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Abstract. The evolution of the dispersion laws of autowaves of localized plasticity for successive 
stages of linear, parabolic strain hardening, as well as the pre-fracture stage is considered. The 
principles of uniform description of the regularities of plastic flow at different stages of the 
deformation process are formulated. The main model relationships are proposed that connect the 
microscopic characteristics of dislocation deformation mechanisms with the properties of an active 
deformable medium capable of generating the corresponding autowave modes of localized plastic 
flow. 
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INTRODUCTION 
The autowave mechanics of inhomogeneous plastic deformation developed and described in [1-3] 

is applicable in a wide range of plastic deformations and allows us to explain most of the regularities 
of plastic flow. It is based on the idea that plastic deformation is carried out by macroscopic autowaves 
of localised plastic deformation, experimentally observed as a pattern of localisation of plastic flow 
and serving as mechanisms of self-organisation of the deformed medium. The autowave modes 
observed in experiment are characterised by spatial (length λ) and temporal (period ϑ ) mass scales, 
and the type of modes is unambiguously related to the stages of strain hardening characteristic of the 
strain-stress dependence ( )σ ε . This relation, called the Principle-Consistency Principle, was 
established earlier [1-3]. Important laws of the autowave theory of plasticity are also the Elastic-plastic 
invariant, which relates the characteristics of localised plasticity autowaves to the parameters of elastic 
waves in the deformed medium, and the Dispersion relation for autowaves, i.e., the dependence of the 
frequency of oscillations in an autowave on its wave number ( )kω  [1-3]. The use of these provisions 
ensures the success of the autowave approach. 

The autowave description of the phenomenon of plasticity has now received a convincing 
experimental basis, an adequate theoretical apparatus and has been tested on a large number of 
materials [3]. The consistency of the basic provisions of autowave mechanics, the adequacy and 
applicability of which can currently be considered fully proven, allows us to consider it as an important 
part of the search for a general approach to the problem of plasticity. In [4], the experimental and 
theoretical foundations of the development of localized plastic deformation were generalized and the 
nonequilibrium nature of the phenomenon of self-organization of defects during plastic flow at all 
stages of strain hardening was analyzed. 

Generation of autowaves of localized plasticity is a general mechanism of self-organization in non-
equilibrium systems [5]. It is fundamentally important that generation is possible if the deformable 
medium possesses activity, which implies the presence of potential energy sources distributed 
throughout the volume. Their role during plastic deformation can be performed by its carriers, i.e., 
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dislocations and dislocation ensembles of different configurations, which possess elastic stress fields 
and evolve in a complex manner during the process [6 - 8]. In this case, a question arises about the 
qualitative and quantitative relationship between the characteristics of the dislocation structure that 
emerges during plastic flow and the basic laws of autowave plastic deformation. The answer to this 
question becomes fundamentally important, as it determines the possibility of reconciling the theory 
of dislocations and the autowave theory, which describe the phenomenon of plasticity at different 
spatiotemporal scales. An attempt to solve this problem is the subject of the present work.  

DISPERSION OF AUTOWAVES AND ACTIVE  
DEFORMABLE MEDIA  

An important informative characteristic of autowaves of localized plastic flow is their dispersion 
relation, since on the one hand, dispersion is caused by the presence of spatial scales in the medium 
that characterize structural elements, and on the other hand - the form of the dispersion relation allows 
determining the type of nonlinear equation describing this process [9, 10]. Such equations, in turn, are 
derived taking into account physical processes occurring in the active medium. For these reasons, 
knowledge of the dispersion relation opens the way to understanding the nature of deformation 
processes and their adequate description.  

The correspondence principle allows us to think that the dispersion laws of autowave localized 
plasticity have different forms at different stages of strain hardening. These stages can be identified 
on the experimental flow curve ( )σ ε  , approximating it by the Ludwik equation ( ) 0

nσ ε = σ + θε  [11, 
12], where 0 =const and σ θ −  is the strain hardening coefficient. Each stage corresponds to a section of 
the dependence ( )σ ε  , for which the strain hardening exponent const=n  . From the table, it follows 
that on the flow curves, it is possible to distinguish the stages of Lüders deformation (I), linear (II) 
and parabolic (III) strain hardening, as well as pre-fracture (collapse of the autowave of localized 
plasticity) (IV).  

