определяется с по-
мощью усреднения по всем нейтральным ком-
понентам с учетом наличия горячей и холодной
фракций.

Коэффициент столкновений между ионами
и нейтралами определяется выражениемηinρiρn =∑α,β ηαβραρβ, (14)

где суммирование проводится по всем сортам
ионовαи нейтраловβ. Частный коэффициент столк-
новений [53],

ηαβ = ⟨σ𝑣⟩αβ𝑚α +𝑚β , (15)
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Рис. 2. Модельные высотные профили концентрации
атомарного водорода, гелия и кислорода в нейтральной
короне Венеры

Таблица 1. Параметры высотных профилей (12) концентрации нейтральных компонентов в верхней атмосфере Венеры

Компонент 𝑛1, см−3 η1 𝑇1,К 𝑛2, см−3 η2 𝑇2,К
H 3.1 × 105 34.4 189 6.1 × 102 5.4 1215
He 1.2 × 107 74.8 348 5.0 × 103 10.0 2600
O 3.3 × 1012 332.8 312 4.1 × 105 16.3 6402
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где ⟨σ𝑣⟩αβ — усредненный по скоростям темп столк-
новений (σ — сечение взаимодействия, 𝑣 — отно-
сительная скорость сталкивающихся частиц). Упру-
гие столкновения ионов с нейтралами можно опи-
сать в приближении максвелловских молекул, при
котором эффективное сечение взаимодействия об-
ратно пропорционально величине относительной
скорости [54]. Дело в том, что в поле иона проис-
ходит поляризация нейтрального атома и у него
возникает дипольный момент. Поэтому взаимодей-
ствие описывается потенциалом, обратно пропор-
циональным четвертой степени расстояния между
частицами. Расчеты приводят к следующему выра-
жению для темпа столкновений:

⟨σ𝑣⟩αβ = 2.21π¿ÁÁÁÀγβ𝑒2μαβ , (16)

где μαβ — приведенная масса иона и нейтрала, а ко-
эффициент γβ описывает поляризуемость нейтраль-
ного атома. Эта величина для атомов водорода, гелия
и кислорода равна 0.67 × 10−24 см3, 0.21 × 10−24 см3
и 0.77 × 10−24 см3 соответственно [54].

Процессы ионизации и рекомбинации описыва-
ются формулой 𝐴 + ℎ𝜈 ⇆ 𝐴+ + e−, (17)
где 𝐴 — любой из атомов H, He, O. Таким образом,
в нашей модели рассматривается следующий ион-
ный состав: H+, He+, O+. Уравнения химической
кинетики имеют вид:̇𝑛𝐴 = −𝑘ph𝑛𝐴 + 𝑘rec𝑛e𝑛𝐴+, (18)̇𝑛𝐴+ = 𝑘ph𝑛𝐴 − 𝑘rec𝑛e𝑛𝐴+, (19)
где 𝑘ph — скорость фотоионизации, 𝑘rec — коэф-
фициент рекомбинации. Коэффициенты рекомби-
нации зависят от температуры [55] и приведены
в табл. 2. Скорость фотоионизации атомов данного
сорта определяется выражением

𝑘ph =

λ0
∫0

σ(λ)𝑓λ𝑒−𝜏(λ)𝑑λ, (20)

где λ — длина волны, σ(λ) — сечение взаимодей-
ствия фотона с атомом, 𝑓λ — поток входящего иони-
зующего излучения [количество фотонов/(с⋅ см3)],𝜏(λ)— оптическая толщина, λ0 — порог ионизации.
Для расчетов мы использовали поток излучения 𝑓λ
для спокойного Солнца.

Таблица 2. Коэффициенты рекомбинации и параметры
для расчета скоростей ионизации (21)

Компо-
нент 𝑘rec, см3/с 𝑘0,10−7с−1 𝑎 𝑏

H 2.52×10−10 𝑇−0.75 1.81 0.5 3.0
He 9.08×10−11 𝑇−0.64 1.07 1.5 2.0
O 1.40×10−10 𝑇−0.66 5.21 1.5 2.0

Для ускорения трехмерных вычислений мы для
каждого сорта нейтральных атомов аппроксими-
ровали выражение (20) аналитической формулой
вида [56]

𝑘ph =
𝑘01 + 𝑎𝜏𝑏 , (21)

где

𝜏 = σXUV

cos χ
∞
∫𝑟 𝑛n(𝑟′)𝑑𝑟′, (22)

σXUV = 6.3 × 10−18 см2, χ— зенитный угол. Получен-
ные значения коэффициентов 𝑘0, 𝑎 и 𝑏 для атомов H,
He, O приведены в табл. 2. В расчетах принималось,
что на сфере данного радиуса 𝑟 вокруг планеты ско-
рость ионизации 𝑘ph должна составлять не меньше
10% от значения в направлении на Солнце (χ = 0).

В уравнении движения ионов (2) последние два
слагаемых в правой части имеют схожую структу-
ру. Однако сила трения Rin определяется упругими
столкновениями ионов с нейтралами, а последнее
слагаемое описывает изменение средней скорости
ионов vi за счет процессов фотоионизации. Что-
бы сравнить вклад этих членов необходимо срав-
нить соответствующие частоты. Частота упругих
столкновений 𝜈in = ηinρn, а для последнего слага-
емого роль соответствующей частоты играет ско-
рость фотоионизации 𝑘ph. Отношение этих частот𝜈in/𝑘ph = 𝑛n/102 см−3. Отсюда видно, что последний
член в правой части (2) начинает доминировать над
упругими столкновениями в области 𝑛n ≲ 102 см−3.
Это условие выполняется на высотах между ионопа-
узой и ударной волной.

Поскольку магнитное поле солнечного ветра
в область 𝑟 < 𝑅pl проникать не может, то в модели
необходимо учесть наведенное магнитное поле Ве-
неры Bpl. Для описания наведенного поля можно
использовать аналитическое решение задачи о маг-
нитном поле идеально проводящего шара, поме-
щенного в однородное внешнее магнитное поле
(см., напр., [57]). Во внутренней области 𝑟 < 𝑅pl наве-
денное магнитное поле Bpl = −Bw и, следовательно,
полное поле B = Bw + Bpl = 0. Во внешней области𝑟 ⩾ 𝑅pl наведенное поле является дипольным, и по-
этому можно написать

Bpl =
μpl𝑟3 [3(d ⋅ n)n − d] , (23)

где магнитный момент μpl = 𝑅3
pl𝐵w/2 = 1.7×× 1022 Гс ⋅ см3, а единичные векторы d = −Bw/𝐵w,

n = r/𝑟. Вектор магнитного момента наведенного
поля μpl = μpld коллинеарен магнитному полю ветра
Bw, но имеет противоположное направление.

Наведенное поле магнитосферы планеты опре-
деляется внешним межпланетным полем, как по ве-
личине, так и по направлению. При изменении
внешнего поля изменяется и наведенное поле.
В противоположность этому, собственное поле пла-
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неты не зависит от внешнего и определяется источ-
никами, распределенными в ее недрах. Поэтому маг-
нитосфера с наведенным магнитным полем суще-
ственным образом зависит от свойств ионосферы
планеты, где формируются экранирующие токи, ин-
дуцирующие наведенное поле.

3. ЧИСЛЕННЫЙ МЕТОД
Планету будем описывать однородным идеально

проводящим шаром с радиусом𝑅pl = 6051 км, центр
которого расположен в начале координат. Вектор,
определяющий удельную силу гравитации, в обла-
сти 𝑟 ⩾ 𝑅pl равен

g = −
𝐺𝑀pl𝑟3 r , (24)

где масса планеты𝑀pl = 4.87 × 1027 г. Удобно ввести
глобальную декартову систему координат, начало
которой располагается в центре планеты. При этом
ориентация осей выбирается следующим образом:
ось𝑋направлена от центра Солнца к центру Венеры,
ось 𝑌 направлена вдоль орбитального движения пла-
неты, а ось 𝑍 дополняет систему до правой тройки
базисных векторов.

Параметры солнечного ветра в окрестности Ве-
неры мы задавали на основе МГД модели из ра-
боты [58]. На орбите Венеры эта модель в системе
отсчета, в которой планета покоится, дает следую-
щие значения параметров: концентрация протонов𝑛w = 23.2 см−3, температура 𝑇w = 2.3 × 105 К, ради-
альная скорость ветра 𝑣𝑥 = 394 км/с, азимутальная
скорость ветра 𝑣𝑦 = −33.9 км/с, радиальный компо-
нент магнитного поля 𝐵𝑥 = 1.2 × 10−4 Гс = 12 нТл,
азимутальный компонент магнитного поля 𝐵𝑦 =
= −9.1 × 10−5 Гс = −9.1 нТл. Вертикальные компо-
ненты скорости 𝑣𝑧 и магнитного поля 𝐵𝑧 в силу эк-
ваториальной симметрии считались равными нулю.
В использованной нами расчетной области все эти
параметры рассматривались как постоянные.

С учетом параметров солнечного ветра можно
определить плотность плазмы ρw = 3.9 × 10−23 г/см3,
скорость обтекания 𝑣w = 395 км/с и полное магнит-
ное поле 𝐵w = 1.5× 10−4 Гс = 15 нТл. Скорость звука
в плазме солнечного ветра в окрестности Венеры со-
ставляет величину 𝑐w = 61.6 км/с. Соответствующее
число Маха получается равным 𝑣w/𝑐w = 6.4. Альф-
веновская скорость 𝑢w = 𝐵w/√4πρw = 68.2 км/с,
а альфвеновское число Маха 𝑣w/𝑢w = 5.8. Из этих
оценок следует, что обтекание Венеры солнечным
ветром происходит в сверхзвуковом и сверхальфве-
новском режимах. Поэтому вокруг Венеры должна
возникать ударная волна.

В нашей численной модели используется компо-
зитная сферическая сетка, состоящая из трех оди-
наковых областей или секторов (тернарная сфери-
ческая сетка) [59]. Напомним, что глобальная сфе-
рическая система координат содержит особенность

на полярной оси, где азимутальный угол становится
неопределенным. При использовании композитных
сеток в каждой области вводится своя локальная
система координат, не содержащая особенностей.
Полное решение во всей пространственной области
строится путем сшивки локальных решений на гра-
ницах областей с помощью преобразований коорди-
нат. Достоинствами тернарной сферической сетки
являются одинаковая конфигурация секторов, от-
носительно небольшое их количество, достаточно
короткие границы между секторами и простые за-
коны преобразования локальных координат.

Для численного решения уравнений мно-
гокомпонентной магнитной гидродинамики
мы использовали разностную схему Роу–
Эйнфельдта–Ошера [61, 49] (см. также мо-
нографию [60]). В разностной схеме помимо
уравнений (1) для отдельных компонентов ионов
решается также уравнение для полной ионной
плотности ρi. Эта схема имеет первый порядок ап-
проксимации по времени и третий по пространству.
Адаптация разностной схемы к сферическим коор-
динатам на тернарной сферической сетке описана
в работе [59]. Источниковые члены в уравнениях
учитываются локальным образом на отдельных
этапах численного алгоритма.

Моделирование проводилось в расчетной обла-
сти 𝑅pl ⩽ 𝑟 ⩽ 5𝑅pl. Сетка задавалась неоднородной
по радиальной координате 𝑟, сгущающейся к по-
верхности планеты. Минимальный размер ячейки
составлялΔ𝑟min = 0.005𝑅pl = 30 км. В начальный мо-
мент времени расчетная область заполнялась сол-
нечным ветром. На поверхности планеты 𝑟 = 𝑅pl
устанавливалась твердая граница, на которой ско-
рость плазмы vi = 0. На участках внешней границы,
через которые солнечный ветер втекал в расчетную
область, задавались постоянные граничные усло-
вия с учетом параметров ветра. На участках, через
которые плазма покидала расчетную область, при-
менялись условия свободного вытекания. Расчет
продолжался до достижения квазистационарного
состояния, когда основные параметры течения пе-
реставали существенно изменяться со временем.

В начальных условиях магнитное поле задава-
лось в виде суперпозиции поля ветра и магнитного
поля, наведенного токами в ионосфере. Использо-
ванная формула для наведенного магнитного по-
ля (23) предполагает, что планета представляет со-
бой идеально проводящий шар. Следует подчерк-
нуть, что это условие используется нами только при
задании начальных условий. В результате расчета
мы получаем квазистационарное решение, в кото-
ром это условие в общем случае может и не выпол-
няться, если, например, в численной модели учиты-
вается конечная проводимость плазмы. В использо-
ванном нами уравнении индукции (3) эффекты диф-
фузии магнитного поля отсутствуют. Однако в раз-
ностной схеме присутствует численная диффузия,
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которая приводит к частичному нарушению этого
условия.

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ
Для сравнения мы провели расчет структуры

магнитосферы Венеры без учета ионосферы. Ре-
зультат расчета демонстрирует рис. 3, на котором
представлены распределения плотности ионов ρi
(цвет, изолинии), скорости vi (стрелки) и магнит-
ного поля B (линии) в орбитальной (левая панель)
и вертикальной (правая панель) плоскостях. Пла-
нете соответствует закрашенный кружок. Из ри-
сунка следует, что в результате обтекания Венеры
солнечным ветром вокруг планеты формируется
ударная волна. В подсолнечной точке ударная вол-
на находится от поверхности Венеры на расстоя-
нии𝐻sw = 1700 км. Эта величина близка к значению1900 км, измеренному вблизи минимума солнечной
активности [8]. На ночной стороне формируется
разреженная турбулентная область, которая соот-
ветствует магнитосферному хвосту. Магнитосфера
Венеры создается наведенным магнитным полем.
Обтекание солнечным ветром приводит к возникно-
вению перед планетой области сгущения магнитных
силовых линий или магнитному барьеру. Граница
магнитного барьера определяет положение магнито-
паузы, но она не является четко выраженной. В вер-
тикальной плоскости течение плазмы происходит
вдоль магнитных силовых линий и поэтому положе-
ние магнитопаузы вообще не определяется.

Результат расчета структуры магнитосферы Ве-
неры с учетом нейтральной короны представлен
на рис. 4. Качественная картина течения не изме-
нилась. Вокруг планеты устанавливается ударная
волна, положение которой в подсолнечной точ-

ке 𝑅sh = 1.37𝑅pl соответствует высоте 𝐻sh = 2200 км.
Это значение также оказывается весьма близким
к экспериментальной величие 1900 км [8].

Однако следует отметить, что непосредствен-
ные измерения положения ударной волны [62]
приводят к значениям в подсолнечной точ-
ке 1.23𝑅pl ⩽ 𝑅sh ⩽ 1.42𝑅pl, а на терминаторе1.98𝑅pl ⩽ 𝑅sh ⩽ 2.17𝑅pl. На рис. 1 положение удар-
ной волны определено по более полной выборке
данных. Ее граница (сплошная красная линия)
получена на основе модели, в которой соответ-
ствующая кривая аппроксимируется конической
функцией, близкой к параболе [63–65]. Из модели,
представленной на рис. 1, следует, что положение
ударной волны в подсолнечной точке 𝑅sh = 1.355𝑅pl
соответствует высоте 𝐻sh = 2510 км. Заметим также,
что модель ударной волны на рис. 1 является
осесимметричной и получена путем усреднения
результатов измерений по всем направлениям
вокруг линии, соединяющей центры Венеры
и Солнца. В этой модели положение ударной волны
на терминаторе 𝑅sh = 2.088𝑅pl соответствует высоте𝐻sh = 6584 км.

Наша численная модель является трехмерной
и в ней положение ударной волны на термина-
торе зависит от направления. Это обусловлено
наличием азимутальной скорости ветра, а также
азимутального компонента межпланетного маг-
нитного поля. Из полученных нами результатов
следует, что положение ударной волны на терми-
наторе лежит в пределах 1.97𝑅pl ⩽ 𝑅sh ⩽ 2.40𝑅pl.
При этом минимум и максимум достигают-
ся на линии орбитального движения планеты.
В вертикальной плоскости положение удар-
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Рис. 3. Результат трехмерного моделирования структуры магнитосферы Венеры без учета нейтральной короны. По-
казаны распределения плотности ионов ρi (цвет, изолинии), скорости vi (стрелки) и магнитного поля B (линии)
в орбитальной (слева) и вертикальной (справа) плоскостях. Плотность выражена в единицах ρw = 3.9 × 10−23 г/см3.
Закрашенный кружок соответствует радиусу Венеры
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Рис. 4. То же самое, что и на рис. 3, но с учетом нейтральной короны

ной волны находится в более узком интервале2.21𝑅pl ⩽ 𝑅sh ⩽ 2.24𝑅pl.
В полученном численном решении формирует-

ся тонкий и достаточно плотный магнитный барьер.
Образовавшиеся ионы скапливаются вокруг пла-
неты и постепенно сносятся в область разрежения
на ночной стороне. Таким образом, турбулентный
шлейф в магнитосферном хвосте состоит в основ-
ном из ионов магнитосферного происхождения.

Распределение концентрации ионов водо-
рода и кислорода показаны на левой и правой
панелях рис. 5 соответственно. Наибольший
вклад дают ионы кислорода. Однако ионов во-
дорода также формируется достаточно много,
особенно вблизи ночной поверхности. Как вид-
но из рисунка, все эти ионы главным образом

сносятся солнечным ветром в турбулентный
шлейф и формируют магнитосферный хвост
Венеры.

Структура ионосферы Венеры, полученная в хо-
де трехмерного моделирования, представлена на ле-
вой панели рис. 6, а также на рис. 7 и 8. На днев-
ной стороне ионосферный слой оказывается тон-
ким и плотным. Вдоль него сгущаются магнитные
силовые линии, обволакивая собой поверхность Ве-
неры и формируя магнитный барьер. Толщина ионо-
сферного слоя приблизительно составляет 100 км.
Основной вклад определяется ионами O+. Ионов H+
и He+ оказывается на 2–3 порядка меньше.

В области за ударной волной плазма сильно на-
гревается до температур порядка 1.8 × 106 К в под-
солнечной точке и 7 × 105 К на терминаторе (см.
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Рис. 5. Распределения концентрации ионов водорода (слева) и кислорода (справа) (цвет, изолинии), скорости vi
(стрелки) и магнитного поля B (линии) в орбитальной плоскости Венеры. Закрашенный кружок соответствует радиусу
Венеры
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Рис. 6. Распределения плотности ионов ρi (цвет, слева), потока энергии электронов 𝑄e (справа, цвет, изолинии), скоро-
сти vi (стрелки) и магнитного поля B (линии) в орбитальной плоскости вблизи поверхности Венеры (слева). Плотность
выражена в единицах ρw = 3.9 × 10−23 г/см3, а поток энергии электронов в единицах эрг ⋅ см−2 ⋅ с−1. Закрашенный
кружок соответствует радиусу Венеры
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Рис. 8. Высотные профили температуры ионов 𝑇i (слева) и магнитного поля 𝐵 (справа) для различных направлений 𝜑
в орбитальной плоскости (θ = 90○) Венеры

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



ТРЕХМЕРНАЯ ЧИСЛЕННАЯ МОДЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ ВЫСЫПАНИЯ 45

левую панель на рис. 8). На высотах от 200 км
до 100 км происходит резкое снижение температу-
ры до величины порядка 300 К, которая соответ-
ствует температуре нейтральной верхней атмосфе-
ры. Положение ионопаузы, отделяющей ионосфер-
ную плазму Венеры от плазмы солнечного ветра,
можно ассоциировать с верхней границей магнит-
ного барьера. Из нашего расчета следует, что в под-
солнечной точке высоту ионопаузы можно оценить
величиной в 300 км, что хорошо согласуется с экс-
периментальными данными [8]. Магнитное поле
на высоте 180 км достигает максимальных значений115 нТл в подсолнечной точке и 45 нТл на терми-
наторе. На границе магнитного барьера величина
поля составляет значение порядка 100 нТл в подсол-
нечной точке и 40 нТл на терминаторе. На ночной
стороне ионосфера Венеры оказывается более раз-
реженной и тянется на большую высоту.

Плотность потока энергии электронов

Qe = 𝑚e𝑛eve
⎛⎝ γγ − 1 𝑘B𝑇e𝑚e

+

𝑣2
e2 ⎞⎠ , (25)

где температура электронов в нашей модели 𝑇e = 𝑇i.
Распределение абсолютного значения 𝑄e этой ве-
личины вблизи поверхности Венеры в орбиталь-
ной плоскости показана на правой панели рис. 6.
Как видно из рисунка наибольшее значение этой
величины 𝑄e = 1 эрг ⋅ см−2 ⋅ с−1 достигается в об-
ласти за ударной волной. Эта область заполнена
плазмой солнечного ветра, а также ионами магни-
тосферного происхождения. Непосредственно у по-
верхности поток энергии электронов падает до ну-
ля. На дневной стороне Венеры в верхней части
ионосферы имеется достаточно узкий слой, где по-
ток энергии электронов составляет значения поряд-
ка 𝑄e = 0.1 эрг ⋅ см−2 ⋅ с−1. Этот слой определяется
магнитосферными электронами, высыпающимися
в ионосферу.

