DISLOCATION STRUCTURE AND AN ACTIVITY OF PLASTIC DEFORNING MEDIA
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Abstract. The evolution of the dispersion laws of autowaves of localized plasticity for successive
stages of linear, parabolic strain hardening, as well as the pre-fracture stage is considered. The
principles of uniform description of the regularities of plastic flow at different stages of the
deformation process are formulated. The main model relationships are proposed that connect the
microscopic characteristics of dislocation deformation mechanisms with the properties of an active
deformable medium capable of generating the corresponding autowave modes of localized plastic
flow.
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INTRODUCTION

The autowave mechanics of inhomogeneous plastic deformation developed and described in [1-3]
is applicable in a wide range of plastic deformations and allows us to explain most of the regularities
of plastic flow. It is based on the idea that plastic deformation is carried out by macroscopic autowaves
of localised plastic deformation, experimentally observed as a pattern of localisation of plastic flow
and serving as mechanisms of self-organisation of the deformed medium. The autowave modes
observed in experiment are characterised by spatial (Ilength 1) and temporal (period 3 ) mass scales,
and the type of modes is unambiguously related to the stages of strain hardening characteristic of the
strain-stress dependence ¢(¢). This relation, called the Principle-Consistency Principle, was

established earlier [1-3]. Important laws of the autowave theory of plasticity are also the Elastic-plastic
invariant, which relates the characteristics of localised plasticity autowaves to the parameters of elastic
waves in the deformed medium, and the Dispersion relation for autowaves, i.e., the dependence of the
frequency of oscillations in an autowave on its wave number (k) [1-3]. The use of these provisions

ensures the success of the autowave approach.

The autowave description of the phenomenon of plasticity has now received a convincing
experimental basis, an adequate theoretical apparatus and has been tested on a large number of
materials [3]. The consistency of the basic provisions of autowave mechanics, the adequacy and
applicability of which can currently be considered fully proven, allows us to consider it as an important
part of the search for a general approach to the problem of plasticity. In [4], the experimental and
theoretical foundations of the development of localized plastic deformation were generalized and the
nonequilibrium nature of the phenomenon of self-organization of defects during plastic flow at all
stages of strain hardening was analyzed.

Generation of autowaves of localized plasticity is a general mechanism of self-organization in non-
equilibrium systems [5]. It is fundamentally important that generation is possible if the deformable
medium possesses activity, which implies the presence of potential energy sources distributed
throughout the volume. Their role during plastic deformation can be performed by its carriers, i.e.,
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dislocations and dislocation ensembles of different configurations, which possess elastic stress fields
and evolve in a complex manner during the process [6 - 8]. In this case, a question arises about the
qualitative and quantitative relationship between the characteristics of the dislocation structure that
emerges during plastic flow and the basic laws of autowave plastic deformation. The answer to this
question becomes fundamentally important, as it determines the possibility of reconciling the theory
of dislocations and the autowave theory, which describe the phenomenon of plasticity at different
spatiotemporal scales. An attempt to solve this problem is the subject of the present work.

DISPERSION OF AUTOWAVES AND ACTIVE
DEFORMABLE MEDIA

An important informative characteristic of autowaves of localized plastic flow is their dispersion
relation, since on the one hand, dispersion is caused by the presence of spatial scales in the medium
that characterize structural elements, and on the other hand - the form of the dispersion relation allows
determining the type of nonlinear equation describing this process [9, 10]. Such equations, in turn, are
derived taking into account physical processes occurring in the active medium. For these reasons,
knowledge of the dispersion relation opens the way to understanding the nature of deformation
processes and their adequate description.

The correspondence principle allows us to think that the dispersion laws of autowave localized
plasticity have different forms at different stages of strain hardening. These stages can be identified
on the experimental flow curve ¢(¢) , approximating it by the Ludwik equation 6(8) =0,+0¢" [11,
12], where &,=const and 6 1s the strain hardening coefficient. Each stage corresponds to a section of
the dependence (¢) , for which the strain hardening exponent n=const . From the table, it follows

that on the flow curves, it is possible to distinguish the stages of Liiders deformation (I), linear (II)
and parabolic (III) strain hardening, as well as pre-fracture (collapse of the autowave of localized
plasticity) (IV).