From Fig. 1, it follows that the dispersion laws for all stages of the process have a parabolic form 
βω ~ k  with an exponent β ,  that changes discretely during transitions between stages of strain 

hardening. Using dimensional considerations, the function ( )kω  can be written as:  

( )
β

βω ~
J

k k
 Λ
 
 

,                                    (1) 

  where the coefficient β JΛ  for a given stage of the process is determined by the linear scale Λ , which 
depends on the deformation processes at this stage. The time scales (characteristic relaxation times) 
J  , also included in the coefficients of equations (2) - (5), are probably different, but for now are 
assumed to be the same and equal to the time for shears to overcome local barriers due to thermal 
fluctuations [11], i.e., ( )1 4

D bar BJ ω exp γσ 10U k T− −≈ − ≈    s [3]. Here U bar is the barrier height,   γ  is 

the activation volume, Bk  is the Boltzmann constant, T is the temperature, Dω  is the Debye frequency.  
       Fig. 1. Experimental dispersion curves for Lüders deformation (●, I), linear (▲, II) and parabolic 
(▼, III) strain hardening, and pre-fracture stage (♦, IV). 
  
Table 1. Characteristics of the stages of the plastic flow curve  
  

Stage of the plastic flow curve  
( ) 0

nσ ε = σ + θε  
Dependence  

of deformation stress on 
strain  

n  Dispersion 
relation  β 

Lüders deformation, I  0σ = const ~ ε  0  ( )ω ~k k  1  



Linear strain hardening, II  
IIσ θ ε ~ ε≈  1  ( ) 2ω ~k k  2  

Parabolic strain  hardening, III  1 2 1/2
IIIσ θ ε ~ ε≈  1/2  ( ) 5/2ω ~k k  5/2  

Pre-fracture (collapse of the 
localized plasticity  autowave), 

IV  
IVσ θ ε ~ εn n≈  <1/2  ( ) 3ω ~k k  3  

 
     Thus, according to the data in Fig. 1 (curve I) for dispersion during Lüders deformation:  

( ) ~ ~k k kΛ ω  ϑ 
,                                  (2) 

for dispersion at the stage of linear strain hardening (Fig. 1, curve II):  

( )
2

2 2~ ~k k k
 Λ

ω  ϑ 
,                              (3) 

for the stage of parabolic strain hardening (Fig. 1, curve III):  

( )
5 2

5 2 5 2~ ~k k k
 Λ

ω  ϑ 
,                      (4) 

and, finally, for dispersion at the pre-fracture stage (autowave collapse) (Fig. 1, curve IV):  

( )
3

3 3~ ~k k k
 Λ

ω  ϑ 
.                              (5) 

Data on the dispersion of localized plasticity autowaves are summarized in the table. The appearance 
in equations (1) – (5) of length Λ , area 2Λ = Σ  and volume 3Λ = Ω  , the physical meaning of which 
will be discussed below, indicates the geometric nature of the proposed interpretation.  
     The specific forms of dispersion laws (2) – (5) unambiguously correspond to nonlinear differential 
equations describing the processes under discussion. At the stage of elastoplastic transition 
deformation at constant stress constσ =  is localized on the moving with constant velocity awV Lüders 
front [12], for which the phase and group velocities  

( ) ωph
awV

k
=   and  ( ) ωgr

aw
dV
dk

=                          (6) 

are equal, i.e., ( ) ( )ph gr
aw aw awV V V= =  . Multiplying the right and left sides of the two equations (6) 

and integrating the resulting products, we obtain  
2

21
2

2
aw

d cd V
kdk k ckdk

ω ω ω +ω ω
= = =

+
∫
∫

,               (7) 

where 1c  and 2c  are integration constants. At 2 0c =  from equation (7) follows the dispersion law 
2 2~ 1 kω +  , corresponding to the Klein –Gordon equation [9] for displacements u :  

02

2

2

2

=+
∂
∂

−
∂
∂ u

x
u

t
u .                            (8) 

This equation describes, for example, the propagation of macroscale excitations such as solitons [10] 
in active media. The presence of a frequency gap ~1 for the case of Lüders deformation accounts for 
the abrupt increase in front velocity during nucleation [12]. In the steady-state deformation regime,   k 
>>1, so equation (8) transforms into an ordinary wave equation 0u u′′− =  with linear dispersion 

~ kω  , suitable for describing the propagation of elastic waves.  