5. ЗАКЛЮЧЕНИЕ
Для исследования процесса обтекания планеты

без собственного магнитного поля (типа Венеры)
плазмой солнечного ветра представлена трехмерная
численная модель. В основе модели лежит прибли-
жение многокомпонентной магнитной гидродина-
мики. Учитываются процессы ионизации и реком-
бинации. Источником ионов является нейтральная
корона планеты, состоящая из атомов водорода, ге-
лия и кислорода. При этом каждый нейтральный
компонент имеет как холодную (тепловую), так и го-
рячую (надтепловую) фазы. В нейтральной короне
Венеры на дневной стороне доминируют атомы кис-
лорода.

Наша модель позволяет получить достаточно
высокое пространственное разрешение, посколь-
ку уравнения решаются в сферических координатах.
Для устранения особенности глобальной сфериче-
ской системы координат на полярной оси в нашем

численном коде используется тернарная сфериче-
ская сетка [59], состоящая из трех одинаковых секто-
ров. В каждом секторе вводится локальная сфериче-
ская система координат, не имеющая особенностей.
Полное решение строится путем сшивки локальных
решений на границах секторов с помощью преоб-
разований координат. Численное решение уравне-
ний многокомпонентной магнитной гидродинами-
ки находится с помощью разностной схемы Роу–
Эйнфельдта–Ошера [61, 49], имеющей повышен-
ный порядок аппроксимации.

Результаты расчетов дают картину течения
в окрестности Венеры, хорошо согласующуюся как
с имеющимися данными измерений, так и с чис-
ленными результатами других авторов. Магнитосфе-
ра Венеры является наведенной, поскольку плане-
та не имеет собственного магнитного поля. Взаи-
модействие солнечного ветра с Венерой приводит
к тому, что вокруг планеты устанавливается ударная
волна, положение которой в подсолнечной точке
соответствует высоте 2200 км. На дневной стороне
вблизи поверхности Венеры формируется тонкий
и достаточно плотный магнитный барьер. Положе-
ние ионопаузы, отделяющей ионосферную плазму
Венеры от плазмы солнечного ветра, определяется
верхней границей магнитного барьера. В подсолнеч-
ной точке высота ионопаузы получилась равной при-
мерно 300 км, что также согласуется с эксперимен-
тальными данными. Максимальные значения маг-
нитного поля порядка 100 нТл достигаются на вы-
сотах 180 км, соответствующим внутренней грани-
це магнитного барьера. На ночной стороне Венеры
образовавшиеся ионы формируют турбулентный
шлейф, тянущийся далеко за планетой. Поэтому
плазма в магнитосферном хвосте состоит в основ-
ном из ионов ионосферного происхождения.

Недостатком нашей численной модели является
использование предположения равенства темпера-
тур ионов 𝑇i и электронов 𝑇e. В разреженных обла-
стях магнитосферы, например, в области за ударной
волной, эти температуры могут достаточно сильно
различаться. Поскольку одной из основных целей
нашей работы является расчет интенсивности высы-
пания электронов в ионосферу планеты, то данное
обстоятельство для нас представляется важным. По-
этому в дальнейшем мы планируем провести моди-
фикацию представленной здесь численной модели,
которая позволит температуры ионов и электронов
рассчитывать отдельно.

Тем не менее разработанная модель позволя-
ет делать выводы о качественной картине высыпа-
ния электронов в верхнюю атмосферу Венеры. Со-
гласно полученным результатам, высыпание энер-
гичных электронов в атмосферу происходит равно-
мерно по всей дневной полусфере планеты. При
этом, как поток энергии высыпающихся электро-
нов (см. рис. 6, правая панель), так и их средняя
кинетическая энергия (см. рис. 8, левая панель)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



46 ЖИЛКИН и др.

распределены практически равномерно от подсол-
нечной точки до терминатора. В условиях спо-
койного солнечного ветра в этой области поток𝑄e ≈ 0.1 эрг⋅ см−2⋅ c−1 в верхней части ионосферы,
а средняя кинетическая энергия изменяется от 0.07
до 0.2 кэВ. Представленная картина, в свою оче-
редь, качественно похожа на диффузные высыпания
энергичных электронов на Марсе [66, 67], магнит-
ное поле которого локализовано и является слабым
по сравнению с магнитным полем Земли. Для атмо-
сферы Земли, т. е. планеты с сильным собственным
магнитным полем, процесс высыпания энергичных
электронов в атмосферу отличается от представлен-
ных выше. Сами высыпания локализованы строго
в полярных областях.

Таким образом, полученный результат важен для
дальнейшего исследования экзопланет земного ти-
па без собственного магнитного поля. Такого рода
диффузные высыпания во вторичные N2 − O2 верх-
ние атмосферы экзопланет могут приводить к равно-
мерному по полусфере образованию молекулы NO,
которая, в свою очередь, является потенциальным
биомаркером. Различные возмущения со стороны
звездного ветра приведут к интенсификации высы-
пания электронов, что может способствовать суще-
ственному росту концентрации данной молекулы
в атмосфере. Реализация данных процессов в атмо-
сферах экзопланет может расширить наши возмож-
ности [29] для обнаружения потенциального био-
маркера NO с помощью планируемой к запуску об-
серватории Спектр-УФ. В дальнейшем мы плани-
руем использовать разработанную модель для непо-
средственной проверки этой гипотезы.
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The paper presents a three-dimensional numerical model of solar wind plasma flow around a terrestrial planet
that does not have its own magnetic field. The model is based on the approximation of multicomponent
magnetohydrodynamics and takes into account ionization and recombination processes. The numerical
model is validated using the example of the magnetosphere of Venus. Our model, in particular, allows us to
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В статье рассмотрены свойства мультипланетной системы TOI-1408, состоящей из горячего
юпитера (планета (b), (1.86 ± 0.02)𝑀Jup, (2.4 ± 0.5)𝑅Jup) и субнептуна (планета (c), (2.22 ± 0.06)𝑅⊕,(7.6 ± 0.2)𝑀⊕), обращающихся вокруг звезды спектрального класса F. Также измерения лучевых
скоростей свидетельствуют в пользу существования дополнительного небесного тела с периодом
обращения несколько тысяч дней. Система TOI-1408 позволяет изучать процессы миграции
планет типа горячий юпитер в случаях, когда менее массивная планета (c) находится ближе
к звезде, чем более массивная (b). По архивным измерениям блеска TOI-1408 (проект DASCH)
мы сделали оценки величины возможной циклической долговременной переменности объекта
(около 10 500𝑑). Анализ переменности блеска TOI-1408 по данным архива Kamogata Wide-field
Survey (KWS) привел к обнаружению в спектре мощности пиков, соответствующих периоду
вращения около 7.5𝑑, ранее найденному в работе [1]. Получены оценки величин оттока вещества
из атмосфер планет, которые были установлены для двух значений параметра log 𝑅′HK (−4.94 и−4.59),
соответствующих максимумам бимодального распределения этого параметра для малоактивных
и активных звезд спектрального класса F. Потеря вещества атмосферы планеты (b) (горячего
юпитера) может достигать 2.3 × 1011 г/с, а субнептуна — планеты (c) — 2.7 × 1010 г/с для величины
log 𝑅′HK = −4.59. Полученные нами данные достаточно хорошо согласуются с результатами для
экзопланет соответствующих типов (в том числе для горячего юпитера HD 189733 b и теплого
нептуна GJ 436 b).
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1. ВВЕДЕНИЕ

В последнее время внимание многих групп уче-
ных стали привлекать многопланетные системы,
являющиеся объектами с большим разнообразием
происходящих в них явлений, важных для исследова-
ния межпланетных взаимодействий, формирования
и миграции планет, сравнительной планетологии
и др. (см. [2] и ссылки в [3]). Авторы [1] сообщили
об изучении системы TOI-1408, содержащей плане-
ты типа горячий юпитер, субнептун и, возможно,
третье тело (период обращения которого может быть
порядка тысячи дней). Эта система, по мнению ав-
торов [1], заслуживает особого интереса, поскольку
ее наблюдения позволяют изучать процессы мигра-
ции планет, как горячих юпитеров, так и субнепту-
нов, например, в случаях, когда менее массивная
планета (c) находится ближе к звезде, чем более мас-
сивная (b).

В нашей статье мы выполнили исследование
проявлений активности звезды TOI-1408, а также

получили оценки величины возможного оттока ве-
щества из атмосферы двух ее планет.

2. ПРОЯВЛЕНИЯ АКТИВНОСТИ TOI-1408
Согласно работе [1] эффективная темпе-

ратура TOI-1408 (BD+72 969/TIC 364186197)
равна 𝑇eff = 6117 ± 31 К, ускорение силы тяже-
сти log 𝑔 = 4.10 ± 0.06, радиус 𝑅/𝑅⊙ = 1.53 ± 0.02
и масса 𝑀/𝑀⊙ = 1.31 ± 0.01. Объект отождествлен
с источником Gaia EDR3 2275130045974715904,
его параллакс составляет π = 7.1641 ± 0.0102 mas.
TOI-1408 является достаточно яркой звездой
спектрального класса F8, блеск в фильтре 𝑉
составляет 9.27𝑚. В работе [1] были детально
рассмотрены наблюдения TOI-1408 из архива
космической миссии TESS. Данные были получены
для 12 секторов и содержат 61 транзитов плане-
ты (b) и 114 транзитов планеты (c). Авторы [1]
также выполнили определение периода вращения
звезды 𝑃, который составил 7.5𝑑 ± 0.62𝑑. К сожале-
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нию, данные архива TESS не позволяют сделать
заключение о долговременной переменности
звезды.

Мы провели независимый анализ переменно-
сти блеска TOI-1408 по данным многолетнего об-
зора Kamogata Wide-field Survey (KWS)1. В обзоре
представлены наблюдения звезды в фильтрах 𝑉 и 𝐼𝑐
в интервале наблюдений в целом с августа 2017 г.
по сентябрь 2021 г., (4 года), но фактически только
в сезоны 2017–2018 гг. Мы проанализировали дан-
ные в фильтре𝑉, всего было рассмотрено 317 оценок
блеска. Представленные на рис. 1 (вверху) данные
не могут дать ответ о присутствии цикличности в из-
менении блеска. На нижней диаграмме рис. 1 при-
веден спектр мощности для интервала 1–15 суток,
включающего величину вероятного периода враще-
ния 𝑃 звезды. Наше внимание привлекли два пика,
соответствующие величинам 𝑃 около 7.5𝑑 (подроб-
нее см. в работе [1]).

Наше исследование циклов активности звезды
было продолжено на основе данных отсканирован-
ных фотопластинок проекта Digital Access to a Sky
Century Harvard (DASCH) [4], которые предоставля-
ют широкие возможности для анализа долговремен-
ной активности звезды на продолжительном вре-
менном интервале. Имеющиеся в архиве данные
для TOI-1408 охватывают интервал наблюдений дли-
тельностью в 93 года (с 1896.8 г. по 1989.9 г.) (рис. 2).
Всего нами было рассмотрено 4272 измерений блес-
ка звезды в системе, близкой к фотометрической
в фильтре 𝐵. К сожалению, несмотря на то что дан-
ные многочисленны, их разброс велик, точность
в ряде случаев невысока и также имеется характер-

1 http-kws.cetus-net.org
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Рис. 1. Верхняя панель: фотометрические наблюдения
TOI-1408 в фильтре 𝑉 по данным обзора Kamogata
Wide-field Survey (KWS). Внизу — спектр мощности для
интервала периодов 1–15𝑑. Вертикальная светлая (крас-
ная) линия соответствует величине периода вращения
7.5 суток

ный для DASCH пробел в данных в интервале с 1952
по 1967 г. Тем не менее на основе построенного спек-
тра мощности для блеска TOI-1408 можно предполо-
жить существование длительного цикла активности𝑃cycl порядка 10 500𝑑 (28.8 лет) (см. рис. 2, нижняя
диаграмма, вертикальная темная линия). На этом
рисунке вертикальными светлыми линиями также
отмечены пики, соответствующие годичному и ме-
сячному периодам. Также на рис. 2 вертикальной
темной линией обозначено положение, соответству-
ющее периоду вращения звезды, но никаких деталей
в этой области не имеется.

Возраст системы был оценен в работе [1] и соста-
вил 2.7 ± 0.3 млрд лет. С учетом всех неопределенно-
стей, можно сделать заключение, что, скорее всего,
TOI-1408 не принадлежит к числу старых звезд и мо-
жет обладать умеренной активностью.

Авторы работы [1] не приводят информацию
об уровне хромосферной активности TOI-1408, по-
этому мы выполнили оценку величины индекса
log 𝑅 ′

HK, необходимого в дальнейшем для опреде-
ления величины оттока вещества из атмосферы эк-
зопланеты косвенным образом. Мы использовали
данные работы [5], касающиеся распределения вели-
чин этого параметра для звезд спектрального клас-
са F. Согласно [5], для них распределение log 𝑅 ′

HK
имеет два пика (возможно, первый из них раздвоен,
но это раздвоение может быть и артефактом) с мак-
симумами для величин порядка –4.94 dex (−4.83 dex)
у малоактивных звезд и –4.59 dex у активных. Ско-
рее всего, у рассматриваемой нами звезды величи-

1.0

0.8

0.6

0.4

0.2

0.0
1 10 100 1000 10000

10
000

15
000

20000

25000

30000

35000

40000

45000

50000

m
a

g

JD 2400000

Period, days

A
m

p.

9.5

10.0

10.5

11.0

9.0

Рис. 2. Вверху — кривая блеска TOI-1408 по дан-
ным проекта Digital Access to a Sky Century@Harvard
(DASCH) в 1896.8–1989.9 гг. Внизу — спектр мощно-
сти для диапазона периодов 1–14 000𝑑. Вертикальными
темными линиями отмечены длительный цикл актив-
ности 𝑃cycl порядка 10 500𝑑 (28.8 лет) и 7.5𝑑 (возможное
положение пика для 𝑃𝑟𝑜𝑡). Вертикальными светлыми
(красными) линиями отмечены пики, соответствую-
щие положениям, близким к годичному и месячному
периодам
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на параметра log 𝑅 ′
HK характерна для малоактивных

звезд, тем не менее мы выполнили расчеты для двух
значений этого параметра.

3. ПОТЕРЯ ВЕЩЕСТВА АТМОСФЕРЫ ПЛАНЕТ
TOI-1408

Как указывалось выше [1], TOI-1408 обла-
дает двумя планетами: одной — типа горячий
юпитер TOI-1408 b с параметрами: 𝑃 = 4.42𝑑,𝑀 = (1.86 ± 0.02)𝑀Jup, 𝑅 = (2.4 ± 0.5)𝑅Jup, и дру-
гой, TOI-1408 с — типа субнептун с парамет-
рами: 𝑃 = 2.17𝑑, 𝑅 = (2.22 ± 0.06)𝑅⊕ и массой𝑀 = (7.6 ± 0.2)𝑀⊕.

Для подсчета потери вещества атмосферами пла-
нет 𝑀loss (𝑀̇) нами была использована аппроксима-
ционная формула (см., напр., [7, 6]), соответству-
ющая модели потери атмосферы с ограничением
по энергии. В ней предполагается, что поток жест-
кого УФ-излучения поглощается в тонком слое ра-
диуса 𝑅XUV с оптической толщиной для звездных
XUV-фотонов, равной единице, а также включен
учет приливного эффекта:

𝑀̇ = εXUV π𝐹XUV 𝑅𝑝 𝑅2
XUV𝐺𝑀𝑝𝐾tide(ξ) , (1)

где εXUV — параметр эффективности нагрева
(εXUV = 0.2 ± 0.1 для мининептунов и суперземель);𝐺 — гравитационная постоянная; 𝐹XUV — поток
XUV-фотонов; 𝑅𝑝 — радиус планеты; 𝑀𝑝 — масса
планеты; 𝑅XUV — радиус поглощения XUV-фотонов;𝐾tide(ξ) — приливный параметр. Подробности
использования соотношения (1) можно найти
во многих литературных источниках, в том числе
в работах [7, 6, 8, 9].

Основные данные о планетах системы TOI-1408
нами были взяты из работы [1]. Для оценки вели-
чины 𝐹XUV (потока XUV-фотонов) были использо-
ваны полученные в работе [10] аналитические зави-
симости, связывающие величину 𝐹XUV и параметр
log 𝑅 ′

HK для звезд спектральных классов от F до M.
В таблице представлены результаты расчетов по со-
отношению (1) величин 𝑀loss у планет TOI-1408 для
принятых величин параметра log 𝑅 ′

HK.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
Рассмотрены свойства мультипланетной си-

стемы TOI-1408, состоящей из горячего юпитера
и субнептуна, обращающихся вокруг звезды
спектрального класса F. Свойства планет тако-

Таблица. Результаты расчетов по соотношению (1)
величин 𝑀loss у планет TOI-1408

log 𝑅′HK
𝑀loss

Planet (b) Planet (c)
−4.94 5.0E+10 5.8E+9
−4.59 2.3E+11 2.7E+10

вы: горячий юпитер, TOI-1408 b имеет период
обращения 𝑃 = 4.42𝑑, 𝑀 = (1.86 ± 0.02)𝑀Jup,𝑅 = (2.4 ± 0.5)𝑅Jup, транзиты имеют V-образную
форму. Радиус внутренней планеты (c) (субнептуна)
составляет (2.22 ± 0.06)𝑅⊕, а масса (7.6 ± 0.2)𝑀⊕.
Также измерения лучевых скоростей свидетель-
ствуют в пользу существования дополнительного
небесного тела с периодом обращения несколько
тысяч дней. По мнению авторов работы [1] система
TOI-1408 интересна, поскольку позволяет изучать
процессы миграции планет типа горячий юпитер
в случаях, когда менее массивная планета (c)
находится ближе к звезде, чем более массивная (b).
По архивным измерениям блеска TOI-1408 (проект
DASCH) мы сделали оценки величины возможной
циклической долговременной переменности
объекта. Анализ переменности блеска TOI-1408
по данным Kamogata Wide-field Survey (KWS) указал
на наличие в спектре мощности пиков, соответ-
ствующих величине 𝑃 около 7.5𝑑, ранее найденного
в работе [1].

Вычисления величины оттока вещества из ат-
мосфер планет было проведено для двух значений
параметра log 𝑅 ′

HK (−4.94 и −4.59), соответствую-
щих максимумам бимодального распределения это-
го параметра для малоактивных и активных звезд
спектрального класса F. Потеря вещества атмосфе-
ры планеты (b) (горячего юпитера) может дости-
гать 2.3 × 1011 г/с, а субнептуна — планеты (c) —2.7 × 1010 г/с для величины log 𝑅 ′

HK = −4.59.
На рис. 3 представлено сопоставление получен-

ных нами данных о потере вещества атмосферами
планет системы с результатами исследования [11]
(см. рис. 11 в [11]). Авторы работы [11] опубли-
ковали сведения о скорости потери вещества для
287 экзопланет на основе новых измерений рентге-
новской светимости звезд с планетными система-
ми по данным миссии eROSITA. Мы сопоставили
наши результаты с данными из статьи [11], в том
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Рис. 3. Зависимость потери вещества атмосфера-
ми экзопланет от расстояния до звезды по дан-
ным [11] (светлые кружки). Темные кружки — величи-
ны 𝑀loss для планет TOI-1408 при значениях параметра
log 𝑅 ′

HK = −4.94, ромбы — при log 𝑅 ′
HK = −4.59. Уровни

величин 𝑀loss для горячего юпитера HD 189733 b и теп-
лого нептуна GJ 436 b ограничены толстой и тонкой
горизонтальными линиями соответственно
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числе для горячего юпитера HD 189733 b и тепло-
го нептуна GJ 436 b (уровни величин 𝑀loss для них
на рис. 3 ограничены толстой и тонкой горизонталь-
ными линиями соответственно). Полученные нами
данные достаточно хорошо согласуются с результата-
ми, найденными для экзопланет соответствующих
типов. Учитывая значительную величину возмож-
ного оттока вещества из атмосфер планет, TOI-1408
может быть включена в число приоритетных объек-
тов для наблюдений с УФ космическим телескопом
Спектр–УФ [12, 13].
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ACTIVITY OF THE STAR TOI-1408 AND MASS LOSS
BY THE ATMOSPHERES OF ITS EXOPLANETS

© 2025 I. S. Savanov
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We considers the properties of the multiplanetary system TOI-1408, consisting of a hot Jupiter (planet (b),(1.86 ± 0.02)𝑀Jup, (2.4 ± 0.5)𝑅Jup) and a sub-neptune (planet (c), (2.22 ± 0.06)𝑅⊕, (7.6 ± 0.2)𝑀⊕)
orbiting a star of spectral class F. Measurements of radial velocities indicate the existence of an additional
celestial body with an orbital period of several thousand days. The TOI-1408 system makes it possible to study
the migration processes of hot Jupiter-type planets in cases where a less massive planet (c) is closer to the star
than a more massive one (b). Based on archival measurements of the TOI-1408 brightness (DASCH project),
we made estimates of the length of the possible cyclic long-term variability of the object (equal to about10 500 days). The analysis of the brightness variability of TOI-1408 according to the Kamogata Wide-field
Survey (KWS) archive led to the detection of peaks in the power spectrum corresponding to a rotation
period of about 7.5 days. Estimates of the mass loss of the planets atmospheres were obtained, which
were established for two values of the parameter log 𝑅 ′

HK (−4.94 and −4.59) corresponding to the maxima
of the bimodal distribution of this parameter for low and high activity for stars of spectral class F. The mass
loss of planet (b) (hot Jupiter) can reach 2.3 × 1011 g/s, and of the sub-neptune — planet (c) — 2.7 × 1010
g/s for the value log 𝑅 ′

HK = −4.59. The obtained data are in good agreement with the results for exoplanets
of the corresponding types (including for hot Jupiter HD 189733 b and warm Neptune GJ 436 b).

