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ВВЕДЕНИЕ
Разработанная и изложенная в [1–3] автовол-

новая механика неоднородной пластической де-
формации применима в широком интервале пла-
стических деформаций и позволяет объяснить 
большинство закономерностей пластического 
течения. В ее основе лежит представление о том, 
что пластическая деформация осуществляется 
макроскопическими автоволнами локализован-
ной пластической деформации, эксперимен-
тально наблюдаемыми как паттерн локализации 
пластического течения и служащими механиз-
мами самоорганизации деформируемой среды. 
Наблюдаемые в эксперименте автоволновые 
моды характеризуются пространственным (дли-
на l) и временным (период ϑ) масштабами, и 
тип мод однозначно связан со стадиями дефор-
мационного упрочнения, характерными для за-
висимости деформирующего напряжения от 
деформации σ(ɛ). Эта связь, называемая Прин-
ципом соответствия, была установлена ранее 
[1–3]. Важными законами автоволновой теории 
пластичности являются также Упругопластиче-
ский инвариант, связывающий характеристики 
автоволн локализованной пластичности с пара-
метрами упругих волн в деформируемой среде, 
и Дисперсионное соотношение для автоволн, т. е., 
зависимость частоты колебаний в автоволне от 
ее волнового числа ω k( )  [1–3]. Использование 

этих положений обеспечивает успешность при-
менения автоволнового подхода.

Автоволновое описание феномена пластич-
ности в настоящее время получило убедитель-
ную экспериментальную базу, адекватный те-
оретический аппарат и проверено на большом 
числе материалов [3]. Непротиворечивость ба-
зовых положений автоволновой механики, адек-
ватность и применимость которых на данный 
момент можно считать вполне доказанной, по-
зволяет рассматривать ее как важную часть по-
исков общего подхода к проблеме пластичности. 
В работе [4] были обобщены экспериментальные 
и теоретические основы развития локализован-
ной пластической деформации и проанализиро-
вана неравновесная природа явления самоорга-
низации дефектов при пластическом течении на 
всех стадиях деформационного упрочнения.

Генерация автоволн локализованной пластич-
ности является общим механизмом самооргани-
зации в неравновесных системах [5]. Принци-
пиально важно, что генерация возможна, если 
деформируемая среда обладает активностью, под 
которой подразумевается наличие в среде распре-
деленных по объему источников потенциальной 
энергии. Их роль при пластической деформации 
способны выполнять ее носители, т. е. дислока-
ции и дислокационные ансамбли разной кон-
фигурации, обладающие полями упругих напря-
жений и эволюционирующие сложным образом 
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в ходе процесса [6–8]. В таком случае встает во-
прос о качественной и количественной взаимос-
вязи характеристик дислокационной структуры, 
возникающей при пластическом течении, с ос-
новными законами автоволновой пластической 
деформации. Ответ на него приобретает прин-
ципиальное значение, поскольку он определяет 
возможность согласования теории дислокаций 
и автоволновой теории, описывающих феномен 
пластичности на разных пространственно-вре-
менных масштабах. Попытка решения этой про-
блемы является предметом настоящей работы.

ДИСПЕРСИЯ АВТОВОЛН И АКТИВНЫЕ  
ДЕФОРМИРУЕМЫЕ СРЕДЫ

Важной информативной характеристикой 
автоволн локализованного пластического тече-
ния является их дисперсионное соотношение, 
поскольку с одной стороны дисперсия вызвана 
наличием в среде пространственных масшта-
бов, характеризующих структурные элементы, а 
с другой – форма дисперсионного соотношения 
позволяет определить тип нелинейного уравне-
ния, описывающего этот процесс [9, 10]. Такие 
уравнения, в свою очередь, выводятся с учетом 
физических процессов, идущих в активной сре-
де. По этим причинам знание дисперсионного 
соотношения открывает пути к пониманию при-
роды деформационных процессов и их адекват-
ному описанию.

Принцип соответствия позволяет думать, 
что законы дисперсии автоволн локализован-
ной пластичности имеют разную форму на раз-
ных стадиях деформационного упрочнения. Эти 
стадии можно выделить на экспериментальной 
кривой течения σ(ɛ), аппроксимировав ее урав-
нением Людвика s e s qe( ) = +0

n  [11, 12], где 
s q0 =const и - коэффициент деформационного 
упрочнения. Каждой стадии соответствует уча-
сток зависимости σ(ɛ), для которого показатель 
деформационного упрочнения n = const . Из та-
блицы следует, что на кривых течения удается вы-
делять стадии деформации Людерса (I), линейно-
го (II) и параболического (III) деформационного 
упрочнения, а также предразрушения (коллапса 
автоволны локализованной пластичности) (IV).