     At the stage of linear strain hardening when ~σ ε  , the autowave characteristics of plastic flow 
(length λ and velocity awV  ) together with the parameters of elastic waves (interplanar distance χ and 
transverse ultrasound velocity tV  ) for the same material form an elastoplastic invariant [1 – 3]:  

λ 1ˆ
χ 2

aw

t

V Z
V

= ≈ ,                                            (9) 

which serves as the fundamental equation of the autowave physics of plasticity and has a number of 
consequences that explain the patterns of plastic flow.  
     For example, if in equation (9), in accordance with [13], we replace χ and  with expressions 
through Planck's constant 2πh=  , electron charge e , its mass m and atomic mass M ,   Hartree 
length scales 2

0 2a me=   and sound velocity ( )1 22 2sV e m M≈ 
 , then the resulting equation  

( )1 2
χλ
2 2

t
aw

VV
mM

= ≈
 ,                        (10) 

expressing the autowave characteristics through physical constants, acquires interesting perspectives 
for analyzing the nature of plasticity. For instance, the value 6λ 10awV −≈  m 2 /s calculated using formula 
(10) turns out to be close to the experimentally found values for the studied materials [1 – 3] and sets 
the minimum value of kinematic viscosity of deformable media.  
     From equation (10) also follows the quadratic dispersion law of the autowave at the stage of linear 
strain hardening. Assuming that 2

awVλ ≈ Λ ϑ  , we obtain:  

         ( )22

2

2π ωλ 2π const
J 2π ωaw

k
V

k mM
Λ

= = = ≈ ≈
 ,    (11) 

which leads to the quadratic dispersion equation for this stage, previously obtained [1]:  
2 2ω ~

2π
k k

mM
= ⋅

 .                                     (12) 

It corresponds to the nonlinear Schrödinger equation 22 0iu u u u′′+ + =  [9] for the evolution of the 

displacement field u in a nonlinear system with potential 22 u u  . Here 1i = −  . During plastic 
deformation, this equation is applicable for describing the self-organization process of a sequence of 
thermally activated elementary shifts [11], which is characteristic of the linear strain hardening stage. 
At this stage, the medium is self-oscillating, and it corresponds to a phase autowave with phase 
ω constt kx− =  .  
     At the stage of parabolic strain hardening with 1 2~σ ε  the deformable medium forms a stationary ( 

0awV =  ) dissipative structure consisting of immobile   centers of localized plasticity. To determine 
the type of dependence ( )kω  in this case, it is necessary to introduce an effective autowave velocity. 
Keeping in mind that D2χωtV ≈  and D B Dω θk=

 , where Dθ  is the Debye temperature [14],   we write 
the denominator of equation (9) as 2

D1 2χ χ ωtV =  and obtain:  
2

B Dχ θ1λ χ
2aw t

kV V≈ ≈


,                         (13) 

where the value  
( ) 2 2

( ) B D
D

λ θ χ χω 0
λ 2 λ λ

awef
aw

V kV = ≈ ⋅ ≈ ≠


    (14) 

has the meaning of effective velocity and characterizes the increase in deformation within the center 
of active plastic flow due to an increase in defect density without macroscopic displacement of 
boundaries. Calculation using equation (14) gives ( )ef