Keywords: exoplanets, atmosheres, mass loss, activity, cycles
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1. ВВЕДЕНИЕ

Накопленные за последние годы данные радио-
телескопов MeerKAT [1, 2] и FAST [3] позволили
значительно уточнить характеристики средних про-
филей интенсивности и поляризации радиоизлу-
чения пульсаров, что, в свою очередь, потребова-
ло построения более детальной теории генерации
и распространения излучения в магнитосферах ней-
тронных звезд. В частности, модель “полого кону-
са” [4, 5], наиболее часто использующаяся для объ-
яснения свойств наблюдаемых профилей излучения,
оказывается излишне упрощенной, поскольку она
не учитывает эффекты распространения излучения
в магнитосфере нейтронной звезды, такие как ре-
фракция, циклотронное поглощение и предельная
поляризация [6].

В свою очередь, для исследования всех перечис-
ленных выше эффектов необходимо иметь количе-
ственную модель распределения плотности вторич-
ной электрон-позитронной плазмы, истекающей
вдоль открытых силовых линий радиопульсара. Так
как основным механизмом генерации плазмы в по-
лярных областях нейтронной звезды является одно-
фотонная конверсия γ-квантов, излученных первич-
ными электронами и/или позитронами, ускоренны-
ми в области ненулевого продольного электрическо-
го поля, для построения соответствующей модели
необходимо знать трехмерную структуру ускоряю-

щего потенциала в области над полярной шапкой
нейтронной звезды.

Хотя классическая модель вакуумного зазора
Рудермана–Сазерленда [7] служит хорошей отправ-
ной точкой для решения данной задачи, в своей тра-
диционной формулировке она содержит существен-
ную неопределенность — длина свободного пробега
фотонов, а следовательно, и геометрия вакуумно-
го зазора сама зависит от величины ускоряющего
потенциала. Поэтому фактически данная модель мо-
жет быть использована только для достаточно быст-
рых радиопульсаров, у которых высота зазора много
меньше радиуса полярной шапки, и для которых
электрическое поле в зазоре можно считать одно-
родным. Тем более эту модель нельзя использовать
для ортогональных пульсаров, угол наклона магнит-
ной оси к оси вращения которых близок к 90○. Дей-
ствительно, ускоряющий потенциал таких пульса-
ров не обладает осевой симметрией и, соответствен-
но, не может быть описан в рамках классической
модели [8]. Что же касается активно проводящих-
ся в последние десять лет исследований в рамках
частиц в ячейках (PIC) [9–13], то они в подавляю-
щем большинстве (за исключением разве что рабо-
ты [14]) не были направлены на поиск простран-
ственного распределения вторичной плазмы над по-
лярной шапкой.

В данной работе предлагается способ коррект-
ной постановки и решения задачи об определении
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пространственной структуры ускоряющего потен-
циала, не предполагающий малость высоты зазора𝐻gap по сравнению с радиусом полярной шапки 𝑅0
и осесимметричность потенциала, что делает метод
применимым и для ортогональных пульсаров. По-
следнее замечание особенно важно, так как благо-
даря возможности наблюдения обоих магнитных
полюсов эти объекты особенно информативны [15].
Помимо этого, из-за малой величины и знакопере-
менности гольдрайховской плотности в пределах
полярной шапки такие пульсары особенно чувстви-
тельны к выбору модели генерации плазмы и вели-
чине магнитного поля.

В разделе 2 сформулирована математическая по-
становка задачи, решаемой в работе. Раздел 3 по-
священ вычислению высоты вакуумного зазора при
фиксированном потенциале, решению уравнения
Пуассона методом Physics Infromed Neural Networks
(PINN) и обсуждению результатов данных вычис-
лений как для неортогональных, так и для ортого-
нальных пульсаров. Раздел 4 посвящен обсуждению
модели генерации вторичной плазмы и результатам
ее применения к определенным ранее потенциалам.
В разделе 5 подведены итоги данной работы.

2. ПОСТАНОВКА ЗАДАЧИ

Хотя результаты численного моделирования ука-
зывают на то, что процесс генерации частиц суще-
ственно нестационарен [13, 16], в качестве отправ-
ной точки мы выбрали модель стационарного ваку-
умного зазора [7]. Действительно, так как, согласно
работам [13, 16], плазма периодически полностью
покидает полярные области, модель Рудермана–
Сазерленда позволяет описать начальный этап гене-
рации вторичной плазмы. В данной работе, однако,
не будет предполагаться условие 𝐻gap ≪ 𝑅0, где

𝑅0 = 𝑓1/2
∗

√Ω𝑅𝑐 𝑅 (1)

есть радиус полярной шапки. Здесь и далее 𝑅, Ω и χ
суть радиус, угловая скорость и угол наклона диполь-
ного момента к оси вращения нейтронной звезды,
а 𝑓
∗
≈ 1.59 (1 + 0.2 sin2 χ)— безразмерная площадь

полярной шапки [17, 18].
Стоит отметить, что в последующих вычисле-

ниях радиуса кривизны магнитного поля оно будет
полагаться дипольным, хотя предлагаемый в работе
метод может быть обобщен и для других конфигу-
раций. Здесь мы, однако, рассмотрим упрощенную
модель, которая тем не менее позволяет учесть все
основные эффекты, связанные с кривизной магнит-
ных силовых линий.

Перейдем теперь к определению электрического
потенциала ψ в вакуумной области над полярными
областями радиопульсара. В стационарном состо-

янии уравнение Пуассона для вращающейся ней-
тронной звезды имеет вид [7]

Δψ = 4π(ρe − ρGJ), (2)
где ρe — плотность заряда в магнитосфере, aρGJ = −

B2π𝑐 (3)

— плотность Гольдрайха–Джулиана [19], необходи-
мая для экранировки продольного электрического
поля.

Заметим, что на масштабе высоты зазора область
открытых силовых линий мало отличается от цилин-
дрической, что позволяет пренебречь искривлени-
ем силовых линий при выборе расчетной области.
Таким образом, можно ввести цилиндрические ко-
ординаты 𝑟m, ϕm, 𝑧 с центром на оси диполя. При
этом везде ниже для величин 𝑟m и 𝑧 выбрана нор-
мировка на радиус полярной шапки 𝑅0 (1), так что
поверхность, отделяющая области открытых и за-
мкнутых силовых линий, определяется условием𝑟m = 1. В то же время кривизну силовых линий необ-
ходимо учитывать при вычислении правой части
уравнения (2), так как при углах χ ∼ 90○ лидирую-
щий по малому параметру

√Ω𝑅/𝑐 осесимметричный
(и независящий от кривизны магнитных силовых
линий) вклад стремится к нулю.

В этом случае уравнение, определяющее потен-
циал ψ(𝑟m, φm, 𝑧) в вакуумной области (ρ𝑒 ≪ ρGJ),
будет иметь следующий вид:1𝑟m

𝜕𝜕𝑟m
(𝑟m

𝜕ψ𝜕𝑟m
) + 1𝑟2

m

𝜕2ψ𝜕φ2
m
+

𝜕2ψ𝜕𝑧2 =

= − 2 Ω𝐵0𝑅20𝑐 (cos χ + 32 𝑅0𝑅 𝑟m sin χ sinφm) . (4)

Здесь мы воспользовались известным выражением
для косинуса угла между осью вращения и магнит-
ным полем cos θb ≈ cos χ+(3/2)(𝑅0/𝑅) 𝑟m sin χ sinφm,
справедливым для дипольных силовых линий.

Если высоту зазора 𝐻gap = 𝐻gap(𝑟m, ϕm) считать
заданной функцией, то граничные условия для урав-
нения (4) запишутся в видеψ(𝑟m, φm, 𝑧 = 0) = 0, (5)ψ(𝑟m = 1, φm, 𝑧) = 0, (6)𝜕ψ𝜕𝑧 (𝑟m, φm, 𝑧)∣𝑧=𝐻gap(𝑟m,φm)

= 0. (7)

Иными словами, необходимо потребовать равен-
ство нулю потенциала ψ на поверхности нейтрон-
ной звезды и на сепаратрисе, разделяющей от-
крытые и замкнутые магнитные силовые линии,
а также равенство нулю продольного электриче-
ского поля на верхней границе области ускорения𝑧 = 𝐻gap [13, 20].

Однако для нахождения самой функции 𝐻gap
необходимо конкретизировать процесс рождения
вторичной плазмы, что невозможно без знания
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энергий первичных частиц, которые сами зависят
от величины 𝐻gap, так как ускоряющий потенци-
ал ψ функционально зависит от высоты зазора:ψ = ψ[𝐻gap]. В итоге корректная постановка задачи
состоит в одновременном самосогласованном опре-
делении двух функций: ψ(𝑟m, ϕm, 𝑧) и 𝐻gap(𝑟m, ϕm),
таких что 𝜕ψ(𝑟m, ϕm, 𝑧)𝜕𝑧 ∣𝑧=𝐻gap[ψ] = 0. (8)

Для решения данной задачи мы использовали
итеративный подход: по известной функции𝐻(𝑖)gap вы-
числялся потенциал ψ(𝑖) такой, что было выполнено
условие (7), а далее, используя полученный потен-
циал, пересчитывалась высота зазора. Таким обра-
зом, выполнялась следующая итеративная проце-
дура (0 < 𝑤 < 1 — некоторый вес, улучшающий
сходимость схемы):𝐻(𝑖)gap → ψ(𝑖),𝐻(𝑖+1)

gap = 𝑤𝐻gap[ψ(𝑖)] + (1 − 𝑤)𝐻(𝑖)gap . (9)

При этом на каждом шаге итеративной схемы (9)
необходимо было не только определять высоту зазо-
ра𝐻gap[ψ], но и решать уравнение Пуассона (4) с гра-
ничными условиями (5), (6), (7), последнее из ко-
торых поставлено на границе, меняющейся в ходе
итеративного процесса.

3. ОПРЕДЕЛЕНИЕ УСКОРЯЮЩЕГО
ПОТЕНЦИАЛА

3.1. Изгибное излучение
Для определения высоты зазора необходимо рас-

смотреть процесс поглощения первичных фотонов
в сверхсильном магнитном поле и, соответственно,
сам механизм генерации фотонов. Классическим
источником γ-квантов необходимых энергий явля-
ется изгибное излучение первичных частиц. В этом
случае для высоты зазора 𝐻gap можно записать сле-
дующее выражение:𝐻gap(𝑟m, ϕm) = min𝑙e (𝑙e + 𝑙γ(𝑙e)), (10)

где 𝑙e — расстояние, пройденное первичной части-
цей до испускания фотона. Учитывая, что в данном
процессе с ростом энергии первичной частицы рас-
тет как число испускаемых фотонов, так и их ха-
рактерная энергия, можно считать, что первичный
фотон может быть излучен в произвольной точке
траектории частицы, что позволяет считать величи-
ну 𝑙e произвольной.

Далее, для (безразмерной) длины свободного
пробега фотона с энергией εγ, движущегося в маг-
нитном поле нейтронной звезды 𝐵, имеем следую-
щее выражение [7, 21]:

𝑙γ ≈ 83 1Λ 𝐵cr𝐵 𝑅c(𝑟m, 𝑧)εγ(𝑙e) . (11)

Здесь и далее все значения энергии нормированы
на 𝑚e𝑐2, 𝐵cr = 𝑚2

e𝑐3/ℎ̵𝑒 ≈ 4.4 × 1013 Гс — швинге-
ровское магнитное поле, 𝑅c(𝑟m, 𝑧) ≈ (4/3)𝑅2/𝑟m —
радиус кривизны магнитных силовых линий,
а Λ = Λ0 − 3 lnΛ0, где

Λ0 = ln [ 𝑒2ℎ̵𝑐 ω𝐵𝑅c𝑐 (𝐵cr𝐵 )2 ε−2γ ] ∼ 20 (12)

есть безразмерный параметр, слабо (логарифмиче-
ски) зависящий от параметров пульсара и энергии
фотона [22].

Наконец, для упрощения вычислений ускоря-
ющего потенциала предполагался моноэнергетиче-
ский спектр изгибного излучения

εγ = ε𝑐 = 3 λeγ3
e(𝑙e)2𝑅c(𝑟m, 𝑧) . (13)

Действительно, хотя длина свободного пробега фо-
тона (11) явным образом зависит от его энергии,
в разделе 3.4 будет показано, что зависимость ито-
гового ускоряющего потенциала от выбора числен-
ного коэффициента в формуле (13) заметно слабее.
Здесь λe = ℎ̵/𝑚e𝑐— приведенная комптоновская дли-
на волны, а γe есть γ-фактор первичной частицы,
определяющийся из ускоряющего потенциала со-
гласно уравнению движения𝑚𝑐2 𝑑γe𝑑𝑙 = 𝑒𝐸∥ − 𝐹CR − 𝐹IC . (14)

Последние два слагаемых соответствуют потерям
на изгибное излучение и обратное комптоновское
рассеяние. Вклад 𝐹CR, однако, становится суще-
ственным лишь при γ ∼ 108, что позволяет прене-
бречь им для большинства пульсаров. Вывод же
о малости вклада комптоновского рассеяния мож-
но сделать из сравнения длин свободного пробе-
га первичных частиц, выполненного ниже в следу-
ющем подразделе 3.2. Таким образом, в большин-
стве случаев γ-фактор первичной частицы можно
определять, не решая полное дифференциальное
уравнение (14), а используя его решение в отсут-
ствие потерь:

γe(𝑙) = 𝑒ψ(𝑙)𝑚𝑐2 . (15)

3.2. Обратное комптоновское рассеяние
Как утверждалось в ряде работ [23, 24], для ши-

рокого диапазона параметров пульсаров ключевым
механизмом, определяющим высоту зазора, может
быть обратное комптоновское рассеяние (как нере-
зонансное, так и резонансное) тепловых фотонов
на ультрарелятивистских первичных частицах. Клю-
чевым отличием данного процесса от изгибного из-
лучения является то, что с ростом энергии первич-
ной частицы характерная энергия комптоновских
фотонов растет, в то время как темп их рождения
падает. Вследствие этого первичные частицы, обла-
дающие энергией, достаточной, чтобы произвести

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



56 ИСТОМИН и др.

γ-квант с необходимой для рождения пары энерги-
ей, могут иметь пренебрежимо малую вероятность
испытать рассеяние. Фактически это означает, что
необходимо явно учитывать конечность длины сво-
бодного пробега электрона, ограничивающую вели-
чину 𝑙e в выражении (10) снизу.

Проанализировав зависимость данной величи-
ны от энергии, можно оценить влияние обратно-
го комптоновского рассеяния на рассматриваемый
процесс. Считая спектр излучения фотонов тепло-
вым и изотропным в диапазоне μmin ≤ μ ≤ 1 (μ —
косинус угла столкновения), можно записать следу-
ющее выражение для частоты актов рассеяния [25]:

𝑅(γe) =
+∞
∫0

𝑑ε 1
∫μmin

𝑑μ 𝑐4π3λ3
e

ε2𝑒ε/𝑇 − 1 ××(1 − 𝛽μ) σtot(γ, ε′(ε, μ)) . (16)

В данном выражении ε — энергия фотона до столк-
новения в системе отсчета пульсара (в единицах𝑚e𝑐2), ε′ — энергия фотона в системе отсчета покоя
электрона, σtot — полное сечение рассеяния.

Так как электрон практически мгновенно раз-
гоняется до γ-факторов γ ≳ 105, для нерезонансных
фотонов необходимо использовать релятивистское
сечение Клейна–Нишины. В то же время, так как
циклотронный резонанс находится при энергияхε′ = εB = 𝐵/𝐵cr ≪ 1, в нерезонансном случае можно
не учитывать влияние магнитного поля и восполь-
зоваться следующим выражением для сечения рас-
сеяния (σT — томпсоновское сечение) [26]

σNR =
3 σT8 1ε′ ⎡⎢⎢⎢⎢⎣ (1 − 2ε′ − 2ε′2) ln(1 + 2ε′)+
+

12 + 4ε′ − 12(1 + 2ε′)2 ⎤⎥⎥⎥⎥⎦. (17)

По этой же причине резонансное рассеяние мож-
но рассматривать в томпсоновском пределе (уже учи-
тывая наличие магнитного поля). В нем сечение рас-
сеяния имеет вид [27]

σ = σT2 [ 𝑢2
(𝑢 + 1)2 + 𝑢2

(𝑢 − 1)2 + 𝑎2 ] . (18)

Здесь 𝑢 = ε′/εB, 𝑎 = 2α/3 εB, а εB = 𝐵/𝐵cr. Выделив
в данном выражении резонансную часть, можно за-
писать σR =

3π4αe
σT𝛿(ε′ − εB). (19)

Для наших целей достаточно исследовать зависи-
мость длины свободного пробега электрона от энер-
гии, не рассматривая процесс ускорения электрона
непосредственно, то есть считая, что 𝑙e(γe) = 𝑐/𝑅(γe).
Для нерезонансного рассеяния расчеты выпол-
нялись численно, используя выражения (16), (17),

в то время как для резонансного случая можно по-
лучить аналитическое выражение [28]:

𝑙𝑅e = λeγ2
eε2BΘαe(− ln (1 − 𝑒−𝑤)) , (20)

где Θ = 𝑇/𝑚𝑒𝑐2, а𝑤 = εBγeΘ(1 − 𝛽μmin) . (21)

Интересно сравнить полученные длины пробега
с радиусом полярной шапки, являющимся харак-
терным масштабом высоты зазора в случае преоб-
ладания изгибного механизма генерации первич-
ных фотонов. Результаты вычислений представлены
на рис. 1. Как можно видеть, даже при температу-
ре 106 K длина свободного пробега в нерезонанс-
ном случае имеет порядок радиуса полярной шапки
только при γ ≲ 102, что позволяет не учитывать его
при вычислении ускоряющего потенциала. В резо-
нансном случае ответ уже не столь однозначен, так
как при γ ∼ 104 энергии рассеянных фотонов могут
быть достаточны для рождения пары вблизи звезды.
Однако, как показали результаты численных рас-
четов, в пределах наблюдаемых параметров ортого-
нальных пульсаров данным процессом также можно
пренебречь.

3.3. Решение уравнения Пуассона методом PINN
Следующим шагом на пути к реализации ите-

ративной схемы (9) является решение уравнения
Пуассона в вакуумной области (4). Хотя для данно-
го уравнения можно построить аналитическое ре-
шение в виде бесконечного ряда [22], данный под-
ход не является предпочтительным, так как СЛАУ,
определяющая коэффициенты разложения, имеет
крайне большое число обусловленности в необхо-
димой области параметров. Традиционные сеточ-
ные методы также плохо подходят для данной задачи

NR, T
6
 = 1

NR, T
6
 = 0.1

R, T
6
 = 1, B

12
 = 4

R, T
6
 = 1, B

12
 = 2

R, T
6
 = 0.1, B

12
 = 4

109

108

108

107

107

106

106

105

105

104

104

103

102

101

γ
e

l e
/R

0

Рис. 1. Зависимость длин свободного пробега электро-
на от его γ-фактора для различных параметров пуль-
сара. Зеленый цвет (три параллельные линии) соответ-
ствует резонансному рассеянию (𝑅), синий (две поло-
гие кривые) — нерезонансному (𝑁𝑅)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



УСКОРЯЮЩИЙ ПОТЕНЦИАЛ И ПРОФИЛЬ ПЛОТНОСТИ ВТОРИЧНОЙ ПЛАЗМЫ 57

в силу переменной формы трехмерной расчетной
области.

В связи с этим для решения данного уравнения
в частных производных был применен метод Physics
Informed Neural Networks (PINN) основанный на ис-
пользовании нейронных сетей. PINN является до-
статочно новой альтернативой традиционным ме-
тодам решения уравнений в частных производных
и в настоящее время все чаще и чаще применяет-
ся во множестве областей физики и астрофизики,
таких, например, как космология [29], теория пере-
носа излучения [30] и теория магнитосферы радио-
пульсаров [31, 32].

