
ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2025, том 126, № 2, с. 210–217

210

	  СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ 	
И ДИФФУЗИЯ

УДК 669.21

СПИН-ОРБИТАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ  
В НАНОСТРУКТУРАХ ЗОЛОТА

© 2025 г. Е. Р. Созыкинаa, *, С. А. Созыкинa

aЮжно-Уральский государственный университет, пр-т Ленина, 76, Челябинск, 454080 Россия 
*e-mail: sozykinaer@susu.ru

Поступила в редакцию 07.09.2024 г. 
После доработки 18.12.2024 г. 

Принята к публикации 26.12.2024 г.

Сообщается о влиянии учета спин-орбитального взаимодействия на атомную и электронную 
структуру 0D (кластеры), 1D (золотые нанотрубки) и 2D (монослой) золота. Актуальность работы 
заключается в том, что с одной стороны, золотые наноструктуры находят широкое применение, 
в частности в сенсорике и медицине, с другой стороны, из-за ограниченности вычислительных 
ресурсов при теоретическом изучении таких объектов исследователи могут пренебрегать некото-
рыми эффектами и важно понимать, какие ошибки могут быть связаны с таким пренебрежением. 
Исследование проведено на большом наборе объектов: шесть изомеров кластера Au25, золотые 
нанотрубки девяти разных радиусов и плоском монослое золота, что позволило комплексно 
оценить влияние спин-орбитального взаимодействия. Было показано, что энергии когезии всех 
золотых нанотрубок, кроме самой тонкой из рассмотренных, лежат в диапазоне от энергии коге-
зии золотых нанокластеров до энергии когезии монослоя золота. Учет спин-орбитального взаи-
модействия приводит к уменьшению межатомных расстояний Au–Au и изменению электронной 
структуры нанообъектов золота. При этом для нанокластеров возможно существенное изменение 
положения энергетических уровней, отражающее изменение структуры кластера. Для нанотру-
бок и голдена вблизи уровня Ферми происходит лишь расщепление энергетических уровней. 
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ВВЕДЕНИЕ
Интерес исследователей к наноматериалам 

на основе золота связан с широким спектром 
возможностей их практического использова-
ния, особое место среди которых занимают сен-
сорика и медицинские приложения [1, 2]. Золото 
на наномасштабе может быть структурировано 
по-разному: нанокластеры, нанопроволоки [3], 
плоское монослойное золото (голден) [4].

Кластеры золота находят применение в уси-
лении поверхностью спектров комбинационно-
го рассеяния [5], что позволяет рассматривать их 
как сенсоры [6]. Помимо нестабилизированных 
кластеров золота большое внимание в последнее 
время привлекают их стабилизированные ана-
логи, активно используемые, например, в реак-
циях выделения водорода [7] и реакциях восста-
новления кислорода [8]. Дело в том, что атомная 
структура кластеров золота и их электронная 
структура [9] оказываются существенным 

образом зависящими от химического окружения 
(наличия стабилизирующих фрагментов), и нет 
никаких оснований полагать, что свойства кла-
стеров остаются неизменными при стабилиза-
ции. Изменяются свойства кластеров и при вза-
имодействии друг с другом: отклик отдельных 
кластеров на внешние воздействия может быть 
усилен вследствие формирования сверхструктур 
[10].

Золотые нанопроволоки находят примене-
ние в носимой биоэлектронике и в качестве 
токопроводящих каналов [11]: нанопроволоки 
позволяют сформировать более качественный 
контакт металл–полимер по сравнению с золо-
той фольгой за счет большей площади контакта 
[12]. Ориентированные вертикально подложке 
массивы золотых нанопроволок используются 
для высокочувствительного детектирования па-
тогенов с использованием метода поверхност-
но-усиленной спектроскопии комбинационно-
го рассеяния [13]. В работе [14] сообщается об 
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изготовлении переключателей и тензодатчиков 
на основе золотых нанопроводов. Золотые на-
ноструктуры активно используются совмест-
но с углеродными материалами. Графитовые 
электроды, модифицированные дендритными 
золотыми наноструктурами, могут использо-
ваться как сенсор глюкозы [15]. Углеродные на-
нотрубки, функционализированные золотыми 
нанонитями, применяются для детектирования 
бисфенола А [16]. Функционализированные 
многостенные углеродные нанотрубки, декори-
рованные наночастицами золота, могут высту-
пать в роли сильнодействующих антибактери-
альных материалов [17].