awV ≈  2·10 -3 m/s and ( )ˆ λ χ 1 2ef
aw tZ V V= ≈  . The 



coincidence with the usual value of the invariant (9) indicates the validity of its application including 
for the stage of parabolic strain hardening. By changing the autowave length λ  through deformation 
conditions, it was possible to obtain a dispersion relation 5 2ω ~ k  . The intermediate value of the 
exponent 2< β =5/2<3 indicates that the stage of parabolic strain hardening can be considered as a 
transition from the linear hardening stage with dispersion 2ω ~ k  to the pre-fracture stage (collapse of 
the autowave of localized plasticity), where 3ω ~ k  .  
    Such a dispersion law was established for the pre-fracture stage, for which ~ ,  а 1/ 2n nσ ε <  , by 
processing the X - t   - diagrams t for different metals presented in [1-3]. The dispersion relation of 
the form 3ω ~ k  corresponds to the Kor - teweg - de Vries 0u u′′′− =  equation, which describes the 
prop - agation of excitation pulses in active excitable media [9].  
    Turning to the discussion of the reasons for the change in the dispersion relations in equations (2) 
- (5) during deformation, it is logical to connect these relations with the evolution of sizes and shapes 
of dislocation ensembles [7, 8, 15], i.e., with the structural part of the coefficient β JΛ  in equation 
(5).   In this case, the exponent β   should depend on the configuration of the dislocation ensemble at 
the corresponding stage. Indeed, at the yield plateau stage ( β =1), the Lüders deformation transforms 
an elastic medium into a plastically deformable one, which, together with linear dispersion, allows 
considering the Lüders front as a switching autowave [16] in a medium consisting of bistable 
elements. The role of the latter is played by dislocations transitioning from the initial immobile state 
to a new mobile state.  
     To understand the role of the dislocation structure at the stages of linear strain hardening and pre-
fracture, let us consider that, as already mentioned, 2Λ = Σ  , and 3Λ = Ω  . It follows that the length 
Λ, area Σ and volume Ω , included in the expressions of dispersion laws for the successive stages of 
strain hardening (2) - (5), are the geometric characteristics of dislocation ensembles, i.e., 
inhomogeneities of the medium causing the dispersion of autowaves of localized plasticity. They can 
be assigned, respectively, the meaning of the size of the substructure element ( Λ) , the surface area 
of dislocation cells at the stage of linear strain hardening ( Σ  ) and the volume of dislocation tangles 
at the pre-fracture stage ( Ω  ) [8, 15].  
     As for the stage of parabolic strain hardening, it is known [7, 8, 15] that the cellular dislocation 
substructure that emerges during its development, for which ( )2 2ω ~ J kΛ  , is gradually replaced 

during deformation by a tangled one, where ( )3 3ω ~ J kΛ  . This consideration can be viewed as an 
argument in favor of the fact that the stage of parabolic strain hardening serves as a transition from 
linear hardening to the collapse of the autowave of localized plasticity. This is also indicated by the 
intermediate value   β =5/2 in the expression for the dispersion of autowaves of localized plasticity at 
this stage of deformation.  
     The above-discussed connection between the stages of the deformation process and the dispersion 
laws of autowaves of localized plasticity allows us to speculate that other characteristics of plastic 
flow should also be somehow connected with the Principle of correspondence . In this respect, the 
dependence of mobile dislocation density on deformation for different stages of the deformation 
process is of particular interest.  
     As is known [6], the density of mobile dislocations ρmd  enters the Taylor - Orowan equation:  

disl
ε ρmd

d b V
dt

= ,                                           (15) 

which underlies most dislocation models of plastic flow and connects the macroscopic rate of plastic 
deformation εd dt  with microscopic characteristics of the dislocation structure: the Burgers vector b 



and the velocity of dislocation movement dislV  . The extreme behavior of this value with increasing 
deformation, predicted by Gilman [6]  

0
2 θρ ( ) ρ ε exp ε

σmd
m
b

ε    = + −   
   

,         (16) 

where 0ρ −  is the initial dislocation density, and m is the coefficient of their multiplication, still 
appears mysterious.  
     It is easy to assume that both the concept of an active medium and its quantitative characteristics 
are closely related to the form of the dependence ( )ρ εmd  . Therefore, it is advisable to consider it, 
emphasizing the staging of the flow process. For this purpose, based on dimensional analysis, we write 
the product included in equation (9) as  

( ) ( ) ( ) 1
aw

md

dV D t
dtε

 
λ ε ⋅ ε = =  ρ 

,                (17) 

where ε λ awD V≈  is the transport coefficient in the autowave equation of plastic deformation 

( )f Dε ′′ε = ε + ε  , and ( )f ε −  is a nonlinear function (point kinetics [2]), describing the local 
deformation rate. From equation (17), the following relation then follows:  