Из рис. 1 следует, что законы дисперсии для 
всех стадий процесса имеют параболическую 
форму ω ~ kβ с показателем b, дискретно меняю-
щимся при переходах между стадиями деформа-
ционного упрочнения. Используя соображения 
размерности, можно придать функции ω k( )  вид: 

	 ω
b

bk k( )








~ ,

L
J

	 (1)

где коэффициент Λβ/J для данной стадии про-
цесса определяется линейным масштабом L, 
зависящим от деформационных процессов на 
этой стадии. Временные масштабы (характер-
ные времена релаксации) J, также входящие в 
коэффициенты уравнений (2) – (5), вероятно, 
различны, но пока принимаются одинаковыми 
и равными времени преодоления сдвигами ло-
кальных барьеров за счет термических флуктуа- 
ций [11], т. е. J D bar B≈ -( )  ≈- -ω γs1 410exp U k T  c [3].  
Здесь Ubar – высота барьера, g – активационный 
объем, kB – постоянная Больцмана, Т – темпе-
ратура, ωD – дебаевская частота. 

Таким образом, по данным рис. 1 (кривая I) 
для дисперсии при деформации Людерса: 

	 ω
ϑ

k k k( ) 





~ ~
L ,	 (2)

для дисперсии на стадии линейного деформаци-
онного упрочнения (рис. 1, кривая II):

	 ω
ϑ

k k k( )








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2 2 ,	 (3)

для стадии параболического деформационного 
упрочнения (рис. 1, кривая III):

	 ω
ϑ

k k k( )








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и, наконец, для дисперсии на стадии предразру-
шения (коллапса автоволны) (рис. 1, кривая IV):

	 ω
ϑ

k k k( )
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Рис. 1. Экспериментальные дисперсионные кривые для 
деформации Людерса (●, I), линейного (▲, II) и парабо-
лического (▼, III) деформационного упрочнения и стадии 
предразрушения (♦, IV).
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Данные о дисперсии автоволн локализованной 
пластичности сведены в таблицу. Появление в 
уравнениях (1) – (5) длины L, площади L S2 =  
и объема L W3 = , физический смысл которых 
будет обсужден ниже, указывает на геометриче-
скую природу предлагаемой интерпретации. 

Специфические формы законов дисперсии 
(2) – (5) однозначно соответствуют нелинейным 
дифференциальным уравнениям, описываю-
щим обсуждаемые процессы. На стадии упруго-
пластического перехода деформация при посто-
янном напряжении s = const  локализована на 
движущемся с постоянной скоростью Vaw  фрон-
та Людерса [12], для которого фазовая и группо-
вая скорости

	 V
kaw

ph( ) = ω  и V d
dkaw

gr( ) = ω 	 (6)

равны, т. е. V V Vaw
ph

aw
gr

aw
( ) ( )= = . Перемножив 

правые и левые части двух уравнений (6) и про-
интегрировав полученные произведения, полу-
чаем:

	  ω ω ω ω ωd
kdk

d

kdk

c

k c
Vaw= =

+
+

=∫
∫

2
1

2
2

2 ,	 (7)

где c1  и c2  – константы интегрирования. При 
c2 0=  из уравнения (7) следует закон дисперсии 
ω2 21~ + k , отвечающий уравнению Клейна–
Гордона [9] для смещений u:

	 ∂
∂

- ∂
∂

+ =
2

2

2

2
0

u

t

u

x
u .	 (8)

Это уравнение описывает, например, распро-
странение макромасштабных возбуждений ти-
па солитонов [10] в активных средах. Наличие 
частотной щели ~1 для случая деформации Лю-
дерса учитывает скачкообразный рост скорости 
фронта при зарождении [12]. При установив-
шемся режиме деформации k>>1, так что урав-
нение (8) превращается в обычное волновое 
уравнение ��u u- ′′ = 0  с линейной дисперсией 

ω ~ k , пригодное для описания распростране-
ния упругих волн.