Золото, как и ряд других элементов [18, 19], 
может существовать в форме нанотрубок [20, 
21], являющихся частным случаем нанопрово-
лок. Недавно было экспериментально получено 
двумерное золото [4], возможность получения 
которого долгое время была под вопросом. Из-
за относительно слабых связей между атомами 
золота в нанотрубках и голдене они не рассма-
триваются в качестве упрочняющей фазы в ком-
позитах, как это имеет место в случае углеродных 
нанотрубок [22, 23]. Таким образом, на сегод-
няшний день достоверно можно говорить о су-
ществовании золота в нуль-, одно- и двумерном 
состоянии. При компьютерном моделировании 
свойств таких объектов широко используются 
квантово-химические программы, реализую-
щие теорию функционала плотности.

В рамках теории функционала электронной 
плотности были изучены колебательные спек-
тры [24], электронная структура [25–27], элек-
трическая проводимость [25, 28] одностенных 
золотых нанотрубок (ОЗНТ) и адсорбция атомов 
ОЗНТ [27] и молекул голденом [30]. Исследова-
на зависимость электронной структуры ОЗНТ 
от механических деформаций [28, 31]. В работе 
[32] показано, что кластеры золота из 24 атомов 
и более в ряде случаев обладают полой каркас-
ной структурой, похожей на нанотрубки. 

Для “тяжелых” элементов, к которым отно-
сится золото, в DFT расчетах следует учитывать 
релятивистские поправки и спин-орбитальное 
взаимодействие. Учет спин-орбитального вза-
имодействия в изомерах кластера Au13 увеличи-
вает разницу энергий между плоскими и “объ-
емными” изомерами и приводит к сокращению 
длин связей [33].

В работе [34] при обсуждении зонной струк-
туры голдена говорится о сильном спин-ор-
битальном взаимодействии, но оно не проил-
люстрировано. В работе [27] упоминается о 
возможности учета спин-орбитального взаи-
модействия, но указаний на его использование 

для расчета зонной структуры голдена нет. Меж-
ду тем зонные спектры голдена, приведенные в 
работах [34] и [27], заметно отличаются. К со-
жалению, в упомянутых работах использованы 
разные инструменты моделирования и невоз-
можно отнести наблюдаемые отличия к влия-
нию спин-орбитального взаимодействия.

Ранее нами проведены исследования золо-
тых нанотрубок как в рамках теории функцио-
нала плотности [35, 36], так и путем аналитиче-
ского решения уравнений модели Хаббарда [37]. 
Цель настоящей работы состоит в определении 
влияния спин-орбитального взаимодействия 
на электронную структуру золота пониженной 
размерности: кластеров, нанотрубок и плоского 
монослоя золота.

МОДЕЛИ И МЕТОД
Объектами моделирования выступали кла-

стеры из 25 атомов золота Au25,m, где m = 1–6, 
золотые нанотрубки с зеркальной симметри-
ей (n, 0), где n = 3–10, двумерное золото – гол-
ден. На рис. 1 показаны их атомные структуры. 
В качестве стартовой конфигурации кластеров 
рассматривали пять структур кластера Au25 из 
работы [30] (m = 1–5) и золотая основа стабили-
зированного кластера [7] (m = 6).