2 2
1 1 ε 1 ε ε

ρ ε ρ ρ ρmd md md md

d d d d
dt d dt dt

   
= ⋅ = − ⋅ = −   

   

 ,  (18) 

which leads to the equation for the density of mobile dislocations:  
( ) ( ) ( )

2 ερ ε
λ ε εmd

awV
= −

⋅
 .                                (19) 

     Analysis of equation (19) was performed for different stages of the deformation process. It turned 
out that for Lüders deformation, when aw LV V=  , and the number of mobile dislocations grows 
proportionally to the front displacement  

( )
1/2

ερ ε ~ ε
λ(ε)md

LV
 

= − ⋅ 

 ,                    (20) 

and at the stage of linear hardening, where constawV =  and constλ =  [1]  
             ( ) 1

0ρ ρ 1 exp 2κε constmd
−

= + − ≈   ,          (21) 

where ( ) 1
1 exp 2κε

−
+ − −    is the Heaviside step function; κ is the coefficient. As for the stage of 

parabolic deformation hardening, for it  

( ) 3 20
3 2

ρρ ε ~ ~ ε
εmd

− .                              (22) 

      Fig. 2. Schematic dependence of mobile dislocation density on deformation. The dashed line is 
the plastic flow curve. Stage numbers (I, II, III) are given in Table 1.  
  
The obtained solutions are schematically presented in Fig. 2, which shows that the 
dependence   ( )ρ εmd   is consistent with the staging of plastic flow and satisfies the Correspondence 
Rule , and its extremal nature emphasizes continuity with Gilman's formula.  
  

ACTIVE DEFORMABLE MEDIA: BIRTH AND EVOLUTION  
      
     When discussing the nature of active deformable media and the evolution of their properties during 
localized plastic flow, the problems of excitation of self-oscillations in the deformable medium and 



mechanisms of birth of active media under different deformation conditions are of primary 
importance.  

  
     According to general views [5, 16], an active medium capable of generating autowaves consists of 
self-oscillating elements, which, when their oscillations are fully or partially synchronized, give rise 
to various autowave modes. To understand the nature of autowaves, the question of the "seed" 
excitation of self-oscillations in a non-equilibrium system, i.e., the birth of a pacemaker (rhythm 
driver) [5], is fundamental. When analyzing autowave processes, especially deformation ones, its 
existence is usually postulated without discussing the possible mechanism of birth. The reason for 
refusing to discuss is that the characteristic frequencies of autowaves of localized plasticity 

3 210 ω 10aw
− −≤ ≤ Hz are incommensurable with the oscillation frequencies of typical dislocation 

segments of length 310sl b≈  , which are ( ) Ds sb lω ≈ ω ≈  10 10 Hz, i.e., aw sω << ω  .  
  

Fig. 3. Model of pacemaker birth (a); coordinate dependence of the interaction force of parallel 
edge dislocations (b) [19].  

  
     The proposed pacemaker model considers the passage of an individual dislocation past a 
dislocation ensemble, which for simplicity can be considered as a planar pile-up of dislocations, with 
the dislocation moving parallel to the plane of the pile-up (Fig. 3a). The interaction force between the 
moving dislocation and a parallel dislocation in the pile-up [6]  

( )
( )

( )

2 22

1 22 22π 1x

x x yGbF
x yν

−
= ± ⋅

− +
                        (23) 

is non-monotonic (Fig. 3b), which causes a region of compression-rarefaction of defects to move 
along with the dislocation in the planar pile-up, equivalent to oscillations of their density with 
frequency disl~ δV  .  
     At a minimum velocity   dislV ≈  10 -7 m/s and a distance between dislocations in a planar cluster 

5δ 10−≈  m it is close to 10 -2 Hz, i.e., to the characteristic frequency of the autowave.  
     Obviously, this frequency limits the lower end of the spectrum of possible oscillations of 
dislocation systems. The considered mechanism is also applicable for dislocation ensembles of more 
complex configurations and is suitable for explaining the problem of the origin of oscillatory processes 
during plastic flow.  
     For the autowave physics of plasticity, an important question is whether the nature of the activity 
of the deformable medium is determined only by its structure or also depends on the deformation 
conditions and can change during plastic deformation. To answer this question, let us discuss the 
results of studying the deformation of polycrystalline   α -Fe–0.1 wt.%C in the temperature range of 
300–500 K, which is realized by the Lüders mechanism [12, 17, 18].  
     During tests at ~300 K, the loading diagram of α -Fe (Fig. 4a) has [12] a yield point and yield 
plateau, characterized by upper ( )σ u