На стадии линейного деформационного 
упрочнения при s e~  автоволновые характе-
ристики пластического течения (длина l и ско-
рость Vaw ) вместе с параметрами упругих волн 
(межплоскостное расстояние c и скорость попе-
речного ультразвука Vt ) для того же материала 
образуют упругопластический инвариант [1–3]:

	
l
c
V
V

Zaw

t
= ≈� 1

2
,	 (9)

выполняющий роль основного уравнения авто-
волновой физики пластичности и имеющий ряд 
следствии, объясняющих закономерности пла-
стического течения. 

Так, например, если в уравнении (9) в соот-
ветствии с [13] заменить c и Vt  на выраженные 
через постоянную Планка � = h 2π, заряд элек-
трона e, его массу m и массу атома M, хартриев-
ские масштабы длины a me0 2

2= �  и скорости 
звука V e m Ms ≈ ( )2 1 2

2� , то получившееся урав-
нение

	 l
c

V
V

mM
aw

t= ≈
( )2 2

1 2

� ,	 (10)

выражающее характеристики автоволны через 
физические константы, приобретает интерес-
ные перспективы для анализа природы пластич-
ности. К примеру, рассчитанное по формуле (10) 
значение lVaw ≈ -10 6  м2/с оказывается близким 
к экспериментально найденным значениям для 
изученных материалов [1–3] и задает минималь-
ное значение кинематической вязкости дефор-
мируемых сред. 

Из уравнения (10) следует также квадратич-
ный закон дисперсии автоволны на стадии ли-
нейного деформационного упрочнения. При-
няв, что l ϑVaw ≈ L2 , получаем: 

	l
π
π ω

π ω
V

k

k mM
aw = =

( )
= ≈ ≈L2 2

2

2

2
2

J
const

� , (11)

Таблица 1. Характеристики стадий кривой пластического течения

Стадия кривой пластического 
течения σ(ɛ) = σ0 + θɛn

Зависимость деформирующего 
напряжения от деформации n Дисперсионное 

соотношение b

Деформация Людерса, I σ = const ~ ɛ0 0 ω(k) ~ k 1
Линейное деформационное 

упрочнение, II σ ≈ θII ɛ ~ ɛ 1 ω(k) ~ k2 2

Параболическое деформационное 
упрочнение, III σ ≈ θIII ɛ1/2 ~ ɛ1/2 1/2 ω(k) ~ k5/2 5/2

Предразрушение (коллапс автоволны 
локализованной пластичности), IV σ ≈ θIV ɛn ~ ɛn <1/2 ω(k) ~ k3 3
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откуда вытекает квадратичное дисперсионное 
уравнение для этой стадии, полученное ранее [1]: 

	 ω
π

= ⋅�

2
2 2

mM
k k~ .	 (12)

Оно соответствует нелинейному уравнению 
Шредингера iu u u u� + ′′ + =2 0

2  [9] для эволю-
ции поля смещений u в нелинейной системе c 
потенциалом 2

2
u u. Здесь i = -1. При пласти-

ческой деформации это уравнение применимо 
для описания процесса самоорганизации по-
следовательности термически активированных 
элементарных сдвигов [11], что характерно для 
стадии линейного деформационного упрочне-
ния. На этой стадии среда является автоколеба-
тельной, и ей отвечает фазовая автоволна с фа-
зой ωt kx- = const.

На стадии параболического деформацион-
ного упрочнения при s e~ 1 2  деформируемая 
среда образует стационарную (Vaw = 0) диссипа-
тивную структуру из неподвижных очагов лока-
лизованной пластичности. Для выяснения ви-
да зависимости ω k( )  в этом случае необходимо 
ввести эффективную скорость автоволны. Имея 
ввиду, что Vt ≈ 2cωD  и �ω qD B D= k , где qD  – де-
баевская температура [14], запишем знамена-
тель уравнения (9) как 1 2 2c c ωVt = D  и получим: 

	 l c
c q

V V
k

aw t≈ ≈1
2

2
B D

�
,	 (13)

где величина

	 V
V k

aw
ef aw( ) =

( )
≈ ⋅ ≈ ≠

l
l

q c
l

ω c
l

B D
2

D

2

2
0

�
	 (14)

имеет смысл эффективной скорости и характе-
ризует прирост деформации внутри очага актив-
ного пластического течения за счет увеличения 
плотности дефектов в нем без макроскопиче-
ского смещения границ. Расчет по уравнению 
(14) дает Vaw

ef( ) ≈ 2·10-3 м/с и Z V Vaw
ef

t
� = ≈( )l c 1 2.  