PINN представляют собой обыкновенную ней-
ронную сеть той или иной архитектуры (как пра-
вило, выбирается полносвязная нейронная сеть),
входными параметрами которой являются незави-
симые переменные x, а выходным — значение функ-
цииN (x), приближенно удовлетворяющей уравне-
нию 𝐿̂[N (x)] = 0, где 𝐿̂ есть некоторый дифферен-
циальный оператор. Для обучения в качестве loss-
функции выбирается норма невязки дифференци-
ального уравнения: ∣∣𝐿̂[N (x)]∣∣ → 0. При этом для
вычисления производных искомой функции не нуж-
но вводить дискретизацию пространства, так как
их можно получить непосредственно в процессе об-
ратного прохождения по нейронной сети. Таким об-
разом, в процессе обучения нейронная сеть будет
приближаться к одному из решений соответствую-
щего дифференциального уравнения. Что же каса-
ется граничных условий, то наиболее простым спо-
собом их учета является добавление соответствую-
щих слагаемых в loss-функцию с некоторыми веса-
ми. Проблемой данного метода является, однако,
необходимость балансировки весов для достижения
минимизации всех слагаемых по отдельности.

Другой способ заключается в выполнении неко-
торого алгебраического преобразования с выход-
ными данными нейронной сети так, чтобы ответ
автоматически удовлетворял граничным услови-
ям. Например, жесткого выполнения условий Ди-
рихле на фиксированной границе 𝜕𝐷 области 𝐷
можно достичь, введя функции 𝑓 и 𝑔 такие, что𝑓∣x∈𝜕𝐷 = 0, а 𝑔∣x∈𝜕𝐷 = ℎBC, где ℎBC задает значе-
ния искомой функции на границе. Тогда функ-
ция 𝑔(x) + 𝑓(x)N (x) будет удовлетворять гранич-
ным условиям независимо от вида функцииN (x).

Основными преимуществами данного подхода
по сравнению с традиционными численными ме-
тодами является отсутствие расчетной сетки и, как
следствие, большее удобство при работе в областях
со сложной и переменной геометрией, а также мень-
шая чувствительность к размерности задачи. Недо-
статком данного метода как правило является мень-
шая точность результатов при больших временных
затратах.

Важно также отметить, что в отличии от боль-
шинства других численных методов, предел точно-

сти которых при неограниченном времени расче-
тов приближается к машинному ε, предел точности
PINN определяется архитектурой сети и способом
оптимизации. Тем не менее для многих астрофизи-
ческих задач (в том числе и для рассматриваемой
в данной работе) точность вычислений в первую
очередь определяется физической моделью, а не вы-
бором численного метода. В таких случаях способ-
ность PINN решать уравнения со сложными гранич-
ными условиями выходит на первый план.

В применении к рассматриваемой задаче дан-
ный метод использовался следующим образом. При
фиксированной высоте вакуумного зазора делает-
ся 𝑁 ∼ 5000 шагов оптимизации; далее, используя
текущий вид потенциала, высота зазора пересчиты-
вается и делаются следующие𝑁шагов оптимизации.
При этом веса нейронной сети, полученные на те-
кущей итерации, используются как начальные зна-
чения весов на следующей. Процедура повторяется
до тех пор, пока относительное изменение высоты
зазора не станет меньше 1%. После этого происхо-
дит дополнительное обучение нейронной сети при
фиксированной высоте зазора.

В качестве нейронной сети была выбрана пол-
носвязная сеть, состоящая из 3-х промежуточных
слоев (20, 20, 20). Для учета граничных условий
на поверхностях 𝑟m = 1 и 𝑧 = 0 результат вычис-
лений нейронной сети домножался на функцию𝑓(𝑟m, 𝑧) = 𝑟m ⋅ 𝑧, в то время как граничное условие
на верхней границе зазора учитывались введением
дополнительного слагаемого в функцию ошибок.
Для оптимизации использовался подход, предло-
женный в работе [33], заключающийся в первичном
обучении с помощью стохастического градиентно-
го спуска (ADAM) и последующего обучения мето-
дом LBFG-S (рис. 2). В то время как метод ADAM
применялся непосредственно в итеративном про-
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Рис. 2. Пример поведения функции ошибок. Скачки
соответствуют смене граничных условий и выбору но-
вого набора точек для обучения. Вертикальной красной
линией отмечен момент переключения оптимизатора
с ADAM на LBFG-S
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цессе, метод LBFG-S использовался при дообуче-
нии с финальной высотой зазора. Данный подход
мотивирован тем, что метод ADAM в значительно
меньшей степени подвержен проблеме локальных
минимумов, особенно актуальной на начальных эта-
пах обучения, в то время как метод LBFG-S позво-
ляет достичь более глубокой оптимизации. Таким
образом используются сильные и нивелируются сла-
бые стороны обоих методов, что позволило достичь
заметно большей точности расчетов в рассматрива-
емой задаче.

3.4. Осесимметричный случай
При углах наклона осей χ ≲ 85○ источник

в уравнении (4) фактически не зависит от угла φm.
Поэтому для пульсаров, не являющихся ортогональ-
ными, задача становится осесимметричной и соот-
ветственно двумерной, что позволяет исключить
из рассмотрения угол φm. Это в значительной сте-
пени упрощает как расчет, так и анализ результа-
тов. В связи с этим, хотя основным фокусом работы
и является применение изложенного выше метода
к ортогональным пульсарам, в первую очередь был
рассмотрен именно осесимметричный случай.

Как показано на рис. 3, описанный выше ме-
тод позволяет найти решение поставленной зада-
чи с относительной невязкой порядка нескольких
процентов, что является достаточно хорошей точно-
стью. При этом геометрически полученные резуль-
таты воспроизводят некоторые свойства структуры,
известной как “slot-gap” [34]. Стоит, однако, отме-
тить, что в работе [34] рассматривалась стационар-
ная модель со свободным выходом, когда плотности
заряда ρ𝑒 и ρGJ, входящие в уравнение (2), мало отли-
чаются друг от друга. Однако в обоих случаях такая
форма высоты зазора обусловлена тем, что вблизи
магнитной оси рождение частиц затруднено вслед-
ствие малой кривизны магнитного поля, а на краю

полярной шапки ускоряющий потенциал стремится
к нулю. Таким образом высота зазора должна обра-
щаться в бесконечность при 𝑟m ∼ 0 и 𝑟m ∼ 1. Также
на рис. 4 представлены предельные значения уско-
ряющего потенциала (достигаемые на высоте ва-
куумного зазора), вычисленные с использованием
различных характерных энергий в моноэнергити-
ческом приближении синхротронного спектра (13).
Как можно видеть, даже при изменении характер-
ной энергии фотона в два раза, относительное изме-
нение потенциала не превышает ∼ (15–20)%, что
является допустимой погрешностью в рамках дан-
ной работы. Тем не менее в ходе дальнейшего разви-
тия модели, предполагаемого в последующих рабо-
тах, влияние изгибного спектра будет учтено.

3.5. Неосесимметричный случай

На рис. 5 показаны примеры расчета ускоряю-
щего потенциала для почти ортогональных пуль-
саров с углами наклона χ = 88○ (верхний ряд)
и χ = 89.3○ (нижний ряд) для магнитного поля𝐵12 = 1.5 и периода 𝑃 = 0.3 с, характерного для инте-
римпульсных пульсаров. Приведены максимальные
значения потенциала над полярной шапкой, сре-
зы нормы невязки уравнения Пуассона на высоте0.5𝑅0, а также высоты вакуумных зазоров в радиу-
сах полярной шапки. Стоит отметить, что высота𝐻gap = 10𝑅0 фактически соответствует 𝐻gap → ∞.

Как уже отмечалось, исследование таких пульса-
ров представляет особый интерес, поскольку для
них электрический потенциал становится суще-
ственно неосесимметричным. Более того, в этом
случае гольдрайховская плотность может менять
знак в пределах полярной шапки, что влечет за со-
бой и изменение направления ускоряющего поля.
Происходит это, однако, в весьма узком диапазоне
углов χ.
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(a) Потенциал, нормированный на величину Ω𝐵𝑅20/(2𝑐).
Красная линия соответствует высоте зазора 𝐻gap(𝑟m)

(b) Норма невязки решения уравнения Пуассона

Рис. 3. Пример вычисления ускоряющего потенциала для пульсара с χ = 10○, 𝐵12 = 1.6 и 𝑃 = 0.5 с
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Рис. 4. Профили предельного ускоряющего потенци-
ала, вычисленные с использованием различных ха-
рактерных энергий изгибного излучения для пульсара
с χ = 10○, 𝐵12 = 1.6 и 𝑃 = 0.5 с. Потенциал нормирован
на величину Ω𝐵𝑅20/(2𝑐)

Действительно, для того чтобы величина cos θb
при характерных значениях 𝑃 ≈ 1 c поменяла
знак в пределах полярной шапки, необходи-
мо, чтобы ∣χ − π/2∣ ≲ 3𝑅0/(2𝑅) ∼ 0.03, то есть88.5○ ≲ χ ≲ 91.5○. В результате, как показано
на рис. 5, смена знака потенциала имеет место лишь
для угла χ = 89.3○; для угла χ = 88○ знак потенциала
не изменяется по всей поверхности полярной
шапки.

Отметим наконец, что, как показано на рис. 5,
значения ускоряющего потенциала оказываются за-
метно меньше, чем для неортогональных пульсаров.
Это напрямую связано с малостью фактора cos θb
в гольдрайховской плотности (3).

4. ПРОФИЛЬ ПЛОТНОСТИ ВТОРИЧНОЙ
ПЛАЗМЫ

4.1. Метод расчета
Для изучения распределения плотности плаз-

мы в пространстве удобно записать концентра-
цию в следующем виде: 𝑛 = 𝑔(𝑟m, φm)λ𝑛GJ, где𝑛GJ = ∣ρGJ∣/𝑒— гольдрайховская концентрация, а λ—
параметр множественности, определяемый усред-
нением величины 𝑛/𝑛GJ по полярной шапке. Такой
вид записи мотивирован тем, что вдали от области
генерации частиц функция 𝑔(𝑟m, φm) является посто-
янной на силовых линиях магнитного поля, то есть
вся зависимость от высоты над полярной шапкой
содержится в гольдрайховской плотности 𝑛GJ (что
следует из уравнения непрерывности).

Однако, поскольку для ортогональных пульса-
ров сама величина 𝑛GJ существенно зависит от ко-
ординат 𝑟m, φm, в качестве нормировки нами была
выбрана величина

𝑛0 = Ω𝐵2π𝑐𝑒
√Ω𝑅𝑐 , (22)

где последний множитель соответствует характер-
ной величине cos θb на полярной шапке для ортого-
нальных пульсаров. Таким образом, безразмерная
величина λ характеризует эффективность генера-
ции плазмы, а функция 𝑔(𝑟m, ϕm) определяет ее про-
странственное распределение.

Для расчета множественности плазмы нами ис-
пользовалась следующая модель: первичные части-
цы, ускоренные в определенном в первой части на-
шей работы потенциале ψ(𝑟m, φm, 𝑧) до значений
лоренц-факторов γe ∼ 107, рождают первичные фо-
тоны, которые, в свою очередь, поглощаясь в маг-
нитном поле, дают начало синхротронному каскаду
рождения пар [35, 36]. Считая, что длины свобод-
ного пробега фотонов много меньше расстояния
от центра звезды до точки излучения [36], синхро-
тронный каскад можно считать локальным в про-
странстве. Тогда, в рамках такой модели получаем
следующее выражение для количества вторичных
частиц, рожденных одной первичной частицей:

λ1 =
∞
∫0
𝑑𝑧𝑒 ∞
∫0
𝑑ε𝑖 𝑛γ(𝑧𝑒, ε𝑖; 𝑟m, φm) 𝑓SR(𝑧𝑒, ε𝑖; 𝑟m). (23)

Здесь 𝑧𝑒 есть высота излучения изгибного фотона,𝑧𝑎 — высота его поглощения в магнитном поле,
а 𝑛γ — спектр первичных фотонов. Наконец, функ-
ция 𝑓SR определяет число вторичных частиц, рож-
денных одним фотоном c энергией ε𝑖, поглощенным
на высоте 𝑧𝑒. Для ее определения мы воспользуем-
ся подходом, предложенным в работе [36], однако
теперь вычисления будут проводиться с учетом за-
висимости всех величин от координат на полярной
шапке.

Введя теперь равновесные объемные темпы рож-
дения вторичных пар 𝑄p и фотонов 𝑄γ, можно за-
писать следующее выражение для числа вторичных
частиц 𝑓SR:

𝑓SR(ε𝑖) = ∞
∫0

𝑑ε𝑄p(ε, ε𝑖) =
=

∞
∫0

𝑑ε (1 − 𝑒−τ∞(ε))𝑄γ(ε, ε𝑖), (24)

где τ∞ является предельной оптической толщиной
магнитосферы. В свою очередь, функцию 𝑄γ можно
определить из интегрального уравнения [36]:

𝑄γ(ε, ε𝑖) = ∞
∫0

𝑑ε′ [1 − 𝑒−τ∞(ε′)] ×
× 1ε′𝐾 ( εε′) [𝛿(ε′ − ε𝑖) + 𝑄γ (ε′, ε) ]. (25)

В этом уравнении функция 𝐾(ε/ε′) имеет вид:

𝐾 ( εε′) = 3√38π √Λ ( εε′)−3/2 ×
× [𝐺 (Λ εε′) − 𝐺 ((1 + 𝑎2)Λ εε′)] , (26)
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(a) Ускоряющий потенциал,
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Рис. 5. Примеры расчета ускоряющего потенциала для ортогональных пульсаров c 𝐵12 = 1.5, 𝑃 = 0.3 с, χ = 88○ для
верхнего ряда и χ = 89.3○ — для нижнего. Приведены максимальные значения потенциала над полярной шапкой,
нормы невязки уравнения Пуассона на высоте 0.5𝑅0, а также высоты вакуумных зазоров в радиусах полярной шапки

где 𝑎 = 3𝐵cr/(4𝐵 lnΛ), а Λ определяется выражени-
ем (12). В свою очередь

𝐺(𝑡) = ∞
∫𝑡 𝑑𝑥𝐾5/3(𝑥) (𝑥3/2

− 𝑡3/2). (27)

Решение данного уравнения несложно получить,
вводя дискретизацию в логарифмическом масшта-
бе и решая соответствующее матричное уравнение.
На рис. 6 показаны примеры расчета спектра вто-
ричных частиц в зависимости от местоположения
формирования каскада. Как мы видим, с ростом вы-
соты 𝑧 формируется степенной спектр вторичных
частиц. Этот хорошо известный факт [35, 36] под-
тверждает справедливость нашего рассмотрения.

Далее, для определения спектра первичных фо-
тонов 𝑛γ, как и при расчете потенциала, необходи-
мо рассмотреть два источника: изгибное излучение
и обратное комптоновское рассеяние. Для оценки
вклада комптоновского рассеяния можно восполь-
зоваться приближенными выражениями для темпа
рождения пар (числа фотонов, рождаемых одной
первичной частицей) [23]:𝑁̇𝑁𝑅 ≈ 1.5 × 109 γ−1 𝑇26 Δμ с−1, (28)

𝑁̇𝑅 ≈ 1013 γ−2𝐵12 𝑇6 с−1, (29)

𝑁̇CR ≈ γ ρ−18 с−1. (30)
Здесь индексы 𝑁𝑅, 𝑅 и CR соответствуют нерезо-
нансному комптоновскому рассеянию в пределе
Клейна–Нишины, резонансному комптоновскому
рассеянию и изгибному излучению.

Величина 𝑇6 является температурой полярной
шапки в единицах 106 К, ρ8 — радиус кривиз-
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Рис. 6. Спектр синхротронного каскада, запущенного
фотоном с энергией εγ = 106 для различных значений𝑟m и 𝑧
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ны магнитных силовых линий в единицах 108 см,
а Δμ = 1 − μmin. Сравнить эффективность генера-
ции вторичной плазмы для трех механизмов мож-
но, домножив величины 𝑁̇ на фактор 𝑓SR(εγ(γe)),
где механизм генерации первичных фотонов опре-
деляет вид εγ(γe). Так, для изгибного излуче-
ния εγ ∼ 3/2 λ𝑒/𝑅𝑐 γ3𝑒, для нерезонасного обратно-
го комптоновского рассеяния в пределе Клейна–
Нишины εγ ∼ γ𝑒, a для резонансного — εγ ∼ 2γ𝑒ε𝐵.
Учитывая, что характерный масштаб генерации вто-
ричной плазмы есть масштаб спадания магнитного
поля, т. е. радиус звезды, величину λ1 можно оценить
как 𝑁̇(γe)𝑓SR𝑅/𝑐.

Результаты расчета для интересующих насγ-факторов первичных частиц представлены
на рис. 7. Как можно видеть, во всем интересующем
нас диапазоне энергий обратным комптоновским
рассеянием можно пренебречь. Более того, результа-
ты для нерезонансного рассеяния, представленные
на рис. 7, получены для Δμ = 1, в то время как
характерные значения Δμ на высотах порядка
радиуса звезды составляют (𝑅0/𝑅)2 ≪ 1.

Поскольку же, как уже было сказано выше,
масштаб генерации вторичной плазмы составля-
ет несколько радиусов звезды, приведенная оцен-
ка на самом деле значительно завышена. Поэтому
в данном разделе мы ограничимся рассмотрением
только изгибного механизма. В этом случае концен-
трация первичных фотонов 𝑛γ определяется спек-
тром изгибного излучения

𝑑𝑁(1)γ =
√32π 𝑒2𝑐𝑅c(𝑧) γe𝐹 (ω/ωc)ℎ̵ω 𝑑ω 𝑑𝑧≡𝑛γ𝑑ω 𝑑𝑧, (31)

где

𝐹(𝑡) = 𝑡 ∞
∫𝑡 𝐾5/3(𝑥) 𝑑𝑥 (32)
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Рис. 7. Сравнение эффективности генерации вторич-
ной плазмы для изгибного излучения и обратного резо-
нансного и нерезонансного комптоновского рассеяния

и ω𝑐 = 32 𝑐𝑅c
γ3

e . (33)

Определив количество частиц λ1, рождаемых од-
ной первичной частицей, можно найти и концен-
трацию вторичной плазмы, домножив λ1 на концен-
трацию первичных частиц, то есть на гольдрайхов-
скую плотность. Тогда, согласно определению (22),
имеем

λ𝑔(𝑟m, ϕm) = λ1(𝑟m, ϕm) ×
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, χ < 85○,
cos θb√Ω𝑅𝑐

, χ > 85○. (34)

4.2. Осесимметричный случай
Как и при определении ускоряющего потенци-

ала, удобно отдельно рассматривать неортогональ-
ные и ортогональные пульсары. В осесимметричном
случае полученные результаты интересно сравнить
с работой [35], где аналогичные вычисления прово-
дились, фактически, для пульсаров вблизи линии
смерти (т. е. вся магнитосфера полагалось вакуум-
ной). Хотя качественная форма полученных профи-
лей совпадает с результатами данной работы, суще-
ствует и несколько существенных отличий.

Прежде всего, оказалось, что энергии первич-
ных фотонов, как правило, не хватает, чтобы за-
пустить многоступенчатый синхротронный каскад.
То есть величина 𝑓SR близка к 1 для энергий изгиб-
ных фотонов. Соответственно, и множественность
вторичной плазмы при одинаковых параметрах ока-
залась меньше, чем в работе [35]. Еще одно отличие
касается асимптотического поведения профиля кон-
центрации вблизи магнитной оси. В то время как
в работе [35] на основании качественных соображе-
ний утверждалось, что с хорошей точностью мож-
но положить 𝑔(𝑟m) ∝ 𝑟3

m при 𝑟m ≪ 1, в настоящей

λ ∝ r3
m

r
m

 g
(r

m
)

λ = 10242.5

2.0

1.5

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Рис. 8. Профиль концентрации вторичной плазмы𝑔(𝑟m) для пульсара с параметрами 𝑃 = 0.5 c, 𝐵12 = 1.0,χ = 10○. Штриховой линией показано приближение𝑔 ∝ 𝑟3
m
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Рис. 9. Линеаризация поведения профиля концентра-
ции в пределе 𝑟m → 0. Штриховой линией показана
асимптотика 𝑔(𝑟𝑚) ∝ 𝑒−(𝑎/𝑟m)

2
.

работе был получен результат 𝑔(𝑟m) ∝ exp[−𝑎2/𝑟2
m],𝑎 ≪ 1 (рис. 8, 9). Данная асимптотика следует из раз-

ложения спектра изгибного излучения (31) вбли-
зи магнитной оси, который не был учтен в рабо-
те [35]. Стоит, однако, отметить, что полученная
выше асимптотика применима лишь вблизи магнит-
ной оси (𝑟m < 0.03), в то время как кубическая зави-
симость лучше описывает профиль на больших мас-
штабах 0.03 < 𝑟m < 0.2. Так что для практических це-
лей следует пользоваться асимптотикой 𝑔(𝑟m) ∝ 𝑟3

m.

4.3. Неосесимметричный случай
На рис. 10 показаны поперечные профили кон-

центрации λ𝑔(𝑟m, ϕm) для различных магнитных по-
лей 𝐵12 и углов наклона χ и для периода 𝑃 = 0.3 с,
характерного для интеримпульсных пульсаров. Как
можно видеть, для умеренных магнитных полей и уг-
лов χ, мало отличающихся от 90○, генерация плазмы
оказывается в значительной степени подавленной.
При этом профили плотности в целом повторяют
профили, определенные ранее в работе [20] в рамках
качественного рассмотрения. Тем самым остается
в силе и основной вывод этой статьи, касающий-
ся статистики интеримпульсных пульсаров (наблю-
даемое число интеримпульсных пульсаров говорит
в пользу закона эволюции угла χ в сторону углов∼ 90○).