Моделирование выполнено методом функци-
онала электронной плотности, реализованным 
в программе VASP [38], использующей базис 
плоских волн. Энергию отсечки базиса плоских 
волн выбирали равной 600 эВ. Использовали 
PAW псевдопотенциал и обменно-корреляцион-
ный функционал PBE. 

Программа VASP предполагает наличие пе-
риодических граничных условий. Для случая 
кластеров размер простой кубической расчет-
ной ячейки составлял 2.5×2.5×2.5 нм. Расчетную 
ячейку для моделирования нанотрубок выби-
рали прямоугольной с параметром трансляции 
2.5 нм в направлениях, перпендикулярных оси 
нанотрубки.

Расчетная ячейка для голдена была гекса-
гональной с параметром трансляции 2.5 нм в 
направлении, перпендикулярном плоскости 
голдена. Не указанные выше параметры транс-
ляции определяли для каждой модели независи-
мо из условия минимума полной энергии. 

При разбиении обратного пространства по 
схеме Монкхорста–Пака для указанных выше 
направлений с параметром трансляции 2.5 нм 
брали по одной k-точке. В направлении оси на-
нотрубок брали 61 k-точку. Для голдена сетку в 
обратном пространстве задавали разбиением 
51×51×1 точек.
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Стартовые атомные структуры золотых на-
нотрубок и голдена, иллюстрации всех моделей 
получены с помощью программы GUI4dft [39]. 
Для построения зонной структуры использова-
на программа sumo [40].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 
Поскольку рассматриваемые в данной рабо-

те кластеры из атомов золота состоят из одина-
кового количества атомов, оценивать их отно-
сительную энергетическую привлекательность 
можно по полной энергии. Рассчитанные отно-
сительные полные энергии изомеров Au25 приве-
дены на рис. 2. Из рисунка видно, что несмотря 
на существенное отличие использованного нами 
подхода к моделированию, относительные энер-
гии изомеров Au25,1, Au25,2 и Au25,4 согласуются ко-
личественно. Для изомеров Au25,3 и Au25,5 отличие 
составляет 40%. Это можно объяснить тем, что 
энергия изомеров Au25,1, Au25,2, Au25,4 понижает-
ся приблизительно на одинаковую величину при 
оптимизации структуры без ограничений по сим-
метрии, а для изомеров Au25,3 и Au25,5 заметных 
изменений энергии в ходе оптимизации струк-
туры не наблюдается. Относительные энергии 

изомеров Au25,m для m = 1–5 в разы меньше соот-
ветствующей величины, рассчитанной для кла-
стера Au25,6. Это означает, что структура, получен-
ная оптимизацией “ядра” стабилизированного 

n = 3

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

(а)

(б)

(в)

Рис. 1. Модели (а) кластеров Au25,m, где m = 1–6, (б) ОЗНТ с индексами хиральности (n, 0), n = 3–10 и (в) голдена.
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Рис. 2. Средние межатомные расстояния lAu–Au и относитель-
ные энергии ΔE изомеров Au25. Индекс “soc” относится к 
результатам, полученным при учете спин-орбитального вза-
имодействия. ΔEref – относительные энергии соответствую-
щих стартовых конфигураций кластеров согласно [32].
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лигандами кластера золота, действительно энер-
гетически невыгодна. Она является метастабиль-
ной, поскольку в процессе оптимизации не про-
исходит перехода в какой-либо другой изомер. 

Средние межатомные расстояния (среди не 
превышающих 3 Å) для большинства изомеров 
Au25 уменьшаются при учете спин-орбитального 
взаимодействия, но не более чем на 0.6 % (рис. 2). 
Менее чем на 0.4 % изменяется равновесный пе-
риод трансляции нанотрубок и голдена. Подоб-
ное поведение межатомных расстояний наблю-
дается и в изомерах Au13 [33]. Отметим, однако, 
что увеличение среднего межатомного рассто-
яния для изомера Au25,6 означает не удлинение 
связей, а увеличение их количества за счет по-
падания в анализируемый диапазон расстояний 
большего числа пар атомов. При этом для трех из 
шести изомеров (m = 3, 5, 6) спин-орбитальное 
взаимодействие привело к уменьшению разноо-
бразия длин связей, что можно отнести к повы-
шению степени симметричности структуры.