Совпадение с обычным значением инварианта 
(9) указывает на правомерность применения по-
следнего в том числе и для стадии параболиче-
ского деформационного упрочнения. Изменяя 
длину автоволны λ за счет условий деформиро-
вания, удалось получить дисперсионное соот-
ношение ω ~ k5 2. Промежуточное значение по-
казателя 2<b=5/2<3 указывает на то, что стадию 
параболического деформационного упрочне-
ния можно считать переходом от стадии линей-
ного упрочнения с дисперсией ω ~ k2  к стадии 
предразрушения (коллапса автоволны локали-
зованной пластичности), где ω ~ k3.

Такой закон дисперсии был установ-
лен для стадии предразрушения, для которой 

s e~ , /n n а < 1 2, обработкой приведенных в 
[1–3] X–t-диаграмм для разных металлов. Дис-
персионное соотношение вида ω ~ k3  отвеча-
ет уравнению Кортевега–де Вриза �u u- ′′′ = 0,  
описывающему распространение импульсов 
возбуждения в активных возбудимых средах [9]. 

Переходя к обсуждению причины измене-
ния дисперсионных соотношений в уравнениях 
(2) – (5) во время деформации, логично связать 
эти соотношения с эволюцией размеров и фор-
мы дислокационных ансамблей [7, 8, 15], т. е. со 
структурной частью коэффициента Lb J  в урав-
нении (5). В таком случае показатель b должен 
зависеть от конфигурации дислокационного 
ансамбля на соответствующей стадии. Действи-
тельно, на стадии площадки текучести (b=1) 
деформация Людерса превращает упругую сре-
ду в пластически деформируемую, что вместе с 
линейной дисперсией позволяет считать фронт 
Людерса автоволной переключения [16] в среде, 
состоящей из бистабильных элементов. Роль 
последних играют дислокации, переходящие из 
исходного иммобильного в новое мобильное со-
стояние. 

Для понимания роли дислокационной струк-
туры на стадиях линейного деформационного 
упрочнения и предразрушения учтем, что, как 
уже было сказано, L S2 = , а L W3 = . Отсю-
да следует, что длина L, площадь S и объем W, 
входящие в выражения законов дисперсии для 
последовательных стадий деформационного 
упрочнения (2) – (5), суть геометрические ха-
рактеристики дислокационных ансамблей, т. е. 
неоднородностей среды, вызывающих диспер-
сию автоволн локализованной пластичности. 
Им можно приписать, соответственно, смысл 
размера элемента субструктуры (L), площади 
поверхности дислокационных ячеек на стадии 
линейного деформационного упрочнения (S)  
и объема дислокационных клубков на стадии 
предразрушения (W) [8, 15].

Что касается стадии параболического дефор-
мационного упрочнения, то известно [7, 8, 15], 
что возникающая при ее развитии ячеистая 
дислокационная субструктура, для которой 
ω ~ L2 2J( )k , в ходе деформации постепенно за-
мещается клубковой, где ω ~ L3 3J( )k . Это со-
ображение можно рассматривать как аргумент 
в пользу того, что стадия параболического де-
формационного упрочнения служит переходом 
от линейного упрочнения к коллапсу автоволны 
локализованной пластичности. На это указыва-
ет и промежуточное значение b =5/2 в выраже-
нии для дисперсии автоволн локализованной 
пластичности на этой стадии деформации.
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Обсужденная выше связь стадийности дефор-
мационного процесса с законами дисперсии ав-
товолн локализованной пластичности позволяет 
высказать догадку о том, что и другие характери-
стики пластического течения должны быть так 
или иначе связаны с Принципом соответствия. 
В этом отношении особый интерес представляет 
зависимость плотности подвижных дислокаций 
от деформации для разных стадий деформаци-
онного процесса. 