Напомним, что для ортогональных пульсаров са-
ма возможность генерации вторичной плазмы ока-
зывается под вопросом. Действительно, при χ ∼ 90○
гольдрайховская плотность (3) значительно мень-
ше, чем в неортогональном случае. Так как дан-
ная величина является источником в уравнении
Пуассона (4), при прочих равных условиях ортого-
нальные пульсары должны обладать заметно мень-
шим ускоряющим потенциалом, что должно ска-
заться на возможности генерации плазмы.

Особенно интересен этот вопрос в контексте
необходимой для генерации вторичной плазмы ве-

личины магнитного поля, оценить которое невоз-
можно без явного использования модели эволюции.
Хотя для обыкновенных пульсаров выбор конкрет-
ной модели приводит лишь к различию на фактор∼ 2 − 3, для ортогональных пульсаров разница мо-
жет быть заметно больше. Действительно, в то время
как общепринятая МГД-модель эволюции [37–39]
предсказывает магнитные поля, мало отличающие-
ся от стандартной оценки 𝐵12 ≈ ̇𝑃1/2

−15 𝑃1/2,

𝐵MHD12 ≈ ̇𝑃1/2
−15 𝑃1/2√1 + sin2 χ , (35)

в рамках BGI-модели, предложенной в работе [40],
магнитное поле записывается в виде

𝐵BGI12 ≈ ̇𝑃1/2
−15 𝑃1/2√

cos2 χ + C , (36)

где C ∼ √Ω𝑅/𝑐 ≪ 1. В результате соотношение (36)
для ортогональных пульсаров приводит к оценке𝐵12 ≈ 10 𝑃3/4 ̇𝑃1/2

−15 [20], которая дает значения маг-
нитного поля, в несколько раз большие, чем пред-
сказывает модель MHD. А при больших магнитных
полях условие генерации вторичных частиц для ор-
тогональных пульсаров будет выполнено в большем
диапазоне периодов. Иными словами, и здесь воз-
никает указание на справедливость модели BGI.

Этот вопрос, однако, требует более детально-
го анализа, выходящего за рамки настоящей рабо-
ты. Соответственно, в данной работе не пресле-
довалась и цель проводить расчеты для конкрет-
ных радиопульсаров, этому будет посвящена отдель-
ная статья. В частности поэтому мы ограничились
лишь обсуждением самой модели генерации вто-
ричной плазмы для магнитных полей, превыша-
ющих стандартные оценки для интеримпульсных
пульсаров, но не выходящих за пределы примени-
мости нашей модели: 𝐵 < 𝐵cr [41]. В следующей ста-
тье предполагается также использовать эту модель
для определения средних профилей наблюдаемого
радиоизлучения.

5. ЗАКЛЮЧЕНИЕ
В работе был предложен новый подход к опреде-

лению ускоряющего потенциала над полярной шап-
кой нейтронной звезды. В его основе лежит кон-
цепция вакуумного зазора, высота которого пола-
гается зависимой от координат на полярной шапке
и определяется самосогласованно с электрическим
потенциалом. Для реализации данного подхода бы-
ла построена численная процедура, заключающаяся
в итеративном решении уравнения Пуассона в ваку-
умной области и пересчете ее верхней границы. Для
решения трехмерного уравнения Пуассона в обла-
сти с изменяющейся геометрией был успешно при-
менен метод PINN.
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Рис. 10. Поперечные профили концентрации λ𝑔(𝑟m, ϕm) для ортогональных пульсаров для различных магнитных полей
и углов наклона

Важно отметить, что предложенный подход впер-
вые позволил количественно определить структуру
ускоряющего потенциала для ортогональных пуль-
саров, являющуюся для таких объектов существенно
неосесимметричной. Используя данный метод и мо-
дель генерации вторичной электрон-позитронной
плазмы были проведены расчеты поперечных про-
филей концентрации как для обыкновенных, так
и для ортогональных пульсаров. Также было иссле-
довано влияние обратного комптоновского рассе-
яния на рассматриваемые процессы и было пока-
зано, что даже при температуре полярной шапки𝑇 ∼ 106 K этим процессом можно пренебречь.

Далее, для ортогональных пульсаров было про-
ведено предварительное исследование зависимости
эффективности генерации электрон-позитронных
пар от величины магнитного поля и угла наклона
магнитной оси к оси вращения. Было показано, что
для углов 89○ ≲ χ ≲ 91○ и умеренного магнитного
поля 𝐵12 ∼ 2, множественность вторичной плазмы
оказывается на несколько порядков меньше, чем
для обыкновенных пульсаров. В то же время, как
хорошо известно [20], ортогональные радиопульса-
ры наблюдаются, и оценки угла наклона магнитной
оси к оси вращения для некоторых из этих объектов
попадают в указанный диапазон.

Можно предложить несколько объяснений тако-
му противоречию. В первую очередь, так как оценки
углов наклона пульсаров имеют большую погреш-
ность, может оказаться, что пульсары с такими уг-
лами просто не наблюдаются. Другим объяснением

может являться большее по сравнению с магнито-
дипольной оценкой магнитное поле, что в свою оче-
редь предполагает уточнение модели эволюции пуль-
саров. Также не стоит исключать и возможную неди-
польность магнитного поля для таких объектов, так-
же способную усилить процессы генерации вторич-
ной плазмы. Таким образом, данное наблюдение
мотивирует обратить большее внимание на свети-
мости ортогональных пульсаров и оценки их углов
наклона магнитной оси к оси вращения.

Наконец, отметим, что одним из основных при-
ложений полученных результатов является изучение
распространения радиоизлучения в магнитосфере
нейтронной звезды. Действительно, как было по-
казано в работах [6, 35, 42], эффекты преломления
и поглощения играют существенную роль в форми-
ровании среднего профиля интенсивности. Таким
образом, верификация моделей генерации радиоиз-
лучения невозможна без учета реального поперечно-
го профиля концентрации вторичной плазмы. Кро-
ме того, информация о профилях плотности плаз-
мы для ортогональных пульсаров позволит уточнить
их функцию видимости, что необходимо для анали-
за статистики данных объектов [20].

Конечно, нельзя не отметить модельность ре-
шенной задачи. Действительно, многие числен-
ные [10, 13, 16] и аналитические [43] работы ука-
зывают на существенную нестационарность гене-
рации вторичной плазмы. Таким образом, границы
применимости предложенной модели требуют от-
дельного, детального исследования. Тем не менее
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на данный момент не существует нестационарных
моделей, позволяющих определить пространствен-
ное распределение вторичной плазмы над полярной
шапкой. Тем интереснее будет сравнить результа-
ты данной работы с нестационарными численны-
ми моделями, когда их точность станет достаточной
для определения профиля плотности истекающей
плазмы.
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Изучаются факторы, влияющие на энергетику солнечной вспышки. Исследование проводилось
в рамках модели ускорения частиц в магнитной Х-особенности. Было установлено, что энергия
вспышки зависит главным образом от потока электронов в зону ускорения. А изменение такого
потока в свою очередь определяется размерами зоны ускорения. Расчеты показали, что для
хромосферного источника вспышки вертикальная протяженность зоны ускорения изменяется
от ∼100 км до ≈2 ⋅ 103 км, а ее диаметр от ∼1 км до ≈100 км.
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1. ВВЕДЕНИЕ
Одним из проявлений солнечной активности яв-

ляются вспышки. Во время вспышки выделяется
огромное количество энергии –– до 1032 эрг. Послед-
ствия столь мощного явления отражаются на состо-
янии земной атмосферы. В связи с этим возникает
естественное желание прогнозировать появление
вспышки и ее энергетику. В настоящее время во-
прос о предсказании появления вспышки остается
открытым, но есть некоторые наблюдательные свя-
зи мощности вспышки с величиной магнитного по-
тока и размерами активной области, где подавляю-
щее количество вспышек и происходит. Между тем,
в активных областях с указанными особенностями
случаются и вспышки малой мощности ∼1027 эрг.
Чтобы понять причину этого, необходимо устано-
вить влияющие на энергетику вспышки факторы,
чему и посвящено предлагаемое исследование.

2. МОДЕЛЬ ВСПЫШКИ
В солнечной вспышке происходит выделение

большого количества энергии за короткое время.
В настоящее время наиболее популярной являет-
ся идея магнитного пересоединения. Такое пересо-
единение происходит в магнитной Х-особенности
и формирует токовый слой. Однако в солнечных
условиях появление токового слоя требует мно-
гих часов, а процесс эффективного выделения
энергии во время солнечной вспышки занимает
несколько минут. Между тем в самой магнитной
Х-особенности происходит быстрое ускорение элек-
тронов [1]. В связи с такой ситуацией автор по-
лагает, что основным источником энергии сол-

нечной вспышки являются ускоренные электроны
в Х-особенности.

Появление магнитной Х-особенности возмож-
но, в частности, около нейтральной линии магнит-
ного поля, где по разные стороны возникают зоны
локального усиления магнитного поля. Возникают
эти зоны вследствие конвективных движений плаз-
мы. Процесс такого усиления описан в работе [2],
где приведены примеры численного расчета, кото-
рые показывают усиление магнитного поля на поря-
док величины. Для нашего случая достаточно иметь
по две зоны локально усиленного магнитного поля
разного знака, чтобы возникла магнитная конфи-
гурация с Х-особенностью. Такая система 4-х маг-
нитных зон может быть описана как магнитный ис-
точник, имеющий дипольную, квадрупольную и ок-
тупольную магнитные гармоники. Совместное дей-
ствие дипольной и октупольной гармоники приво-
дит к формированию магнитной Х-особенности.

Рассмотрим вариант симметричного магнитно-
го поля с одним компонентом октупольной гармо-
ники 𝑄, которая соосна дипольной гармонике 𝑀.
В сферической системе координат, связанной с ди-
полем, радиальный компонент 𝐵𝑟 и полярный ком-
понент 𝐵θ магнитного поля будут иметь вид:𝐵𝑟 = 2𝑀 cos θ ⋅ 𝑟−3

+ 3𝑄 cos θ (5 cos 2θ − 1) 𝑟−5,𝐵θ = 𝑀 sin θ ⋅ 𝑟−3
+ 1.5𝑄 sin θ (5 cos2 θ − 1) 𝑟−5, (1)

где расстояние 𝑟 отсчитывается от некого эффектив-
ного центра, создаваемого локальными магнитны-
ми источниками, полярный угол θ отсчитывается
от направления вектора магнитного диполя.
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В окрестности 𝐵𝑟 = 0, 𝐵θ = 0 и возникает магнит-
ная Х-особенность, которая изображена схематиче-
ски на рис. 1, где кривые линии представляют сило-
вые линии. Местоположение𝐵𝑟 = 0 и𝐵θ = 0 образует
окружность, которая лежит в плоскости, перпенди-
кулярной дипольному моменту на угловом рассто-
янии θ = 90○. Указанная окружность имеет радиус(1.5𝑄/𝑀)1/2𝑅𝑠 (в единицах солнечного радиуса).

Следует отметить, что при наличии квадруполь-
ной гармоники, создающей асимметрию конфигура-
ции (1), магнитная Х-особенность также возникает.
Но плоскость, в которой лежит линия нулевого маг-
нитного поля (𝐵𝑟 = 0 и 𝐵θ = 0), смещается по углу θ.
В случае, когда величина квадрупольной гармони-
ки не превышает 1% от дипольной, такое смеще-
ние составляет не более 5○ от симметричного случаяθ = 90○.

Сформировавшие локальные магнитные зоны
конвективные движения за время своего существо-
вания постоянно усиливают магнитное поле в таких
зонах. Вследствие такого усиления происходит из-
менение напряженности магнитного поля (1). И та-
кое изменение возбуждает вихревое электрическое
поле. В принятой нами модели симметричного маг-
нитного поля (1) электрическое поле будет иметь
только φ компонент, ориентированный перпенди-
кулярно дипольному моменту. Величина этого ком-
понента электрического поля согласно [3] определя-
ется временной вариацией компонента 𝐵θ как𝐸φ = −𝑐−1 ⋅ (𝜕𝐵θ/𝜕𝑡) ⋅ 𝑡. (2)

Электрическое поле (2) ориентировано так же,
как и линия нулевого магнитного поля (𝐵𝑟 = 0
и 𝐵θ = 0), т. е. перпендикулярно силовым линиям
в Х-особенности (рис. 1). Возможность ускорения
заряженных частиц полем (2) зависит от соотноше-
ния частоты столкновения и гирочастоты. В солнеч-
ной хромосфере и короне гирочастота существен-
но превышает частоту столкновения электронов
и протонов. Электроны и протоны “замагничены”,

D

Рис. 1. Магнитная Х-особенность в сечении перпенди-
кулярном линии нулевого магнитного поля. Геометрия
кривых показывает магнитные силовые линии. Область
диаметром 𝐷 отмечает зону, где заряженные частицы
плазмы могут быть ускорены вихревым электрическим
полем

что при наличии электрического поля приводит
к их дрейфовому перемещению. В Х-особенности
напряженность магнитного поля уменьшается к цен-
тру, и на некотором расстоянии гирочастота умень-
шается до такой величины, что становится меньше
частоты столкновения. И начиная с такого расстоя-
ния электроны уже не “привязаны” к силовым ли-
ниям и могут ускоряться электрическим полем. По-
ложения такой зоны, где электроны ускоряются по-
лем (2), схематически отмечено на рис. 1 окружно-
стью диаметром 𝐷. Физически такая зона ускоре-
ния представляет собой трубку около линии 𝐵𝑟 = 0,𝐵θ = 0, которая показана на рис. 2 в виде набора ко-
лец. Следует понимать, что размер зоны 𝐷 меняется
вдоль указанной трубки в зависимости от окружаю-
щих условий.

Вне указанной зоны 𝐷 (см. рис. 1) заряжен-
ные частицы участвуют в дрейфовом перемещении
со скоростью V = 𝑐 ⋅ E × B ⁄ 𝐵2. В результате тако-
го дрейфа происходит перераспределение плотно-
сти плазмы в некоторой окрестности около изуча-
емого источника (1). В принятой нами симметрич-
ной модели (1) и (2) дрейфовое перемещение 𝑉 при-
водить к появлению плотной структуры типа “пет-
ля”, когда временное изменение дипольной гармо-
ники превышает изменение октупольной гармони-
ки 𝜕𝑀/𝜕𝑡 > 𝜕𝑄/𝜕𝑡. Важно отметить, что петельная
структура реально наблюдается во время импульс-
ной фазы солнечной вспышки.

Рис. 2. Результаты модельного расчета дрейфового пе-
ремещения плазмы над магнитной источником (1) при
наличии вихревого электрического поля (2). Дрейф со-
здает места уплотнения в виде петли при начальном
равномерном распределении модельных частиц. Кон-
фигурация из колец отмечает положения области 𝐷
магнитной Х-особенности (см. рис. 1) вдоль линии ну-
левого магнитного поля
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Расчеты дрейфового перемещения проводим
в предположении, что электроны и протоны “замаг-
ничены”. В нашей симметричной модели источника
магнитного поля (1) электроны и протоны переме-
щаются со скоростью 𝑉, которая имеет компоненты
по радиусу 𝑟 и углу θ. Из формулы для дрейфовой
скорости с учетом (2) указанные компоненты мож-
но записать в виде произведения составляющих маг-
нитного поля и их производных:𝑉𝑟 = 𝑟 ⋅ (𝜕𝐵θ/𝜕𝑡)𝐵θ/𝐵2,𝑉θ = −𝑟 ⋅ (𝜕𝐵θ/𝜕𝑡)𝐵𝑟/𝐵2. (3)

В формуле (3) составляющие магнитного поля𝐵𝑟
и𝐵θ представляют собой выражения (1). Таким обра-
зом, в окрестности источника магнитного поля (1)
определено поле скоростей. И в этом поле каждая
частица движется со скоростью (3) в зависимости
от ее координаты. Хотя выражение для скоростей (3)
задается аналитическим способом, траекторию ча-
стицы проще рассчитывать численным способом.

На рис. 2 показан результат модельного расчета
перемещения точечных частиц в поле скоростей (3)
над источником с магнитным полем (1) с электри-
ческим полем (2). Расчеты проводились численным
способом при начальном равномерном распределе-
нии модельных точечных частиц в некоторой окрест-
ности над источником, которая содержала в себе
зону ускорения (система колец на рис. 2).

Представленный на рис. 2 вариант рассчиты-
вался при относительных изменениях дипольно-
го и октупольного моментов 𝜕𝑀/𝑀𝜕𝑡 = 10−3 c−1,𝜕𝑄/𝑄𝜕𝑡 = 10−4 c−1 и 𝑄/𝑀 = 10−3 𝑅2𝑠 . Указанные вели-
чины, как ожидается, являются типичными для сол-
нечной вспышки. Показан результат расчета после2000 с от начала процесса, когда “включается” по-
ле скоростей (3). В этом случае уплотнение “пет-
ли” относительно начального распределения в сред-
нем около 5. Важно отметить, что наблюдаться такая
“петля” будет существенно контрастнее, поскольку
поток излучения плазмы пропорционален квадра-
ту плотности. В рассмотренном случае (см. рис. 2)
уже на 100 с от начала процесса плотность точек уве-
личилась в 2 раза относительно начальной. И такая
петельная структура будет хорошо заметна, посколь-
ку поток от нее превысит окружающее излучение
в 4 раза.

Эволюция петельной структуры (см. рис. 2) зави-
сит от временных изменений дипольной и октуполь-
ной гармоники магнитного поля источника 1. В этой
связи открывается возможность изучения измене-
ний величин этих гармоник по наблюдению плотно-
сти и геометрии “петли” (см. рис. 2). Наблюдаемая
вариация плотности, как изменение наблюдаемо-
го контраста, зависит от относительного роста ди-
польной гармоники 𝜕𝑀/𝑀𝜕𝑡. Высота “петли” опре-
деляется отношением 𝑄/𝑀, которое в соответствии
с установленным различием временных вариаций,
не остается постоянным. Для указанной возможно-

сти требуется анализ наблюдательных данных, и это
тема отдельного исследования.

3. ЭНЕРГИЯ ВСПЫШКИ
Во время солнечной вспышки наблюдается рент-

геновское излучение, которое возникает вследствие
свободно-свободного излучения ускоренных элек-
тронов. Подавляющая доля такого потока приходит
из двух хромосферных источников вспышки. Со-
гласно рассматриваемой модели вспышки наблюда-
емая ситуация указывает на основную долю ускоря-
емых электронов именно в хромосферных источни-
ках. Поэтому для изучения энергетических факто-
ров вспышки надо рассмотреть именно эти источ-
ники.

Выделяемая в указанном источнике энергия 𝑊𝑓
зависит от количества ускоряемых электронов,
их энергии и длительности процесса ускорения элек-
тронов:𝑊𝑓 = 2∫ 𝑤𝑒(𝜕𝑁𝑒/𝜕𝑡)d𝑡 = 2 <𝑤𝑒><𝜕𝑁𝑒/𝜕𝑡> 𝑡f. (4)

Множитель двойка в выражении для энергии (4)
означает, что хромосферных источников два (см.
рис. 2). Нас интересует влияния различных факто-
ров на суммарную энергию вспышки, поэтому про-
ведем анализ средних значений набираемой энергии
электроном <𝑤e>, потока электронов в зону ускоре-
ния <𝜕𝑁𝑒/𝜕𝑡>, длительности процесса ускорения 𝑡f.

Наблюдаемая импульсная фазы вспышки, ко-
гда и происходит ускорение электронов, составля-
ет десятки минут. Этот временной масштаб явле-
ния ∼103 с указывает на то, что локальное маг-
нитное конфигурация с Х-особенностью создается
конвекцией мезогрануляционного масштаба. Зна-
чит, импульсная фаза не может превышать време-
ни жизни мезогрануляции≈ 2 ⋅ 103 с. Минимальная
наблюдаемая длительность этой фазы для слабых
вспышек ≈ 500 с. В таком случае влияние факто-
ра 𝑡f на энергию солнечной вспышки оказывается
менее 5 раз.

Ситуация с набираемой электроном энергии
<𝑤e> зависит от условия ускорения, которое опре-
деляется соотношением между вихревым электри-
ческим полем (2) и величиной поля Драйсера. Для
нашей задачи интерес представляет среднее значе-
ние вариации магнитного поля (2) <𝜕𝑀/𝜕𝑡> =Δ𝐵/Δ𝑡
в течение фазы ускорения. Длительность этой фа-
зы Δ𝑡 ≈ 103 с. Ситуация с вариацией магнитного
поля зависит от соотношения временных измене-
ний дипольной и октупольной гармоник источни-
ка (1). Если есть различие между ними в несколь-
ко раз, тогда Δ𝐵 будет определяться изменением
напряженности магнитного поля в окрестности
Х-особенности. Индикатором пространственного
положения Х-особенности является высота коро-
нального источника вспышки (см. рис. 2). Эта вы-
сота находится в пределах 20–40 тыс. км, где на-
пряженность магнитного поля в активной области
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∼10 Гс. Изменение напряженности магнитного по-
ля источником (1), как было сказано выше (п. 2), мо-
жет быть до десяти раз. Тогда вариация магнитного
поля в Х-особенности за время импульсной фазыΔ𝐵
может быть более 10 Гс. При указанных величинах
(𝑟 > 20 тыс. км) из формулы (2) получаем среднюю
величину электрического поля <𝐸φ> > 10−3 [СГС].