Для оценки энергетической стабильности ка-
ждой модели рассчитывали энергию когезии Ecoh 
и образования Eform: 

E
nE E

ncoh
at model=

-
,

E
E n

nform
model=

- m
,

где Emodel – энергия расчетной ячейки, n – коли-
чество атомов в расчетной ячейке, Eat – энергия 
одного изолированного атома золота, µ – хи-
мический потенциал, принимаемый равным 
энергии одного атома в ГЦК-кристалле золота. 
Рассчитанные энергии когезии и образования с 
учетом спин-орбитального взаимодействия при-
ведены в табл. 1. На рис. 3 приведено сравнение 
энергий образования полученных с учетом и без 
учета спин-орбитального взаимодействия.

Из табл. 1 видно, что все полученные энергии 
когезии меньше энергии когезии ГЦК-золота 
3.20 эВ [32]. Среди исследованных нами золотых 
наночастиц максимальной энергией когезии об-
ладает голден, который можно представить зо-
лотой нанотрубкой бесконечно большого ради-
уса. Несмотря на то что в работе рассмотрены 
нанотрубки относительно небольшого радиуса 
(до 4.4 Å), энергия когезии самой толстой нано-
трубки меньше энергии когезии голдена всего на 
3%. Энергии когезии изомеров Au25 сопостави-
мы с энергией когезии самых тонких из рассмо-
тренных нами нанотрубок. 

При учете спин-орбитального взаимодей-
ствия энергия когезии для всех рассмотрен-
ных в данной работе золотых наночастиц воз-
растает приблизительно на 0.1 эВ. Для золотых 

нанотрубок это показано на рис. 3. Аналогичные 
рассуждения можно было привести на основа-
нии анализа энергии образования рассмотрен-
ных нами золотых нанообъектов.

В работе [33] сообщается о том, что спин-ор-
битальное взаимодействие существенно влияет 
на величину щели HOMO-LUMO изомеров кла-
стера Au13. Как видно из рис. 4, ширина щели HO-
MO-LUMO изменяется при учете спин-орбиталь-
ного взаимодействия и в изомерах Au25, но оно 
происходит не столько из-за расщепления уров-
ней, сколько из-за изменения положений уровней 
в ходе дополнительной оптимизации структуры.
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Рис. 3. Энергии когезии и образования золотых нанотру-
бок как функция их радиуса.

Таблица 1. Энергии когезии Ecoh и образования Eform  
золотых нанообъектов

Объект Ecoh, эВ Eform, эВ

Au25,1 2.47 0.70
Au25,2 2.46 0.71
Au25,3 2.45 0.71
Au25,4 2.46 0.71
Au25,5 2.45 0.72
Au25,6 2.37 0.80

ОЗНТ (3, 0) 2.38 0.79
ОЗНТ (4, 0) 2.50 0.66
ОЗНТ (5, 0) 2.63 0.53
ОЗНТ (6, 0) 2.72 0.45
ОЗНТ (7, 0) 2.72 0.45
ОЗНТ (8, 0) 2.78 0.38
ОЗНТ (9, 0) 2.80 0.37
ОЗНТ (10, 0) 2.80 0.36