Как известно [6], плотность подвижных дис-
локаций ρmd входит уравнение Тейлора–Орова-
на: 
	 d

dt
b Vmd

e ρ= disl,	 (15)

лежащее в основе большинства дислокацион-
ных моделей пластического течения и связыва-
ющее макроскопическую скорость пластиче-
ской деформации d dte  с микроскопическими 
характеристиками дислокационной структуры: 
вектором Бюргерса b и скоростью движения 
дислокаций Vdisl. Экстремальное поведение этой 
величины с ростом деформации, предсказанное 
Гилманом [6]:

	 ρ e ρ e q
s

emd
m
b

( ) exp= +





-



0

2 ,	 (16)

где ρ0 – начальная плотность дислокаций, а m –
коэффициент их размножения, до сих пор пред-
ставляется загадочным.

Нетрудно предположить, что как понятие ак-
тивной среды, так и ее количественные характе-
ристики тесно связаны с формой зависимости 
ρ emd ( ). Поэтому целесообразно рассмотреть ее, 
сделав акцент на стадийности процесса течения. 
С этой целью на основании анализа размерно-
стей запишем входящее в уравнение (9) произ-
ведение в виде:

	 l e e
ρe( ) ⋅ ( ) = ( ) = 





V D t
d
dtaw

md

1 ,	 (17)

где D Vawe l≈ – транспортный коэффициент 
в автоволновом уравнении пластической де-
формации �e e ee= ( ) + ′′f D , а f e( ) - нелинейная 
функция (точечная кинетика [2]), описывающая 
локальную скорость деформации. Из уравнения 
(17) тогда следует соотношение:

	 d
dt

d
d

d
dt

d
dtmd md md md

1 1 1
2 2ρ e ρ

e
ρ

e e
ρ







= 





⋅ = - ⋅ = -
�

, (18)

которое приводит к уравнению для плотности 
подвижных дислокаций:

	  ρ e e
l e emd

awV
2 ( ) = - ( ) ⋅ ( )

�
.	 (19)

Анализ уравнения (19) был выполнен для раз-
ных стадий деформационного процесса. Ока-
залось, что для деформации Людерса, когда 
V Vaw L= , а число подвижных дислокаций растет 
пропорционально смещению фронта 

	 ρ e e
l e

emd
LV

( ) = -
⋅







�
( )

~
/1 2

,	 (20)

а на стадии линейного упрочнения, где 
Vaw = const  и l = const [1]:

	 ρ ρ kemd = + -( )  ≈-
0

1
1 2exp const ,	 (21)

где 1 2
1+ -( )  --

exp ke ступенчатая функция Хэ-
висайда; k – коэффициент. Что касается стадии 
параболического деформационного упрочне-
ния, то для нее

	 ρ e
ρ
e

emd ( ) -~ ~0
3 2

3 2.	 (22)

Полученные решения схематически пред-
ставлены на рис. 2, из которого следует, что за-
висимость ρ emd ( )  согласуется со стадийностью 
пластического течения и удовлетворяет Прави-
лу соответствия, а ее экстремальный характер 
подчеркивает преемственность с формулой Гил-
мана.

АКТИВНЫЕ ДЕФОРМИРУЕМЫЕ СРЕДЫ. 
РОЖДЕНИЕ И ЭВОЛЮЦИЯ

При обсуждении природы активных дефор-
мируемых сред и эволюции их свойств в ходе 
локализованного пластического течения прежде 

I
ρ0

ρmd

σ

ε

II III

Рис. 2. Схематическая зависимость плотности подвижных 
дислокаций от деформации. Штриховая линия – кривая 
пластического течения. Номера стадий (I, II, III) приведе-
ны в табл. 1.
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всего важны проблемы возбуждения автоко-
лебаний в деформируемой среде и механизмов 
рождения активных сред в разных условиях де-
формирования.

Согласно общим воззрениям [5, 16], актив-
ная среда, способная генерировать автоволны, 
состоит из автоколебательных элементов, при 
полной или частичной синхронизации колеба-
ний которых возникают различные автоволно-
вые моды. Для понимания природы автоволн 
принципиален вопрос о “затравочном” возбуж-
дении автоколебаний в неравновесной систе-
ме, т. е. о рождении пейсмейкера (водителя рит-
ма) [5]. При анализе автоволновых процессов, в 
особенности деформационных, его существова-
ние обычно постулируется без обсуждения воз-
можного механизма рождения. Причина отказа 
от обсуждения состоит в том, что характерные 
частоты автоволн локализованной пластично-
сти 10 103 2- -≤ ≤ωaw  Гц несоизмеримы с часто-
тами колебаний типичных дислокационных 
сегментов длиной l bs ≈ 103 , составляющими 
ω ωs sb l≈ ( ) ≈D 1010 Гц, т. е. ω ωaw s<< .