y  and lower ( )σ l
y  yield limits. The Lüders band nucleates at a stress 

( )σ σ u
y≈  in the form of a narrow wedge of plastically deformed material, which quickly grows through 

the cross-section of the sample, and then expands in the direction of the tensile axis [18].  
In this case, the band boundaries (Lüders fronts) move uniformly along the sample in different 

directions at a constant stress ( )σ σ l
y≈  . When the entire working part of the sample is swept by these 

fronts, the yield plateau is replaced by parabolic strain hardening. As mentioned above, the Lüders 
front transfers the medium from an elastic to a plastically deformable state, separating the elastic and 



plastic regions of the material. In doing so, it possesses all the characteristics of an autowave of 
switching in a bistable medium [3, 16].  

  
Fig. 4.  Tensile diagrams of αFe samples at 296   (a), 373 (b), and 433 K (c).  
  

     Increasing the test temperature to 373 K changes the shape of the flow curve (Fig. 4b). The yield 
tooth and yield plateau are preserved, but the lower yield point decreases. The main difference is that 
at this temperature, deformation jumps appear during the parabolic hardening stage. A further increase 
in temperature to 433 K causes stress jumps to appear already on the yield plateau, as shown in Fig. 
4c.  
     At a temperature of ~300 K, the transition is realized by uniform movement of the Lüders front, 
while at temperatures above 433 K, it occurs through sequential deformation jumps [18, 19]. With 
each jump, a narrow deformation band runs along the sample, at the leading front of which the medium 
is transferred to a plastic state, similar to the propagation of the Lüders front.   At the trailing front of 
the band, the medium returns to an elastic state, so that the plastically deformed state exists only 
between the leading and trailing fronts at any given moment [18, 19], which allows considering the 
medium as excitable and the discontinuous deformation band as an autowave of excitation [3, 16].  
     Thus, in the same material under identical deformation conditions but at different temperatures, 
the emergence of different active media is natural. To explain the role of temperature, we turn to the 
mechanism of strain aging proposed in [20], according to which in interstitial solid solutions of C and 
N in α -Fe, as temperature increases, it is possible to re-form condensed atmospheres on dislocations 
that became mobile during the birth of the Lüders band. This leads to a decrease in the density of 
mobile dislocations and changes the deformation kinetics. The restoration of atmospheres on mobile 
dislocations becomes possible at a sufficiently high value of the carbon diffusion coefficient CD  in α 
-Fe.  
    To assess the required value CD  we apply the diffusion approximation 2

C dif 2D l t≈  , in which t is 
the duration of the strain jump, and the diffusion length equals the distance between mobile 
dislocations, i.e., 2 1

dif mdl −≈ ρ  . The assessment shows that with plausible values mdρ ≈  6·10 8 m -2 and 

t ≈  1.6 s, the diffusion coefficient value needed for locking recovery ( ) 1
C 2 ρmdD t −≈ ≈  5·10 -10 m 2 /s 

is achieved at T ≈500 K [21], confirming the feasibility of the proposed mechanism. At 300 K the 
diffusion coefficient CD ≈  2.4·10 -21 m 2 /s is much lower, and the recovery of Cottrell atmospheres on 
moving dislocations is impossible.  
    The considerations presented can be generalized by introducing a dimensionless criterion that 
determines the conditions for the generation of switching autowaves and excitation in a deformable 
medium. For this purpose, one can use the ratio of the medium's refractoriness time refτ  [16], during 
which the active medium is indifferent to external influences, to the characteristic time of the 
deformation process expt  , which is taken as the duration of the Lüders front run along the sample 

length expt  10 2 – 10 3 s, i.e., ref expτ tΓ =  . As mentioned, refτ  has a diffusive nature, can be estimated 
by the relation  

2

ref
C2

sl
D

τ ≈                    (24) 

and depends on temperature through the diffusion coefficient. Next, one can compare the criteria for 
two temperatures corresponding to Lüders and serrated deformations.  