Поле Драйсера 𝐸𝐷 ≈ 10−10𝑛p/𝑇e [СГС], где
плотность протонов в хромосфере 𝑛p ⩽ 1012 см−3.
Электронная температура в зоне ускорения𝑇e ∼ 107 K [4, 5]. Тогда величина поля Драйсера𝐸𝐷 < 10−5 [СГС], т. е. более чем на 2 порядка
меньше возбуждаемого вихревого поля во время
вспышки. В процессе вспышки представляется
очень маловероятным, чтобы поле 𝐸φ отличалось
от среднего более, чем на 2 порядка. Значит,
ускорение электронов во время импульсной фазы
вспышки происходит в режиме убегания.

В режиме убегания электроны тормозятся воз-
буждаемой ими неустойчивостью. В нашем случае,
когда магнитное поле не влияет на ситуацию, быст-
рее всего возбуждается неустойчивость Бунемана.
Неустойчивость возникает, когда потоковая ско-
рость электронов в несколько раз превышает тепло-
вую. Для мощных вспышек электронная температу-
ра в зоне ускорения 40 МК [5], которая соответству-
ет энергии 10−8 эрг. Для возбуждения неустойчи-
вости набираемая электроном скорость в процессе
ускорения, очевидно, не может превышать тепло-
вую больше, чем на порядок. Это означает, что энер-
гия электрона в процессе ускорения <𝑤e> < 10−6 эрг
или ≈600 кэВ. Для слабых вспышек с температу-
рой в зоне ускорения 6 МК [4] энергия электрона
<𝑤e> < 1.5 ⋅ 10−7 эрг (≈90 кэВ). В таком случае влия-
ние <𝑤e> на диапазон изменения энергии вспышек
не более 7 раз –– менее порядка величины.

Полученные оценки ускоряемых электронов яв-
ляются весьма неопределенными. Но такая неопре-
деленность, вероятно, не превышает фактора 2,
поскольку наблюдаемое рентгеновское излучение
мощных вспышек указывает на присутствие элек-
тронов с энергией до 300 кэВ. Важно отметить, что
количество электронов, ускоряемых в режиме убега-
ния, должно составлять наибольшую долю от посту-
пающих в зону ускорения электронов вследствие
большого превышения возбуждаемого вихревого
электрического поля над полем Драйсера.

Наблюдаемый диапазон энергии солнечной
вспышки 1027–1032 эрг. Тогда из формулы (3)
и оценки <𝑤e> и 𝑡f для слабых и мощных вспы-
шек получаем для потока электронов <𝜕𝑁𝑒/𝜕𝑡>∼1031–1035 электрон/с.

4. ОБЛАСТЬ УСКОРЕНИЯ
Электроны попадают в зону ускорения по си-

ловым линиям из окружающей плазмы (см. рис. 1).
Количество таких электронов зависит от скорости,

плотности и объема зоны ускорения. Для просто-
ты расчетов примем геометрию зоны ускорения 𝐷
в виде окружности. Тогда поток электронов зависит
от указанных выше параметров как

<𝜕𝑁𝑒/𝜕𝑡> = <𝑣r> π𝐷 ⋅ 0.5∫ 𝑛edℎ =
= 0.5 <𝑣r><𝑛e> π𝐷 ⋅ 𝐻, (5)

где <𝑣r>–– средняя величина радиально направлен-
ной скорости электронов, <𝑛e>–– средняя плот-
ность, 𝐻–– протяженность зоны ускорения. Коэф-
фициент 0.5 в формуле (5) показывает, что движе-
ние электронов по силовым линиям равновероятно
в разных направлениях.

Величина радиальной скорости электрона опре-
деляется тепловой скоростью 𝑣k и геометрией сило-
вых линий (см. рис. 1) 𝑣r = (1/3)1/2𝑣k cos β, где β––
угол между направлениями силовой линии и ра-
диальным. Тепловая скорость зависит от окружа-
ющей зону ускорения температуры. В нашем слу-
чае 𝑇𝑒 ≈ 106 К как среднее значение между темпера-
турой в зоне ускорения и фоновой хромосферной.
С учетом геометрии силовых линий (см. рис. 1) по-
лучаем оценку скорости <𝑣r>≈ 5 ⋅ 108 см/с.

В случае мощных вспышек класса Х протяжен-
ность зоны ускорения занимает всю высоту хромо-
сферы [6]. Тогда параметр 𝐻 = 2 ⋅ 103 км, и из фор-
мулы (5) можно определить размер сечения зо-
ны ускорения (см. рис. 1). С учетом полученной
выше оценки <𝑣r> и найденной выше величины
<𝜕𝑁e/𝜕𝑡>≈ 1035 электрон/с получаем размер зоны𝐷 ≈ 102 км.

Рассмотрим случай слабой солнечной вспышки
с потоком электронов <𝜕𝑁e/𝜕𝑡 >≈1031 электрон/с.
Этот поток на 4 порядка меньше, чем у мощной
вспышки. Представляется маловероятным, что про-
тяженность зоны ускорения меньше во столько же
раз, т. е. 𝐻 ≈ 0.1 км. Однако понятно, что протяжен-
ность эффективной области ускорения электронов
существенно меньше, чем у мощных вспышек. Воз-
можное положение такой области в пределах хромо-
сферы приводит к соотношению 𝐷 ⋅ 𝐻 ≈ 1–100 км2.
В связи с возбуждаемой неустойчивостью представ-
ляется маловероятным, чтобы протяженность 𝐻 бы-
ла меньше размера 𝐷. В этом плане выглядит наи-
более предпочтительным вариант, когда 𝐷 ∼ 1 км
и 𝐻 ∼ 100 км. Для подтверждения такого варианта
необходимо дополнительное исследование.

5. ВЫВОДЫ
В рамках принятой модели ускорения был

найден определяющий энергетику вспышки фак-
тор. Им оказался поток электронов в зону уско-
рения, который меняется на 4 порядка от 1031
до 1035 электрон/с. Диаметр зоны ускорения в маг-
нитной Х-особенности, где и происходит уско-
рение, составляет ≈100 км для мощных вспы-
шек и ∼1 км для слабых. При этом протяжен-
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ность этой зоны в хромосфере ≈103 км и ∼100 км
соответственно.

БЛАГОДАРНОСТИ
Автор выражает благодарность рецензенту за по-

лезные замечания, которые позволили улучшить из-
ложение предлагаемой модели солнечной вспышки.

СПИСОК ЛИТЕРАТУРЫ
1. J. Threlfall, T. Neukirch, C.E. Parnell, O.S. Eradat,

Astron. and Astrophys. 574, A7, 15 (2015).

2. A.V. Getling, R. Ishikawa, A.A. Buchnev, Advances
in Space Research 55, 862 (2015).

3. М.М. Молоденский, В.Л. Мерзляков, Письма в Аст-
рон. журн. 28, 314 (2002).

4. А.С. Кириченко, С.А. Богачев, Письма в Астрон.
журн. 39, 884 (2013).

5. A. Warmuth, G. Mann, Astron. and Astrophys. 588,
A115, 14 (2016).

6. В.Л. Мерзляков, Доклад на Всероссийской кон-
ференции “Магнетизм и активность Солнца —
2022” (КрАО РАН, Крым, 22–26 августа, 2022).

THE DIFFERENT FACTORS INFLUENCE ON THE SOLAR FLARES ENERGY

© 2025 V. L. Merzlyakov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Troitsk, Moscow, Russia
e-mail: mvl@izmiran.ru

The factors influencing the energy of the solar flare are being studied. The model of particle acceleration
in the magnetic X-singularity is investigated. It was found that the flare energy depends mainly on the flow
of electrons into the acceleration zone. The change in such a flow is determined by the size of the acceleration
zone. It is calculated that for a chromospheric flare source the vertical length of the acceleration zone varies
from ∼100 km to ≈ 2 ⋅ 103 km and its diameter varies from ∼1 km to ≈ 100 km.

Keywords: Sun, flares, particles acceleration

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025

mailto: mvl@izmiran.ru


АСТРОНОМИЧЕСКИЙ ЖУРНАЛ, 2025, том 102, № 1, с. 71–82

НОРМА СМЕЩЕНИЯ ПРИ ВОЗМУЩАЮЩЕМ УСКОРЕНИИ,
ИЗМЕНЯЮЩЕМСЯ ПО ЗАКОНУ ОБРАТНЫХ КВАДРАТОВ,

В СИСТЕМЕ ОТСЧЕТА, СВЯЗАННОЙ С ВЕКТОРОМ СКОРОСТИ
© 2025 г. Т. Н. Санникова

Крымская астрофизическая обсерватория Российской академии наук, пос. Научный, Крым, Россия
e-mail: tnsannikova@craocrimea.ru

Поступила в редакцию 22.07.2024 г.
После доработки 05.09.2024 г.
Принята в печать 11.09.2024 г.

Рассмотрена задача движения точки нулевой массы под действием притяжения к центральному
телу и малого возмущающего ускорения P′

= P/𝑟2, где 𝑟 — расстояние до притягивающего центра,
компоненты вектора P полагаются постоянными в системе отсчета с осями, направленными
по вектору скорости, главной нормали и вектору площадей. Ранее для данной задачи найдены
уравнения движения в средних элементах и формулы перехода от оскулирующих элементов
к средним в первом порядке малости; величинами второго порядка мы пренебрегаем. Если
возмущающие силы малы, то оскулирующая орбита слабо отклоняется от средней. Разность𝑑r векторов положения на оскулирующей и средней орбитах является квазипериодической
функцией времени. В данной работе получена евклидова (среднеквадратичная по средней
аномалии) норма ∥𝑑r∥2 смещения оскулирующей орбиты относительно средней. Оказалось, что∥𝑑r∥2 зависит только от компонентов вектора P (положительно определенная квадратичная форма),
большой полуоси (пропорционально второй степени) и эксцентриситета оскулирующего эллипса.
Норма ∥𝑑r∥2 получена в виде рядов по степеням эксцентриситета 𝑒. Полученное выражение
пригодно до 𝑒0 ≈ 0.995862, при 𝑒 > 𝑒0 ϱ = √∥𝑑r∥2 может принимать комплексные значения.
Результаты применены к задаче о движении модельных тел под действием возмущающего ускорения,
обусловленного эффектом Ярковского. Также проведено сравнение результатов с аналогичными
для нормы ∥𝑑r∥2 в системе отсчета, связанной с радиусом-вектором.

Ключевые слова: эффект Ярковского, тангенциальное ускорение, среднеквадратичная норма,
смещение оскулирующей орбиты от средней
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1. ВВЕДЕНИЕ
В статье [1] сформулирована задача о движении

точки нулевой массыA под действием притяжения
к центральному телу S (например, к Солнцу) и воз-
мущающего ускорения P′, которое подчиняется за-
кону обратных квадратов P′

= P/𝑟2, где 𝑟 = ∣r∣— мо-
дуль радиуса-вектора r = SA. Компоненты 𝔗,𝔑,𝑊
вектора P постоянны в системе O, орты которой
направлены по вектору скорости, главной нормали
к оскулирующей орбите и бинормали (направлен-
ной по вектору площадей) соответственно.

Отношение модулей возмущающего ускоре-
ния ∣P′∣ и вызванного притяжением к центральному
телу основного ускорения ϰ2/𝑟2 считается малым по-
рядка μ:

max
∣P′∣ϰ2𝑟−2 = max

∣P∣ϰ2 = μ ≪ 1,
где ϰ2 — произведение постоянной тяготения на мас-
су S. Величинами порядка μ2 пренебрегается. В ра-

боте [1] к уравнениям движения описанной задачи
применено осредняющее преобразование, найдены
уравнения движения в средних элементах и форму-
лы перехода от оскулирующих элементов к средним:ε𝑛 = ̄ε𝑛 + 𝑢𝑛 , (1)
где ε𝑛 — шесть оскулирующих элементов; ̄ε𝑛 — шесть
средних элементов; 𝑢𝑛 — функции замены перемен-
ных, которые считаются функциями средних эле-
ментов ̄ε𝑘, но в первом приближении безразлично,
считать ли аргументы 𝑢𝑛 средними или оскулирую-
щими.

Явные выражения 𝑢𝑛 для элементов орби-
ты ω, 𝑒, 𝑖, Ω, σ,𝑀 (среднее движение, эксцентриси-
тет, наклон, долгота восходящего узла, аргумент
перицентра и средняя аномалия соответственно)
найдены в работе [1] и приведены в Приложении A
(формулы (A1)). Там же приведена формула (A5)
для функции 𝑢7 замены оскулирующей большой по-
луоси средней, поскольку далее в качестве основ-
ной системы элементов орбиты будем использовать
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𝑎, 𝑒, 𝑖, Ω, σ,𝑀 (большая полуось, эксцентриситет, на-
клон орбиты, долгота восходящего узла, аргумент
перицентра и средняя аномалия соответственно).
В слабовозмущенных задачах первые пять элемен-
тов медленно изменяются со временем, тогда как
средняя аномалия 𝑀 служит быстрой переменной.

Отклонение оскулирующей орбиты от средней
наглядно можно представить как разность 𝑑r векто-
ров положения небесного тела на оскулирующей
и средней орбитах. Если возмущающие силы ма-
лы, то оскулирующая орбита слабо отклоняется
от средней, а 𝑑r является квазипериодической функ-
цией времени и быстро меняется, поэтому больший
интерес представляет норма 𝑑r как норма вектор-
функции от 𝑀. Выбор средней аномалии в качестве
переменной, по которой определяется норма, обу-
словлен тем, что по 𝑀 сохраняется квазипериодич-
ность функции 𝑑r.

Норма разности 𝑑r позволит оценить отклоне-
ние оскулирующей орбиты от средней вследствие
периодических возмущений и покажет, нужно ли
учитывать эти возмущения (точнее, отличия оскули-
рующих элементов от средних) или можно ограни-
читься вековым движением, которое дается осред-
ненными уравнениями.

Наиболее часто в небесной механике использу-
ются чебышевская (равномерная) и евклидова (сред-
неквадратичная) нормы [2–4]. Для функции 𝑓 —2π-периодической по 𝑀 и непрерывной на отрезке[−π, π] скалярной или векторной функции от эле-
ментов орбиты — эти нормы имеют вид:⟨𝑓⟩ = max𝑀∈[−π,π] ∣𝑓(𝑎,… ,𝑀)∣,

∥𝑓∥2 = 12π
π
∫
−π 𝑓2 𝑑𝑀.

Аналитические выражения для чебышевской нормы
можно получить лишь для простейших функций (см.
примеры в работах [4, 5]). Напротив, для евклидовой
нормы это удается часто.

В работе [4] выведены формулы для (𝑑r)2, вы-
раженного через разности элементов 𝑢𝑛. С их по-
мощью в статье [6] получена евклидова норма∥𝑑r∥2 смещения оскулирующей орбиты относитель-
но средней при наличии малого возмущающего
ускорения, обратно пропорционального квадрату
расстояния до притягивающего центра в системе от-
счета, связанной с радиусом-вектором. Данная ста-
тья посвящена определению нормы ∥𝑑r∥2 в системе
отсчета, связанной с вектором скорости. В Заклю-
чении приведен сравнительный анализ этих норм.

2. НОРМА РАЗНОСТИ ОСКУЛИРУЮЩИХ
И СРЕДНИХ ЭЛЕМЕНТОВ

Запишем выражение (A5) для 𝑢7 и пять послед-
них уравнений (A1) (для 𝑢2 − 𝑢6) как приращения
элементов δε𝑛 и выразим их через эксцентрическую
аномалию 𝐸, учитывая соотношения, приведенные

в Приложении B. Затем с помощью средств компью-
терной алгебры представим полученные выраже-
ния рядами по степеням эксцентриситета, посколь-
ку исходные выражения (A1), (A5) являются слож-
ными функциями от 𝑒. В Приложении C приведе-
ны разложения выражений (A1), (A5) с точностью
до 𝑒10

− 𝑒12, обеспечивающие соблюдение условия
нулевого среднего (как требуется для функций заме-
ны переменных 𝑢𝑛 согласно [1]), а также минимум
три верных знака после запятой при вычислении δε𝑛
в части, зависящей от эксцентриситета, при малых
и умеренных 𝑒 ⩽ 0.6 (см. формулы (C1)). Однако для
вычисления нормы смещения оскулирующей орби-
ты относительно средней использованы разложения
выражений (A1), (A5) с точностью до 25-й степени
эксцентриситета (ввиду их громоздкости мы не при-
водим их здесь).

Рассматривая выражения (C1), можно заме-
тить, что они представляют собой ряды Фурье ви-

да
∞∑𝑘=1 𝑎𝑘(𝑒) sin 𝑘𝐸 либо

∞∑𝑘=0 𝑎𝑘(𝑒) cos 𝑘𝐸, где функции𝑎𝑘(𝑒) — ряды Маклорена по степеням эксцентри-
ситета с рациональными коэффициентами, причем
первый член ряда 𝑎𝑘(𝑒) имеет порядок 𝑘 − 2 и более.
Поэтому при сохранении членов до определенной
степени эксцентриситета в рядах Фурье остается ко-
нечное число слагаемых.

Некоторые из выражений (C1) имеют особенно-
сти при 𝑒 = 0 или 𝑒 = 1. Но поскольку осреднение
по средней аномалии подразумевает эллиптичность
оскулирующей орбиты, то есть 0 < 𝑒 < 1, то сингу-
лярность при вычислениях не встречается.

В Приложении D приведены формулы для раз-
ности векторов положения на оскулирующей и сред-
ней орбитах, выраженной через разности элемен-
тов [4], и нормы (формулы (D1), (D2), (D3)).

Подставляя (C1) в (D2), и далее в (D1) средства-
ми компьютерной алгебры получим для (𝑑r)2 выра-
жение вида

(𝑑r)2 =𝔗2𝑎2ϰ4
∞∑𝑘=0 𝑎1𝑘(𝑒) cos 𝑘𝐸+

+
𝔑2𝑎2ϰ4

∞∑𝑘=0 𝑎2𝑘(𝑒) cos 𝑘𝐸+
+
𝑊 2𝑎2ϰ4

∞∑𝑘=0 𝑎3𝑘(𝑒) cos 𝑘𝐸+
+
𝔗𝔑𝑎2ϰ4

∞∑𝑘=1 𝑎4𝑘(𝑒) sin 𝑘𝐸, (2)

где ряды Маклорена для коэффициентов 𝑎𝑛𝑘(𝑒) все-
гда начинаются с члена порядка 𝑒𝑘. На практике сум-
мирование в (2) проводилось до 𝑘 = 50.