Предлагаемая модель пейсмейкера рас-
сматривает пробегание индивидуальной дис-
локации мимо дислокационного ансамбля, в 
качестве которого для простоты удобно рассма-
тривать плоское скопление дислокаций, парал-
лельно плоскости залегания которого движется 
дислокация (рис. 3а). Сила взаимодействия дви-
жущейся дислокации с параллельной ей дисло-
кацией скопления [6]:

	 F
Gb x x y

x y
x1

2 2 2

2 2 22 1
= ±

-( ) ⋅
-( )

+( )π n
	 (23)

немонотонна (рис. 3б), из-за чего в плоском 
скоплении возникает перемещающаяся вместе 
с дислокацией область сгущения–разрежения 

дефектов, эквивалентная колебаниям их плот-
ности с частотой ~ Vdisl d . 

При минимальной скорости Vdisl ≈ 10−7 м/с и 
расстоянии между дислокациями в плоском ско-
плении d ≈ -10 5 м она близка к 10−2 Гц, т. е. к ха-
рактерной частоте автоволны.

Очевидно, эта частота ограничивает снизу 
спектр возможных колебаний дислокационных 
систем. Рассмотренный механизм применим 
также для дислокационных ансамблей более 
сложной конфигурации и пригоден для объ-
яснения проблемы зарождения колебательных 
процессов при пластическом течении.

Для автоволновой физики пластичности 
важен вопрос о том, определяется ли приро-
да активности деформируемой среды только ее 
структурой или зависит также от условий дефор-
мирования и может меняться при пластической 
деформации. Для ответа на него обсудим резуль-
таты исследования деформации поликристал-
лического a-Fe–0.1 мас.%С в температурном 
интервале 300–500 К, реализующейся по меха-
низму Людерса [12, 17, 18]. 

При испытаниях при ~300 К диаграмма на-
гружения a-Fe (рис. 4а) имеет [12] зуб и площад-
ку текучести, характеризуемые верхним s y

u( )  и 
нижним s y

l( )  пределами текучести. Полоса Лю-
дерса зарождается при напряжении s s≈ y

u( ) в ви-
де узкого клина пластически деформированно-
го материала, который быстро прорастает через 
поперечное сечение образца, а затем расширя-
ется в направлении оси растяжения [18].

При этом границы полосы (фронты Людер-
са) равномерно движутся по образцу в разные 
стороны при постоянном напряжении s s≈ y

l( ) .  
Когда вся рабочая часть образца оказывает-
ся заметенной этими фронтами, площадка те-
кучести сменяется параболическим деформа-
ционным упрочнением. Как уже было сказано 
выше, фронт Людерса переводит среду из упру-
гого в пластически деформируемое состояние, 

y 0

(а) (б)

y

Vdisl
Fx1

x

xδ

Рис. 3. Модель рождения пейсмейкера (а); координатная зависимость силы взаимодействия параллельных краевых 
дислокаций (б) [19].
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разграничивая упругую и пластическую области 
материала. При этом он обладает всеми призна-
ками автоволны переключения в бистабильной 
среде [3, 16].

Повышение температуры испытания до 373 К 
меняет вид кривой течения (рис. 4б). Зуб и пло-
щадка текучести сохраняются, но нижний пре-
дел текучести уменьшается. Главное отличие 
состоит в том, что на стадии параболического 

упрочнения при этой температуре появляются 
скачки деформации. Дальнейшее повышение 
температуры до 433 К вызывает появление скач-
ков напряжения уже на площадке текучести, как 
показано на рис. 4в. 

При температуре ~300 К переход реализует-
ся равномерным движением фронта Людерса, а 
при температурах выше 433 К он осуществляет-
ся за счет последовательных деформационных 
скачков [18, 19]. При каждом скачке вдоль об-
разца пробегает узкая полоса деформации, на 
переднем фронте которой среда переводится в 
пластичное состояние, аналогично распростра-
нению фронта Людерса. На заднем фронте по-
лосы среда возвращается в упругое состояние, 
так что пластически деформируемое состояние 
в каждый момент времени существует только 
между передним и задним фронтами [18, 19], что 
позволяет считать среду возбудимой, а полосу 
скачкообразной деформации рассматривать как 
автоволну возбуждения [3, 16].