Голден 2.89 0.28
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Золотые нанотрубки обладают металли-
ческим типом электрической проводимости 
[28, 35, 36]. Вклад в плотность состояний на 
уровне Ферми вносят 5d- и 6s-электроны. Боль-
шая часть 5d-состояний лежит ниже уровня 
Ферми, поэтому несмотря на то что на 5d-уровне 
10 электронов, а на 6s всего один, вклад 5d-элек-
тронов лишь для нескольких исследованных на-
нотрубок (ОЗНТ (3, 0) и ОЗНТ (5, 0)) в разы пре-
вышал вклад от 6s-электронов. Для большинства 
ОЗНТ вклад 6s-электронов в плотность состоя-
ний на уровне Ферми является преобладающим. 
Для нанотрубок из платины спин-орбитальное 
взаимодействие приводит к расщеплению дис-
персионных кривых до 0.5 эВ [41]. Аналогичный 
эффект мы наблюдаем для золотых нанотрубок 
(рис. 5), но величина расщепления меньше. Для 
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голдена о расщеплении 0.5 эВ можно говорить 
лишь для состояний, отстоящих от уровня Фер-
ми более чем на 1 эВ (рис. 6), а наибольшее влия-
ние оказывается на состояния в валентной зоне.

ВЫВОДЫ
В работе показан диапазон возможных изме-

нений структурных и электронных свойств зо-
лотых кластеров, нанотрубок и двумерного мо-
нослоя золота в зависимости от учета/неучета 
спин-орбитального взаимодействия при моде-
лировании в приближении обобщенных гради-
ентов теории функционала электронной плот-
ности.

Показано, что учет спин-орбитального вза-
имодействия может привести к заметным изме-
нениям в электронной структуре нанокласте-
ров вблизи уровня HOMO, в то время как для 
нанотрубок и плоского монослоя золота такое 
влияние вблизи уровня Ферми заметно слабее. 
Это обстоятельство объясняется тем, что поми-
мо сокращения средних межатомных расстоя-
ний Au–Au во всех золотых нанообъектах из-за 
спин-орбитального взаимодействия, в кластерах 
возможно и изменение “степени симметрично-
сти” системы.

Минимальной энергией когезии обладают 
золотые нанокластеры. Это означает, что одно-
мерные и двумерные золотые наноструктуры бо-
лее стабильны: требуется большая энергия для 
того, чтобы разделить их на невзаимодействую-
щие атомы. Наряду с ожидаемым результатом о 
том, что энергии образования всех рассмотрен-
ных наночастиц положительны по сравнению с 
ГЦК-золотом, было показано, что энергии об-
разования уменьшаются с увеличением радиуса 

золотых нанотрубок, предельным случаем кото-
рых выступает плоский монослой золота.

Авторы данной работы заявляют, что у них 
нет конфликта интересов.
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SPIN-ORBIT COUPLING IN GOLD NANOSTRUCTURES
E. R. Sozykina1, *  and  S. A. Sozykin1

1South Ural State University, Chelyabinsk, 454080 Russia
*e-mail: sozykinaer@susu.ru

The effect of spin-orbit interaction accounting on the atomic and electronic structure of 0D (clusters), 1D 
(gold nanotubes), and 2D (monolayer) gold is reported. The relevance of the work lies in the fact that, on 
the one hand, gold nanostructures are widely used, in particular, in sensorics and medicine, on the other 
hand, due to limited computing resources, researchers may neglect some effects in the theoretical study of 
such objects, and it is important to understand what errors may be associated with such neglect. The study 
was conducted on a large set of objects: six isomers of the Au25 cluster, gold nanotubes of nine different ra-
dii, and a flat monolayer of gold, which made it possible to comprehensively evaluate the effect of spin-orbit 
interaction. It has been shown that the cohesive energies of all but the thinnest of the gold nanotubes range 
from the cohesive energy of gold nanoclusters to the cohesive energy of a gold monolayer. Accounting for 
the spin-orbit interaction leads to a decrease in the Au–Au interatomic distances and a change in the elec-
tronic structure of gold nanoobjects. At the same time, a significant change in the position of energy levels 
is possible for nanoclusters, reflecting a change in the cluster structure. For nanotubes and golden, only the 
splitting of energy levels occurs near the Fermi level.

Keywords: golden, golden nanotube, Au25 cluster, DFT, band structure, spin-orbit interaction
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