Мы не приводим промежуточные выражения
для функций (D2) и𝑎𝑛𝑘(𝑒) для экономии места и сра-
зу перейдем к вычислению нормы (D3).
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Подставив (2) в (D3) получим:

ϱ2
=∥𝑑r∥2 = 𝔗2𝑎2ϰ4

∞∑𝑘=0 𝑎1𝑘(𝑒) × 12π
π
∫
−π

𝑟𝑎 cos 𝑘𝐸 𝑑𝐸+
+
𝔑2𝑎2ϰ4

∞∑𝑘=0 𝑎2𝑘(𝑒) × 12π
π
∫
−π

𝑟𝑎 cos 𝑘𝐸 𝑑𝐸+
+
𝑊 2𝑎2ϰ4

∞∑𝑘=0 𝑎3𝑘(𝑒) × 12π
π
∫
−π

𝑟𝑎 cos 𝑘𝐸 𝑑𝐸+
+
𝔗𝔑𝑎2ϰ4

∞∑𝑘=1 𝑎4𝑘(𝑒) × 12π
π
∫
−π

𝑟𝑎 sin 𝑘𝐸 𝑑𝐸. (3)

Последнее слагаемое в (3) — нечетная функция 𝐸,
она исчезает в результате интегрирования. В осталь-
ных случаях при интегрировании учтем [5, п. 3.6.3]:12π

π
∫
−π

𝑟𝑎 𝑑𝐸 = 1,
12π

π
∫
−π

𝑟𝑎 cos𝐸 𝑑𝐸 = − 𝑒2 , (4)

12π
π
∫
−π

𝑟𝑎 cos 𝑘𝐸 𝑑𝐸 = 0 при 𝑘 ⩾ 2.
В итоге получим норму разности оскулирующих
и средних элементов:ϱ2

=∥𝑑r∥2 = 𝔗2𝑎2ϰ4 (𝑎10(𝑒) − 𝑒2𝑎11(𝑒)) +
+
𝔑2𝑎2ϰ4 (𝑎20(𝑒) − 𝑒2𝑎21(𝑒))+
+
𝑊 2𝑎2ϰ4 (𝑎30(𝑒) − 𝑒2𝑎31(𝑒)) =
=
𝑎2ϰ4 (𝑉1𝔗2

+ 𝑉2𝔑2
+ 𝑉3𝑊 2), (5)

где

𝑉1 = 1(1 − 𝑒2)2
⎛⎝16 + 1121𝑒28 +

10793𝑒4512 −

−
239033𝑒618432 −

17713751𝑒818874368 − 16112611𝑒1037748736 −

−
222199537𝑒121006632960 − 15794064133𝑒14123312537600 −
−

78324446438359𝑒16969769255698432 − 945456502286119𝑒1817455846602571776 −
−

135640061196163177𝑒203562417673994240000 −
−

23949733051735938707𝑒22862105077106606080000 −
−

256113538574688068647𝑒2412261049985516175360000 + 𝑂(𝑒26)⎞⎠,

𝑉2 = 1(1 − 𝑒2)2
⎛⎝1 + 29𝑒28 −

2221𝑒4288 +
1907𝑒6512 −

−
265501𝑒8491520 − 5955551𝑒1058982400 − 108054281𝑒123853516800 −
−

347992909𝑒1446242201600 − 80402703347𝑒16170467251978240 +
+

961519885723𝑒18454579338608640 + 157193618149693𝑒2052384857115852800 +
+

12031971779882773𝑒223771709712341401600 +
+

7001336583337473239𝑒242266378458260255539200 + 𝑂(𝑒26)⎞⎠, (6)

𝑉3 =⎛⎝1 − 39𝑒232 + 101𝑒4576 + 599𝑒66144 + 19889𝑒8307200 +
+

86891𝑒101843200 + 145911𝑒124014080 + 14979701𝑒14513802240 +
+

286187473𝑒1611890851840 + 402547717𝑒1819818086400 +
+

3098641663𝑒20177628774400 + 233207333021𝑒2215347126108160 +
+

300747020621𝑒2422455968071680 + 𝑂(𝑒26)⎞⎠.
Выражения (5), (6) позволяют получить в числовом
значении смещения ϱ не менее 2 верных знаков по-
сле запятой вплоть до 𝑒 = 0.7 по сравнению со зна-
чением, полученным путем численного интегриро-
вания, как будет показано в разделе 3, но, в отличие
от численного интегрирования, не требуют больших
вычислительных ресурсов.

Исследуем поведение функций 𝑉1, 𝑉2 и 𝑉3 (6)
на интервале 𝑒 ∈ [0, 1):

min(𝑉1) = 16 при 𝑒 = 0, 𝑉1 → ∞ при 𝑒 → 1, 𝑉1
монотонно возрастает;

min(𝑉2) = 1 при 𝑒 = 0, max(𝑉2) ≈ 102.12175
при 𝑒 ≈ 0.991724, 𝑉2 → −∞ при 𝑒 → 1;

min(𝑉3) ≈ 0.247374 при 𝑒 ≈ 0.926173,
max(𝑉3) = 1 при 𝑒 = 0.

Функция 𝑉2 < 0 при 𝑒 > 𝑒0 ≈ 0.995862. Таким об-
разом 𝑉𝑘 > 0 при 𝑒 < 𝑒0, следовательно, на интервале𝑒 ∈ [0, 𝑒0] норма ϱ2 (5) положительна и ϱ — действи-
тельное число. Зависимость 𝑉1, 𝑉2 и 𝑉3 от 𝑒 показана
на рис. 1.

Как и в задаче с постоянным возмущающим
ускорением P′, представленной в работе [7], ϱ2 за-
висит только от компонентов вектора возмущающе-
го ускорения 𝔗,𝔑,𝑊 (положительно определенная
квадратичная форма), большой полуоси (пропорци-
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Рис. 1. Значения𝑉1,𝑉2,𝑉3 в зависимости от эксцентриситета 𝑒 на интервале от 0 до 1. Верхние графики представляют𝑉1
в разных масштабах. На левой панели вверху и в центре показаны значения 𝑉1 и 𝑉2 до 𝑒 = 0.95. На графиках отмечены
точки максимумов (синие квадратные маркеры) и точки минимумов (красные круглые маркеры)

онально второй степени) и эксцентриситета оскули-
рующего эллипса. От ориентации орбиты и положе-
ния точкиA на ней ϱ2 не зависит.

Согласно работе [7] наибольшее значение ϱ2 для
заданной орбиты при возмущающем ускорении P′
таком, что вектор P находится внутри некоторого
эллипсоида, ориентированного вдоль осей системы
отсчетаO, равно:

max ϱ2
=
𝑎2ϰ4 𝑃2 max{𝑉1, 𝑉2, 𝑉3}, (7)

где 𝑃=√𝔗2
+𝔑2
+𝑊 2

=const. Для 𝑒 ∈ [0, 0.995859]𝑉1 > 𝑉2 ⩾ 𝑉3 (равенство достигается при 𝑒 = 0
и 𝑒 ≈ 0.995859), при 𝑒 ∈ (0.995859, 𝑒0] 𝑉2 < 𝑉3,
на интервале 𝑒 ∈ (𝑒0, 1.0) функция 𝑉2(𝑒) прини-

мает отрицательные значения, поэтому далее
рассматриваем только интервал 𝑒 ∈ (0, 𝑒0]. С учетом
сказанного выше выражение (7) дает

max ϱ2
=
𝑎2ϰ4 𝑃2𝑉1(𝑒),

max ϱ = 𝑎ϰ2𝑃√𝑉1(𝑒). (8)

3. СМЕЩЕНИЕ ОСКУЛИРУЮЩЕЙ ОРБИТЫ
ОТНОСИТЕЛЬНО СРЕДНЕЙ ВСЛЕДСТВИЕ

ЭФФЕКТА ЯРКОВСКОГО
В статье [8] рассмотрены модельные объекты

с различными эксцентриситетами орбит от 0 до 0.99,
и остальными орбитальными и теплофизическими
характеристиками, как у астероида 101955 Bennu,

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 102 № 1 2025



НОРМА СМЕЩЕНИЯ ПРИ ВОЗМУЩАЮЩЕМ УСКОРЕНИИ 75

и найдены средние по орбите значения компонентов
вектора P, дрейфы элементов и смещение относи-
тельно невозмущенного положения в двух системах
отсчета, связанных с радиусом-вектором и векто-
ром скорости. Обращаясь к результатам работы [8],
для этих модельных объектов вычислены смеще-
ние ϱ = √ϱ2 (5) оскулирующей орбиты относитель-
но средней и максимальное значение max ϱ (8). При
вычислениях использованы константыϰ2

= 1.32712440041279419 × 1020 м3/с2,1 a. e. = 1.495978707 × 1011 м,1 сут = 86 400 с,
и те же исходные данные для астероида
101955 Bennu, как и в работе [8]. Для вычисле-
ния ϱ необходимо только значение большой
полуоси 𝑎 = 1.126391025894812 а. е., значения
эксцентриситета указаны в табл. 1 для каждой
модели, так же как значения тангенциального 𝔗
и нормального 𝔑 компонентов вектора P. Соглас-
но [8] среднее за орбитальный период значение
компонента 𝑊 = 0.

Норма смещения вычислена также путем чис-
ленного интегрирования исходных выражений, при-
веденных в Приложении A, полагая в формулах (A2),
(A3) и (A4) верхний предел суммирования по 𝑛,𝑚, 𝑠
равным 100. Коэффициенты Ганзена вычислены
с помощью интегральной формулы, выраженной

через эксцентрическую аномалию 𝐸 и приведен-
ной в работе [9]. Также при численном интегри-
ровании использованы значения наклона орби-
ты 𝑖 = 6.03494377024794○ и аргумента перицентраσ = 66.22306084084298○, как и в работе [8].

В табл. 1 приведены смещения ϱ и ϱ∗, вычис-
ленные с помощью формул (5), (6) и численно-
го интегрирования соответственно, а также аб-
солютная Δϱ = ∣ϱ − ϱ∗∣ и относительная погреш-

ность δϱ = ∣ϱ − ϱ∗∣ϱ∗ ⋅ 100%, и максимальное значение

max ϱ (8), вычисленные при различных эксцентри-
ситетах 𝑒. Видно, что при 𝑒 ⩽ 0.7 Δϱ не превышает
1 см, то есть формулы (5), (6) позволяют получить
в числовом значении ϱ не менее 2 верных знаков по-
сле запятой вплоть до 𝑒 = 0.7 по сравнению со зна-
чением, полученным путем численного интегриро-
вания. Вследствие отбрасывания членов порядка𝑂(𝑒26) в формулах (6) при вычислении ϱ получено
немного завышенное значение по сравнению с ϱ∗.
Относительная погрешность составляет 0.2% и ме-
нее для всех рассмотренных 𝑒. Однако необходимо
помнить, что само значение ϱ∗ имеет ограниченную
точность, поскольку в исходных выражениях также
содержатся ряды.

Таблица 1. Исходные данные и результаты

𝑒 𝔗, 10−14
а.е.3/сут2 𝔑, 10−14

а.е.3/сут2 ϱ, м ϱ∗, м Δϱ, м δϱ, % max ϱ, м ϱ
O∗

, м

0.001 −5.10168 −9.91079 129.185 129.185 4.5 ⋅ 10−9 3.5 ⋅ 10−9 253.901 129.1850.01 −5.10155 −9.91054 129.245 129.245 4.2 ⋅ 10−11 3.3 ⋅ 10−11 254.029 129.2310.05 −5.09849 −9.90457 130.680 130.680 5.4 ⋅ 10−13 4.1 ⋅ 10−13 257.147 130.3510.10 −5.08887 −9.88585 135.127 135.127 6.1 ⋅ 10−12 4.5 ⋅ 10−12 266.802 133.8480.20 −5.04976 −9.80969 152.479 152.479 5.7 ⋅ 10−14 3.7 ⋅ 10−14 304.430 147.8650.30 −4.98212 −9.67805 180.585 180.585 8.2 ⋅ 10−11 4.6 ⋅ 10−11 365.370 171.6740.40 −4.88179 −9.48280 219.968 219.968 5.7 ⋅ 10−10 2.6 ⋅ 10−10 450.989 206.9870.50 −4.74156 −9.20998 273.527 273.527 1.9 ⋅ 10−7 7.1 ⋅ 10−8 567.932 258.1520.60 −4.54897 −8.83547 348.406 348.405 1.0 ⋅ 10−4 2.9 ⋅ 10−5 732.103 335.0670.70 −4.28099 −8.31451 461.304 461.297 0.0071 0.0015 980.244 461.8270.80 −3.88832 −7.55138 658.382 658.245 0.1369 0.0208 1413.488 711.4240.85 −3.60997 −7.01056 831.777 831.343 0.4345 0.0523 1794.282 958.3240.90 −3.22864 −6.26976 1136.522 1135.696 0.8257 0.0727 2462.726 1448.5880.95 −2.62669 −5.10050 1879.287 1876.154 3.1327 0.1670 4089.474 2909.9080.97 −2.23295 −4.33575 2678.000 2672.555 5.4447 0.2037 5836.915 4852.0700.99 −1.53792 −2.98595 5562.831 5552.548 10.2828 0.1852 12143.297 14545.945
Примечание. Приведены: эксцентриситет 𝑒, тангенциальный 𝔗 и нормальный 𝔑 компоненты, смещения ϱ и ϱ∗, вы-
численные с помощью формул (5), (6) и численного интегрирования, абсолютная Δϱ и относительная δϱ погрешности,
максимальное значение max ϱ (8), а также смещение ϱ

O∗
в системе отсчетаO∗, связанной с радиусом-вектором [6], при зна-

чениях компонентов возмущающего ускорения согласно [8]: радиальный 𝑆 = 9.91079 × 10−14 а.е.3/сут2, трансверсальный𝑇 = −5.10168 × 10−14 а.е.3/сут2 и бинормальный 𝑊 = 0.
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Из анализа результатов вычислений видно, что
с ростом 𝑒 увеличивается величина периодических
возмущений, обусловленных эффектом Ярковско-
го, хотя значения (по модулю) компонентов 𝔗, 𝔑
уменьшаются: ϱ = 129 м для почти круговой орбиты
и более 5.5 км при 𝑒 = 0.99. Но в целом при малых
возмущающих ускорениях, характерных для эффек-
та Ярковского, смещение оскулирующей орбиты от-
носительно средней мало и им можно пренебречь,
учитывая лишь вековые дрейфы элементов орбиты,
как и было показано в работе [6].

4. ЗАКЛЮЧЕНИЕ
Рассмотрена задача движения точки нулевой

массы под действием притяжения к центральному
телу и малого возмущающего ускорения, обратно
пропорционального квадрату расстояния до при-
тягивающего центра в системе отсчета O с осями,
направленными по вектору скорости, главной нор-
мали к оскулирующей орбите и бинормали. Получе-
на евклидова (среднеквадратичная по средней ано-
малии) норма смещения ∥𝑑r∥2, где 𝑑r представля-
ет разность векторов положения на оскулирующей
и средней орбитах, что позволяет оценить величину
периодических возмущений. Оказалось, что ∥𝑑r∥2
зависит только от компонентов вектора P (положи-
тельно определенная квадратичная форма), боль-
шой полуоси (пропорционально второй степени)
и эксцентриситета оскулирующего эллипса. Норма∥𝑑r∥2 получена в виде рядов по степеням эксцентри-
ситета 𝑒. Полученное выражение пригодно только
до 𝑒0 ≈ 0.995862, при 𝑒 > 𝑒0 ϱ = √∥𝑑r∥2 может при-
нимать комплексные значения.

Результаты применены к задаче о движении мо-
дельных малых тел под действием возмущающего
ускорения, возникающего вследствие эффекта Яр-
ковского. Показано, что с ростом 𝑒 увеличивается
величина периодических возмущений, обусловлен-
ных эффектом Ярковского, хотя значения (по мо-
дулю) компонентов 𝔗, 𝔑 уменьшаются. Однако при
малых возмущающих ускорениях, характерных для
эффекта Ярковского, смещение оскулирующей ор-
биты относительно средней мало и им можно прене-
бречь, учитывая лишь вековые дрейфы элементов
орбиты.

В заключение сравним полученные результаты
с аналогичными для нормы смещения в задаче дви-
жения точки нулевой массы под действием притяже-
ния к центральному телу и малого возмущающего
ускорения P′, обратно пропорционального квадра-
ту расстояния до притягивающего центра в систе-
ме отсчетаO∗ с осями, направленными по радиусу-
вектору, трансверсали и вектору площадей, при
этом компоненты 𝑆, 𝑇,𝑊 вектора P постоянны в си-
стемеO∗ [6]. Формулы главного результата (5) иден-
тичны с точностью до замены компонентов возму-
щающего ускорения. Функции 𝑉𝑛(𝑒) в обоих слу-

чаях — ряды по четным степеням эксцентриситета.
Функции 𝑉3(𝑒) совпадают, поскольку компонент 𝑊
одинаков для обеих систем отсчета. В системе O∗
функция 𝑉1(𝑒) является многочленом второй степе-
ни, тогда как в системе O — бесконечным рядом,𝑉2(𝑒)— ряды в обеих системах. Поскольку при ну-
левом эксцентриситете триедр (−𝔑, 𝔗, 𝑊) иденти-
чен триедру (𝑆, 𝑇,𝑊) из работы [6], то 𝑉1(0) = 𝑉∗2 (0),𝑉2(0) = 𝑉∗1 (0) и 𝑉3(0) = 𝑉∗3 (0), то есть свободные
члены совпадают, как и должно быть. Здесь введено
обозначение 𝑉∗𝑛 для функций 𝑉𝑛 из статьи [6], чтобы
избежать путаницы.

В табл. 1 для сравнения приведены смещения ϱ
и ϱ
O∗

в системахO иO∗ соответственно. Очевидно,
что величина смещения оскулирующей орбиты от-
носительно средней не должна зависеть от выбора
системы отсчета. Однако из табл. 1 видно, что ростϱ
O∗

при больших 𝑒 выражен сильнее, чем в систе-
ме O. Это может свидетельствовать о завышении
короткопериодических орбитальных возмущений
для объектов на высоко эксцентрических орбитах
при их расчете в системеO∗.
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ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЕ A. ФУНКЦИИ ЗАМЕНЫ

ОСКУЛИРУЮЩИХ ЭЛЕМЕНТОВ СРЕДНИМИ
Явные выражения функций 𝑢𝑛 в формулах пе-

рехода от оскулирующих элементов к средним (1),
вычисленные в работе [1]:𝑢1 = − 6ωϰ2(1 − 𝑒) [F2 (θ2 , 𝑘) − 1πE(𝑘)𝑀] 𝔗,
𝑢2 = 4ϰ2

⎧⎪⎪⎨⎪⎪⎩F1 (θ2 , 𝑘) − 1πK(𝑘)𝑀−
−

2(1 + 𝑒) [F3 (θ2 , 𝑘) − 1πD(𝑘)𝑀]⎫⎪⎪⎬⎪⎪⎭𝔗+
+

2ηϰ2𝑒 [arctg 𝜗η − π4 − 1π(η2K(𝑒) − E(𝑒))] 𝔑,
𝑢3 = 1ϰ2η𝑒⎧⎪⎪⎨⎪⎪⎩cos σ [η(θ −𝑀) − (𝐸 −𝑀)] +

+ η sin σ [ln(1 + 𝑒 cos θ) + 1 − η − ln
2η2

1 + η]⎫⎪⎪⎬⎪⎪⎭𝑊 ,
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𝑢4 = 1ϰ2η𝑒 sin 𝑖⎧⎪⎪⎨⎪⎪⎩sin σ[η(θ −𝑀) − (𝐸 −𝑀)]−
− η cos σ [ln(1 + 𝑒 cos θ) + 1 − η − ln

2η2
1 + η]⎫⎪⎪⎬⎪⎪⎭𝑊 ,

(A1)

𝑢5 = − 2ϰ2𝑒2 [𝜗 − 2ηπ E(𝑒)] 𝔗+
+

1ϰ2
⎡⎢⎢⎢⎢⎣

1η (F1 (𝐸 + π2 , 𝑒) − K(𝑒) (1 + 2π𝑀)) +
+

1𝑒2 ln 𝑒 sin𝐸 +√1 − 𝑒2 cos2 𝐸η ⎤⎥⎥⎥⎥⎦𝔑 − 𝑢4 cos 𝑖 ,
𝑢6 = 2ϰ2(1 − 𝑒)⎧⎪⎪⎨⎪⎪⎩2(1 − 𝑒)⎡⎢⎢⎢⎢⎣arctg 𝜗η − π4 + 2πE(𝑒)−

−

η2π K(𝑒) + 1𝑒2 (η2𝜗 − 1πE(𝑒))⎤⎥⎥⎥⎥⎦+
+

3E(𝑘)π [𝑒 (cos𝐸 + 𝑒2) − 𝑒24 cos 2𝐸] −
−

3E(𝑘)π I(θ − 𝐸) − 3I𝐻⎫⎪⎪⎬⎪⎪⎭𝔗+
+

ηϰ2
⎡⎢⎢⎢⎢⎣F1 (𝐸 + π2 , 𝑒) − K (𝑒) (1 + 2π𝑀) −

−
1𝑒2 ln 𝑒 sin𝐸 +√1 − 𝑒2 cos2 𝐸η ⎤⎥⎥⎥⎥⎦𝔑,

где θ — истинная аномалия, 𝐸 — эксцентрическая
аномалия, ω, 𝑒, 𝑖, Ω, σ,𝑀 — среднее движение, экс-
центриситет, наклон орбиты, долгота восходящего
узла, аргумент перицентра и средняя аномалия со-
ответственно,

𝜗 = √1 + 𝑒2
+ 2𝑒 cos θ = (1 + 𝑒)×

×√1 − 𝑘2 sin2 (θ2) = η
√1 + 𝑒 cos𝐸1 − 𝑒 cos𝐸 ,

I(θ − 𝐸) = −𝛽(2 + 𝛽2)1 + 𝛽2 ( 𝑒2 + cos𝐸) + 21 + 𝛽2×
× ∞∑𝑛=2

𝑛 + 1 − (𝑛 − 1)𝛽2𝑛2(𝑛2
− 1) 𝛽𝑛 cos 𝑛𝐸, (A2)

η = √1 − 𝑒2, β = 𝑒(1 + η) , 𝑘 = 2√𝑒(1 + 𝑒) ,

I𝐻 = ∞∑𝑛=1
𝐶𝑛𝑛 cos 𝑛𝑀,

𝐶𝑛 = ∞∑𝑚=1(−1)𝑚𝐵𝑚(𝑘)𝑆0𝑚𝑛 (𝑒)𝑘2𝑚. (A3)

В (A3) коэффициенты 𝑆0𝑚𝑛 (𝑒) = 𝑋0𝑚𝑛 (𝑒) − 𝑋0𝑚
−𝑛 (𝑒)

можно найти в статьях [10–13], различные методики
вычисления коэффициентов Ганзена𝑋𝑛𝑚𝑘 изложены
в работе [9], а 𝐵𝑚(𝑘) можно представить рядом [14]:

𝐵𝑚(𝑘) = 1𝑚 ∞∑𝑠=0
(𝑠 + 1)⋯(𝑠 +𝑚)(𝑠 +𝑚 + 1)⋯(𝑠 + 2𝑚) ×

× [(2𝑠 + 2𝑚 − 1)!!(2𝑠 + 2𝑚)!! ]2 𝑘2𝑠2𝑠 + 2𝑚 − 1 . (A4)

Здесь и ниже использованы стандартные обозначе-
ния для полных и неполных эллиптических интегра-
лов в форме Лежандра:

K(𝑘) = π/2
∫0

𝑑𝑥ℎ(𝑥, 𝑘) , E(𝑘) = π/2
∫0

ℎ(𝑥, 𝑘) 𝑑𝑥,
D(𝑘) = π/2

∫0
sin2 𝑥 𝑑𝑥ℎ(𝑥, 𝑘) = K(𝑘) − E(𝑘)𝑘2 ,

F1(𝜑, 𝑘) = 𝜑
∫0

𝑑𝑥ℎ(𝑥, 𝑘) , F2(𝜑, 𝑘) = 𝜑
∫0

ℎ(𝑥, 𝑘) 𝑑𝑥,
F3(𝜑, 𝑘) = 𝜑

∫0
sin2 𝑥 𝑑𝑥ℎ(𝑥, 𝑘) = F1(𝜑, 𝑘) − F2(𝜑, 𝑘)𝑘2 ,

где ℎ(𝑥, 𝑘) = √1 − 𝑘2 sin2 𝑥.
Используя связь среднего движения и большой

полуоси ω = ϰ𝑎−3/2, 𝑑ω = (−3/2)ϰ𝑎−5/2𝑑𝑎, вместо 𝑢1
получим выражение, относящееся к большой полу-
оси:𝑢7 = 4𝑎ϰ2(1 − 𝑒) [F2 (θ2 , 𝑘) − 1πE(𝑘)𝑀] 𝔗. (A5)

Замечание. В [1] выражение для 𝑢6 обозначе-
но буквой 𝑣 и в нем допущена опечатка: в первых
квадратных скобках пропущено слагаемое 2E(𝑒)/π.
Здесь мы приводим правильное выражение и далее
используем его.