Таким образом, в одном и том же материа-
ле при одинаковых условиях деформирования, 
но при разных температурах естественным яв-
ляется возникновение разных активных сред. 
Для объяснения роли температуры обратимся к 
предложенному в [20] механизму старения после 
деформации, согласно которому в твердых рас-
творах внедрения С и N в a-Fe при повышении 
температуры возможно повторное формирова-
ние конденсированных атмосфер на ставших 
мобильными при рождении полосы Людерса 
дислокациях. Это приводит к падению плотно-
сти подвижных дислокаций и изменяет кинети-
ку деформации. Восстановление атмосфер на 
подвижных дислокациях становится возмож-
ным при достаточно высоком значении коэффи-
циента диффузии углерода DC  в a-Fe. 

Для оценки необходимой величины DC  при-
меним диффузионное приближение D l tC dif≈ 2 2 ,  
в котором t – длительность скачка деформации, 
а диффузионная длина равна расстоянию меж-
ду подвижными дислокациями, т. е. l mddif

2 1≈ -ρ .  
Оценка показывает, что при правдоподобных 
значениях ρmd ≈ 6·108 м−2 и t ≈ 1.6 с нужное для 
восстановления блокировки значение коэффи-
циента диффузии D t mdC ≈ ( ) ≈-

2
1ρ 5·10−10 м2/с 

достигается при Т ≈500 К [21], подтверждая ре-
альность предложенного механизма. При 300 К 
коэффициент диффузии DC ≈ 2.4·10−21 м2/с мно-
го ниже, и восстановление атмосфер Коттрелла 
на движущихся дислокациях невозможно.

Изложенные соображения удобно обобщить, 
введя безразмерный критерий, определяющий 
условия рождения автоволн переключения и 
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Рис. 4. Диаграммы растяжения образцов a-Fe при 296 (а), 
373 (б) и 433 K (в). 
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возбуждения в деформируемой среде. В та-
ком качестве можно использовать отношение 
времени рефрактерности среды tref [16], в тече-
ние которого активная среда индифферентна 
к внешним воздействиям, к характерному вре-
мени деформационного процесса texp , за кото-
рое принимается длительность пробега фронта 
Людерса по длине образца texp ≈ 102 – 103 с, т. е. 
Γ = tref expt . Как было сказано, tref  имеет диф-
фузионную природу, может быть оценено соот-
ношением:

	 tref
C

≈
l
D
s
2

2
	 (24)

и зависит от температуры через коэффициент 
диффузии. Далее можно сравнить критерии для 
двух температур, отвечающим деформациям 
Людерса и скачкообразной. 

При Т ≈ 300 К DC ≈ 2.4·10−21 м2/с, и в соот-
ветствии с уравнением (24) tref ≈ 106 с. Следо-
вательно, в этих условиях Γ = >>tref expt 1 , и за 
время опыта новая блокировка дислокации не-
возможна, так что фронт Людерса способен про-
бежать по образцу лишь однократно.

При Т ≈ 400 К рост коэффициента диффузии 
углерода до DC ≈ 2.4·10−17 м2/с снижает время 
рефрактерности, рассчитанное по уравнению 
(24), до ~4·102 с. В таком случае Γ = ≈tref expt 1, 
т. е. за время пробега фронта блокировка дисло-
каций успевает восстановиться, и на площадке 
текучести наблюдаются повторяющиеся скачки 
деформации. 

Не привлекая диффузионные характеристи-
ки, рассмотрим случай, когда Γ = <<tref expt 1.  
Так как tref exp≈ <<ϑ t , то рефрактерность ак-
тивной среды в этом случае несущественна. 
Тогда элементы деформируемой среды не теря-
ют своей активности и, синхронизируясь друг с 
другом, формируют фазовые автоволны, харак-
терные для стадии линейного деформационного 
упрочнения [3].

Сказанное приводит к заключению, что в од-
ном и том же деформируемом материале в раз-
ных температурных интервалах возможно воз-
никновение физически различающихся типов 
активных сред. Их пластическое течение и де-
формационное упрочнение реализуется с помо-
щью разных дислокационных механизмов [6–8].