     At T ≈ 300 K CD ≈  2.4·10 -21 m 2 /s, and according to equation (24), refτ ≈  10 6 s. Consequently, 
under these conditions   

ref expτ 1tΓ = >>  , and during the experiment time a new dislocation locking is 
impossible, so the Lüders front can only run through the sample once.  
     At T ≈ 400 K the increase in the carbon diffusion coefficient to CD ≈  2.4·10 -17 m 2 /s reduces the 
refractoriness time, calculated using equation (24), to ~4·10 2 s. In this case 

ref expτ 1tΓ = ≈  , i.e., during 
the front run time, the dislocation locking has time to recover, and repeated strain jumps are observed 
on the yield plateau.  
     Without involving diffusion characteristics, let's consider the case when 

ref expτ 1tΓ = <<  . Since 

ref expτ t≈ ϑ <<  , the refractoriness of the active medium in this case is insignificant. Then the elements 
of the deformable medium do not lose their activity and, synchronizing with each other, form phase 
autowaves characteristic of the stage of linear strain hardening [3].  
     This leads to the conclusion that physically different types of active media can emerge in the same 
deformable material at different temperature intervals. Their plastic flow and strain hardening are 
realized through different dislocation mechanisms [6-8].  
     It is natural to assume that the kinetics of the movement of Lüders fronts and discontinuous plastic 
deformation fronts is determined by the velocity of dislocation movement in the field of applied 
stresses [22]. Then understanding the discovered difference can be achieved by comparing the 
dependencies ( )disl σV  for these cases. The movement of the Lüders front is controlled by thermally 
activated dislocation movement, so that, in accordance with [3, 4, 18], its velocity can be described 
by an exponential relation characteristic of thermally activated processes of dislocation movement 
[11]:  

( ) bar
disl 0

B

γσ~ σ exp ~ expσL
UV V V

k T
 −

≈ − 
 

.     (25) 

     Such dependence is valid near the lower boundary of the temperature interval indicated above. 
However, at high stresses and temperatures corresponding to the development of discontinuous 
deformation, the value of ( )bar BγσU k T−  in equation (25) may become small. Assuming then, as usual, 
that 1xe x− ≈ −  , we obtain a stress-linear equation for the velocity of overbarrier movement of 
discontinuous plasticity fronts:             

( ) bar
disl 0

B B

γ~ σ 1 σ ~ σsp
UV V V
k T k T

 
≈ − + 

 
.        (26) 

     Thus, the transition from Lüders deformation to the discontinuous deformation with increasing 
temperature turns out to be associated with a change in the mechanism from thermally activated 
overcoming of local barriers to an over-barrier mode of dislocation motion, which is controlled by 
phonon and electron drag mechanisms [23]. It can be considered that the change in the motion regime 
of plasticity carriers initiates the transformation of an active bistable deformable medium into an 
excitable one and is accompanied by a restructuring of the autowave structure of the deformable 
medium, in which the switching autowave (Lüders front) is replaced by an excitation autowave 
(discontinuous deformation band). The conditions for the implementation of these mechanisms were 
theoretically substantiated in [24] using the basic provisions of the theory of non-equilibrium media 
[25].  

CONCLUSION  
     The comparison of dislocation and autowave approaches to the nature of plastic flow shows that 
the dislocation structure provides the activity of the deformable medium due to the appearance of 
distributed energy sources, which are the elastic fields of dislocation ensembles. In turn, the 
emergence of an active medium makes it possible to generate autowave modes of localized plasticity 



in it. The birth and evolution of autowaves determine the kinetics and dynamics of the development 
of an active deformable me  dium. The coherence of the processes of forming an active medium and 
generating autowaves in it underlies the Principle of correspondence [1 - 3].  
     The emerging new view on the nature of plasticity is that dislocation effects ensure the emergence 
of activity in the deformable medium and the subsequent generation of autowave processes, while the 
autowaves of localized plasticity generated in the medium form a macroscopic heterogeneity in their 
spatial distribution and differences in the kinetics of development of active elements of dislocation 
nature. The proposed perspective on the relationship between multi-scale deformation processes 
makes it possible to reconcile the geometric scales of plastic flow phenomena.  
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