ПРИЛОЖЕНИЕ B. СООТНОШЕНИЯ МЕЖДУ
ФУНКЦИЯМИ ИСТИННОЙ

И ЭКСЦЕНТРИЧЕСКОЙ АНОМАЛИЙ
Переход от истинной аномалии к эксцентри-

ческой осуществляется с помощью соотношений
[5, 15]:

cos θ = 𝑎𝑟 (cos𝐸 − 𝑒), sin θ = 𝑎𝑟 η sin𝐸,
𝑟 = 𝑎(1 − 𝑒 cos𝐸),
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ln(1 + 𝑒 cos θ) − ln
2η2

1 + η = − ln (1 − 2𝛽 cos𝐸 + 𝛽2) =
= 2 ∞∑𝑛=1

𝛽𝑛𝑛 cos 𝑛𝐸,
𝐸 −𝑀 = 𝑒 sin𝐸,

θ − 𝐸 = 2 arctg
𝛽 sin𝐸1 − 𝛽 cos𝐸 = 2 ∞∑𝑛=1

𝛽𝑛𝑛 sin 𝑛𝐸,
θ −𝑀 = θ − 𝐸 + 𝐸 −𝑀 = 𝑒 sin𝐸 + 2 arctg

𝛽 sin𝐸1 − 𝛽 cos𝐸.
ПРИЛОЖЕНИЕ C. ФУНКЦИИ δε𝑒

Функции замены переменных 𝑢𝑛, входящие
в выражения (1), запишем как приращения элемен-
тов орбиты и представим в виде рядов:δ𝑎 = 𝑎𝔗ϰ2(1 − 𝑒2)2 ×

× [(6𝑒 − 5𝑒3
−

25𝑒532 − 29𝑒7256 − 349𝑒98192 − 43𝑒112048 ) ×× sin𝐸+
+ (5𝑒24 − 13𝑒416 − 113𝑒6512 − 179𝑒82048 − 2845𝑒1065536 )×× sin 2𝐸+
+ (𝑒32 − 7𝑒532 − 27𝑒7256 − 115𝑒92048 − 1085𝑒1132768 ) sin 3𝐸+
+ (27𝑒4128 − 21𝑒6512 − 347𝑒88192 − 995𝑒1032768 ) sin 4𝐸+
+ (3𝑒532 + 𝑒7256 − 25𝑒92048 − 875𝑒1165536 ) sin 5𝐸+
+ ( 65𝑒61536 + 25𝑒82048 + 5𝑒10131072) sin 6𝐸+
+ ( 5𝑒7256 + 85𝑒98192 + 245𝑒1165536 ) sin 7𝐸+
+ ( 595𝑒865536 + 1855𝑒10262144 ) sin 8𝐸+
+ ( 35𝑒98192 + 287𝑒1165536 ) sin 9𝐸+
+

1323𝑒10655360 sin 10𝐸 + 63𝑒1165536 sin 11𝐸] ,
δ𝑒 = 𝔗ϰ2

⎡⎢⎢⎢⎢⎣ (2+
5𝑒24 + 7𝑒432 + 49𝑒6512 + 445𝑒88192 + 2303𝑒1065536 )×× sin𝐸+

+(𝑒2+ 𝑒34 + 33𝑒5256 + 5𝑒764 + 1715𝑒932768 + 2457𝑒1165536 ) sin 2𝐸+
+ (𝑒24 + 9𝑒464 + 45𝑒6512 + 245𝑒84096 + 2835𝑒1065536 ) sin 3𝐸+
+ (3𝑒332 + 21𝑒5256 + 65𝑒71024+ 805𝑒916384+ 40635𝑒111048576 ) sin 4𝐸+
+ (3𝑒464 + 25𝑒6512 + 175𝑒84096 + 4725𝑒10131072 ) sin 5𝐸+
+ ( 5𝑒5256 + 5𝑒7192 + 5215𝑒9196608 + 3255𝑒11131072 ) sin 6𝐸+
+ ( 5𝑒6512 + 245𝑒816384 + 2205𝑒10131072 ) sin 7𝐸+
+ ( 35𝑒78192 + 1015𝑒9131072 + 10269𝑒111048576 ) sin 8𝐸+
+ ( 35𝑒816384 + 567𝑒10131072) sin 9𝐸+
+ ( 63𝑒965536 + 1449𝑒11655360 ) sin 10𝐸+
+

63𝑒10131072 sin 11𝐸 + 231𝑒111048576 sin 12𝐸⎤⎥⎥⎥⎥⎦+
+
𝔑ϰ2
⎡⎢⎢⎢⎢⎣
𝑒2 − 3𝑒316 − 9𝑒5128 − 79𝑒72048 − 819𝑒932768 − 4665𝑒11262144 +

+ (1 − 3𝑒28 − 9𝑒464 − 79𝑒61024 − 819𝑒816384 − 4665𝑒10131072 )×× cos𝐸+
+ ( 𝑒224+ 𝑒4384− 7𝑒63072− 71𝑒824576− 1061𝑒10393216 ) cos 3𝐸+
+ ( 3𝑒4640 + 13𝑒65120 + 51𝑒840960 + 741𝑒101310720) cos 5𝐸+
+ ( 5𝑒67168 + 165𝑒8229376 + 1065𝑒101835008) cos 7𝐸+
+ ( 35𝑒8294912 + 427𝑒102359296) cos 9𝐸+
+

63𝑒102883584 cos 11𝐸⎤⎥⎥⎥⎥⎦, (C1)

δ𝑖 = 𝑊ϰ2 (𝐿1 sin σ + 𝐿2 cos σ) ,
δΩ = 𝑊ϰ2 sin 𝑖 (𝐿2 sin σ − 𝐿1 cos σ) , где
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𝐿1 = ( 𝑒2 + 𝑒38 + 𝑒516 + 5𝑒7128 + 7𝑒9256 + 21𝑒111024 )+
+ (1 + 𝑒24 + 𝑒48 + 5𝑒664 + 7𝑒8128 + 21𝑒10512 ) cos𝐸+
+ ( 𝑒4 + 𝑒38 + 5𝑒564 + 7𝑒7128 + 21𝑒9512 + 33𝑒111024 ) cos 2𝐸+
+ ( 𝑒212 + 𝑒416 + 3𝑒664 + 7𝑒8192 + 15𝑒10512 ) cos 3𝐸+
+ ( 𝑒332 + 𝑒532 + 7𝑒7256 + 3𝑒9128 + 165𝑒118192 ) cos 4𝐸+
+ ( 𝑒480 + 𝑒664 + 𝑒864 + 15𝑒101024 ) cos 5𝐸+
+ ( 𝑒5192 + 𝑒7128 + 9𝑒91024 + 55𝑒116144 ) cos 6𝐸+
+ ( 𝑒6448 + 𝑒8256 + 5𝑒101024) cos 7𝐸+
+ ( 𝑒71024 + 𝑒9512 + 11𝑒114096 ) cos 8𝐸+
+ ( 𝑒82304 + 𝑒101024) cos 9𝐸+
+ ( 𝑒95120 + 𝑒112048) cos 10𝐸+
+

𝑒1011264 cos 11𝐸 + 𝑒1124576 cos 12𝐸,
𝐿2 = (1 − 𝑒24 − 𝑒44 − 15𝑒664 − 7𝑒832 − 105𝑒10512 ) sin𝐸+
+ ( 𝑒4 + 𝑒38 + 5𝑒564 + 7𝑒7128 + 21𝑒9512 + 33𝑒111024 ) sin 2𝐸+
+ ( 𝑒212 + 𝑒416 + 3𝑒664 + 7𝑒8192 + 15𝑒10512 ) sin 3𝐸+
+ ( 𝑒332 + 𝑒532 + 7𝑒7256 + 3𝑒9128 + 165𝑒118192 ) sin 4𝐸+
+ ( 𝑒480 + 𝑒664 + 𝑒864 + 15𝑒101024 ) sin 5𝐸+
+ ( 𝑒5192 + 𝑒7128 + 9𝑒91024 + 55𝑒116144 ) sin 6𝐸+
+ ( 𝑒6448 + 𝑒8256 + 5𝑒101024) sin 7𝐸+
+ ( 𝑒71024 + 𝑒9512 + 11𝑒114096 ) sin 8𝐸+

+ ( 𝑒82304 + 𝑒101024) sin 9𝐸+
+ ( 𝑒95120 + 𝑒112048) sin 10𝐸+
+

𝑒1011264 sin 11𝐸 + 𝑒1124576 sin 12𝐸 ,
δσ = 𝔗ϰ2

⎡⎢⎢⎢⎢⎣ − 1 + 𝑒28 + 5𝑒464 + 57𝑒61024 + 699𝑒816384 +
+

4491𝑒10131072 + 29809𝑒121048576 −
− (2𝑒 − 𝑒4 − 5𝑒332 − 57𝑒5512 − 699𝑒78192 −
−

4491𝑒965536 − 29809𝑒11524288 ) cos𝐸−
− (12 + 𝑒28 + 11𝑒4256 + 15𝑒61024 + 87𝑒832768 −
−

393𝑒10131072 − 48673𝑒128388608 ) cos 2𝐸−
− ( 𝑒4 + 7𝑒364 + 29𝑒5512 + 131𝑒74096 +
+

1235𝑒965536 + 23521𝑒112097152 ) cos 3𝐸−
− (3𝑒232 + 9𝑒4128 + 101𝑒62048 + 287𝑒88192 +
+

26665𝑒101048576 + 78947𝑒124194304 ) cos 4𝐸−
− (3𝑒364 + 23𝑒5512 + 151𝑒74096 + 3851𝑒9131072 +
+

49045𝑒112097152 ) cos 5𝐸−
− ( 5𝑒4256 + 25𝑒61024 + 1555𝑒865536 + 5595𝑒10262144 +
+

156469𝑒128388608 ) cos 6𝐸−
− ( 5𝑒5512 + 235𝑒716384 + 2045𝑒9131072 + 16013𝑒111048576 ) cos 7𝐸−
− (35𝑒68192 + 245𝑒832768 + 4823𝑒10524288 + 20713𝑒122097152) cos 8𝐸−
− ( 35𝑒716384 + 553𝑒9131072 + 5957𝑒111048576) cos 9𝐸−
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− ( 63𝑒865536 + 567𝑒10262144 + 26943𝑒128388608 ) cos 10𝐸−
− ( 63𝑒9131072 + 2499𝑒112097152) cos 11𝐸−
− ( 231𝑒101048576 + 2541𝑒124194304) cos 12𝐸−
−

231𝑒112097152 cos 13𝐸 − 429𝑒128388608 cos 14𝐸⎤⎥⎥⎥⎥⎦+
+
𝔑ϰ2
⎡⎢⎢⎢⎢⎣ (

1𝑒 + 11𝑒8 +
63𝑒364 + 831𝑒51024 + 11613𝑒716384 +

+
83745𝑒9131072 + 616011𝑒111048576 ) sin𝐸+

+ (𝑒28 + 5𝑒432 + 171𝑒61024 + 699𝑒84096 +
+

22455𝑒10131072 + 89427𝑒12524288 ) sin 2𝐸+
+ ( 𝑒24 + 5𝑒3128 + 35𝑒51024 + 245𝑒78192 +
+

3465𝑒9131072 + 99099𝑒114194304 ) sin 3𝐸+
+ ( 3𝑒4256 + 21𝑒61024 + 437𝑒816384 + 2035𝑒1065536 +

+
287145𝑒128388608 ) sin 4𝐸+

+ ( 3𝑒3640 + 7𝑒51024 + 63𝑒78192 + 2079𝑒9262144 +
+

33033𝑒114194304 ) sin 5𝐸+
+ ( 5𝑒63072 + 15𝑒84096 + 4435𝑒10786432 + 23335𝑒123145728 ) sin 6𝐸+
+ ( 5𝑒57168 + 45𝑒732768 + 495𝑒9262144 + 4719𝑒112097152) sin 7𝐸+
+ ( 35𝑒8131072 + 385𝑒10524288 + 10983𝑒128388608 ) sin 8𝐸+
+ ( 35𝑒7294912 + 77𝑒9262144 + 1001𝑒112097152) sin 9𝐸+
+ ( 63𝑒101310720 + 819𝑒125242880) sin 10𝐸+
+ ( 63𝑒92883584 + 273𝑒114194304) sin 11𝐸+
+

77𝑒128388608 sin 12𝐸 + 231𝑒1154525952 sin 13𝐸⎤⎥⎥⎥⎥⎦−

− cos 𝑖 δΩ,
δ𝑀 = 𝔗ϰ2(1 − 𝑒2)2

⎡⎢⎢⎢⎢⎣1 +
23𝑒28 −

255𝑒464 +

+
111𝑒61024 + 57𝑒816384 − 75𝑒10131072 +
+ (2𝑒 + 23𝑒4 −

255𝑒332 +
111𝑒5512 +

+
57𝑒78192 − 75𝑒965536) cos𝐸+

+ (12 − 39𝑒216 + 447𝑒4256 + 399𝑒62048 +
+

147𝑒832768 − 489𝑒10262144) cos 2𝐸+
+ ( 𝑒4 − 95𝑒3192 + 133𝑒5768 + 601𝑒712288 +
+

2699𝑒9196608) cos 3𝐸+
+ (3𝑒232 − 183𝑒41024 + 235𝑒64096 +
+

1143𝑒865536 + 6405𝑒101048576) cos 4𝐸+
+ (3𝑒364 − 17𝑒5256 + 91𝑒720480 + 3963𝑒9655360) cos 5𝐸+
+ ( 5𝑒4256 − 157𝑒66144 − 37𝑒865536 + 1015𝑒10524288 ) cos 6𝐸+
+ ( 5𝑒5512 − 1035𝑒7114688 − 4875𝑒91835008) cos 7𝐸+
+ ( 35𝑒68192 − 3495𝑒81048576 − 6411𝑒104194304) cos 8𝐸+
+ ( 35𝑒716384 − 2191𝑒92359296) cos 9𝐸+
+ ( 63𝑒865536 − 3381𝑒1013107200) cos 10𝐸+
+

63𝑒9131072 cos 11𝐸 + 231𝑒101048576 cos 12𝐸⎤⎥⎥⎥⎥⎦+
+
𝔑ϰ2
⎡⎢⎢⎢⎢⎣ (−

1𝑒 + 9𝑒8 − 11𝑒364 − 55𝑒51024−
−

389𝑒716384 − 1581𝑒9131072) sin𝐸+
+ (𝑒28 + 𝑒432 + 11𝑒61024 + 15𝑒84096 + 87𝑒10131072) sin 2𝐸−
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− ( 𝑒24 + 7𝑒3384 + 29𝑒53072 + 131𝑒724576 + 1235𝑒9393216) sin 3𝐸+
+ ( 3𝑒4256 + 9𝑒61024 + 101𝑒816384 + 287𝑒1065536 ) sin 4𝐸−
− ( 3𝑒3640 + 23𝑒55120 + 151𝑒740960 + 3851𝑒91310720) sin 5𝐸+
+ ( 5𝑒63072 + 25𝑒812288 + 1555𝑒10786432 ) sin 6𝐸−
− ( 5𝑒57168 + 235𝑒7229376 + 2045𝑒91835008) sin 7𝐸+
+ ( 35𝑒8131072 + 245𝑒10524288) sin 8𝐸−
− ( 35𝑒7294912 + 553𝑒92359296) sin 9𝐸+
+

63𝑒101310720 sin 10𝐸 − 63𝑒92883584 sin 11𝐸⎤⎥⎥⎥⎥⎦.
ПРИЛОЖЕНИЕ D

Согласно работе [4] разность оскулирующего
и среднего радиуса-вектора может быть выражена
через разности элементов орбиты:(𝑑r)2 = δ𝑟2

+ 𝑟2(δ𝑢 + cos 𝑖δΩ)2 +
+ 𝑟2(sin 𝑢δ𝑖 − sin 𝑖 cos 𝑢δΩ)2, (D1)

где 𝑢 — аргумент широты,

δ𝑟 = 𝑟𝑎δ𝑎 + 𝑎2𝑟 (𝑒 − cos𝐸)δ𝑒 + 𝑎2𝑟 𝑒 sin𝐸 δ𝑀,
𝑟(δ𝑢 + cos 𝑖δΩ) = 𝑎2η𝑟 (2 − 𝑒2

− 𝑒 cos𝐸) ×
× sin𝐸δ𝑒 + 𝑟δσ + 𝑟 cos 𝑖 δΩ + 𝑎2η𝑟 δ𝑀,𝑟(sin 𝑢δ𝑖 − sin 𝑖 cos 𝑢δΩ) = 𝑎[(cos𝐸 − 𝑒)×× sin σ + η sin𝐸 cos σ]δ𝑖−

−𝑎 sin 𝑖[(cos𝐸 − 𝑒) cos σ−
− η sin𝐸 sin σ]δΩ .

(D2)

Евклидова (среднеквадратичная по средней ано-
малии) норма вычисляется по формуле:

ϱ2
= ∥𝑑r∥2 = 12π

π
∫
−π (𝑑r)2 𝑑𝑀 =

=
12π

π
∫
−π (𝑑r)2(1 − 𝑒 cos𝐸) 𝑑𝐸 =
=

12π
π
∫
−π (𝑑r)2 𝑟𝑎 𝑑𝐸. (D3)
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DISPLACEMENT NORM IN THE PRESENCE OF AN INVERSE-SQUARE
PERTURBING ACCELERATION IN THE REFERENCE FRAME ASSOCIATED

WITH THE VELOCITY VECTOR
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The problem of motion of a zero-mass-point under the action of attraction to the central body and a small
perturbing acceleration P′

= P/𝑟2 is considered, where 𝑟 is the distance to the attracting center and
components of the vector P are assumed to be constant in a reference system with the axes directed along the
velocity vector, the main normal and the angular momentum vector. Previously, for this problem, equations
of motion in the mean elements and formulas for the transition from osculating elements to the mean ones in
the first order of smallness were found; second-order quantities are neglected. If the perturbing forces are
small, then the osculating orbit slightly deviates from the mean one. The difference 𝑑r between the position
vectors on the osculating and mean orbit is a quasi-periodic function of time. In this work, the Euclidean
(root-mean-square over the mean anomaly) norm ∥𝑑r∥2 of the displacement of the osculating orbit relative to
the mean one is obtained. It turned out that ∥𝑑r∥2 depends only on the components of the vector P (positive
definite quadratic form), the semi-major axis (proportional to the second power) and the eccentricity of
the osculating ellipse. The norm ∥𝑑r∥2 is obtained in the form of series in powers of eccentricity 𝑒. The
resulting expression holds up to 𝑒0 ≈ 0.995862; for 𝑒 > 𝑒0, ϱ = √∥𝑑r∥2 can take complex values. The results
are applied to the problem of the motion of model bodies under the action of perturbing acceleration caused
by the Yarkovsky effect. A comparison of the results with similar ones for the norm ∥𝑑r∥2 in the reference
system associated with the radius vector was also carried out.

Keywords: Yarkovsky effect, tangential acceleration, root-mean-square norm, displacement of the osculating
orbit from the mean orbit
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