Естественно считать, что кинетика движе-
ния фронтов Людерса и фронтов скачкообраз-
ной пластической деформации определяется 
скоростью движения дислокаций в поле при-
ложенных напряжений [22]. Тогда понима-
ния обнаруженного различия можно добиться 
при сравнении зависимостей Vdisl s( )  для этих 

случаев. Движение фронта Людерса контроли-
руется термически активированным движением 
дислокаций, так что, в соответствии с [3, 4, 18], 
его скорость может быть описана экспоненци-
альным соотношением, характерным для тер-
мически активированных процессов движения 
дислокаций [11]:

	 V V V
U

k TL ~ exp ~ expdisl
bar

B
s

γs
s( ) ≈ -

-



0 .	(25)

Такая зависимость справедлива вблизи ниж-
ней границы указанного выше температурного 
интервала. Однако при высоких напряжениях 
и температурах, отвечающих развитию скачко-
образной деформации, величина U k Tbar B-( )γs  
в уравнении (25) может стать малой. Полагая 
тогда, как обычно, что e xx- ≈ -1 , получим ли-
нейное по напряжению уравнение для скорости 
надбарьерного движения фронтов скачкообраз-
ной пластичности: 

	 V V V
U
k T k Tsp ~ ~disl

bar

B B
s γ s s( ) ≈ - +



0 1 .	 (26)

Таким образом, переход от деформации Лю-
дерса к скачкообразной деформации при повы-
шении температуры оказывается связанным со 
сменой механизма термически активированно-
го преодоления локальных барьеров на надба-
рьерный режим движения дислокаций, кото-
рый контролируется фононным и электронным 
механизмами торможения [23]. Можно считать, 
что изменение режима движения носителей 
пластичности инициирует превращение актив-
ной бистабильной деформируемой среды в воз-
будимую и сопровождается перестройкой ав-
товолновой структуры деформируемой среды, 
при которой автоволна переключения (фронт 
Людерса) сменяется автоволной возбуждения 
(полоса скачкообразной деформации). Условия 
реализации этих механизмов были теоретиче-
ски обоснованы в работе [24] с использовани-
ем основных положений теории неравновесных 
сред [25].

ЗАКЛЮЧЕНИЕ
Сопоставление дислокационных и автовол-

новых подходов к природе пластического тече-
ния показывает, что дислокационная структура 
обеспечивает активность деформируемой среды 
за счет появления распределенных источников 
энергии, которыми служат упругие поля дис-
локационных ансамблей. В свою очередь, воз-
никновение активной среды делает возможной 
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генерацию в ней автоволновых мод локализо-
ванной пластичности. Рождение и эволюция 
автоволн определяет кинетику и динамику раз-
вития активной деформируемой среды. Согла-
сованность процессов формирования активной 
среды и генерации в ней автоволн лежит в осно-
ве Принципа соответствия [1–3].

Вырабатываемый новый взгляд на приро-
ду пластичности состоит в том, что дислокаци-
онные эффекты обеспечивают возникновение 
активности деформируемой среды и последу-
ющую генерацию автоволновых процессов, а 
генерируемые в среде автоволны локализован-
ной пластичности формируют макроскопиче-
скую неоднородность их пространственного 
распределения и различия в кинетике развития 
активных элементов дислокационной природы. 
Предложенная точка зрения на взаимосвязь раз-
номасштабных деформационных процессов де-
лает возможным согласование геометрических 
масштабов явлений пластического течения.

Работа выполнена в рамках государ-
ственного задания ИФПМ СО РАН, тема 
№ FWRW-2021-0011.

Авторы данной работы заявляют, что у них 
нет конфликта интересов.
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DISLOCATION STRUCTURE AND AN ACTIVITY OF PLASTIC 
DEFORMING MEDIA

L. B. Zuev1, *, S. A. Barannikova1, and V. I. Danilov1

Institute of Strength Physics and Materials Science, SB RAS, Tomsk, 634055 Russia
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The evolution of the dispersion laws of autowaves of localized plasticity for successive stages of linear, para-
bolic strain hardening, as well as the pre-fracture stage is considered. The principles of uniform description 
of the regularities of plastic flow at different stages of the deformation process are formulated. The main 
model relationships are proposed that connect the microscopic characteristics of dislocation deformation 
mechanisms with the properties of an active deformable medium capable of generating the corresponding 
autowave modes of localized plastic flow.
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