From Fig. 1, it follows that the dispersion laws for all stages of the process have a parabolic form
ow~k" with an exponent B, that changes discretely during transitions between stages of strain
hardening. Using dimensional considerations, the function oa(k) can be written as:

o (k) ~ (ATﬁjkﬁ, (M)
where the coefficient A?/J for a given stage of the process is determined by the linear scale A , which
depends on the deformation processes at this stage. The time scales (characteristic relaxation times)
J , also included in the coefficients of equations (2) - (5), are probably different, but for now are
assumed to be the same and equal to the time for shears to overcome local barriers due to thermal
fluctuations [11], i.e., J ~ w;' exp [(Uypy —v0)/kyT ] =107 S [3]. Here U var is the barrier height, v is

the activation volume, £, is the Boltzmann constant, 7'is the temperature, ®p, is the Debye frequency.

Fig. 1. Experimental dispersion curves for Liiders deformation (e, I), linear (A, II) and parabolic
('Y, III) strain hardening, and pre-fracture stage (¢, [V).

Table 1. Characteristics of the stages of the plastic flow curve

Stage of the plastic flow curve Dependence ‘ '
= ! of deformation stress on n Dispersion B
6(8) o i strain relation

Liders deformation, I o = const ~ g’ 0 o(k)~k 1




Linear strain hardening, II o~0E~e 1 0)( k) ~k 2
i i i 12 2 512
Parabolic strain hardening, II1 o~ 91118/ ~c 1/2 co( k) ~k 572
Pre-fracture (collapse of the Y <12 ;
localized plasticity autowave), o~0e" ~e / o(k)~k 3
1\%

Thus, according to the data in Fig. 1 (curve I) for dispersion during Liiders deformation:
co(k)~(%]k~k, 2)

for dispersion at the stage of linear strain hardening (Fig. 1, curve II):
A2

o(k)~ [ij e (3)

for the stage of parabolic strain hardening (Fig. 1, curve III):
5/2

o(k) ~ (ATJW ~ k7, @)
and, finally, for dispersion at the pre-fracture stage (autowave collapse) (Fig. 1, curve IV):
3
o(k)~ [%Jks e 5)

Data on the dispersion of localized plasticity autowaves are summarized in the table. The appearance
in equations (1) — (5) of length A , area A* =% and volume A’ =Q , the physical meaning of which
will be discussed below, indicates the geometric nature of the proposed interpretation.

The specific forms of dispersion laws (2) — (5) unambiguously correspond to nonlinear differential
equations describing the processes under discussion. At the stage of elastoplastic transition
deformation at constant stress o = const is localized on the moving with constant velocity - Liiders

front [12], for which the phase and group velocities

pm ~ @ and ple) 290 (6)
aw k aw dk
are equal, i.e., V"' = V¥ =y Multiplying the right and left sides of the two equations (6)

aw aw aw

and integrating the resulting products, we obtain

codco__[(”d@_m2+cl_ 5
kdk Jkdk Pte, ™
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where € and C, are integration constants. At ¢, =0 from equation (7) follows the dispersion law

o’ ~1+k* , corresponding to the Klein —Gordon equation [9] for displacements u :

o’u B o’u

o’ ox®
This equation describes, for example, the propagation of macroscale excitations such as solitons [10]
in active media. The presence of a frequency gap ~1 for the case of Liiders deformation accounts for
the abrupt increase in front velocity during nucleation [12]. In the steady-state deformation regime, &
>>1, so equation (8) transforms into an ordinary wave equation 7 —u" =0 with linear dispersion
o~ k , suitable for describing the propagation of elastic waves.

+u=0. ()




At the stage of linear strain hardening when o ~ € , the autowave characteristics of plastic flow
(length A and velocity v ) together with the parameters of elastic waves (interplanar distance y, and
transverse ultrasound velocity y ) for the same material form an elastoplastic invariant [1 — 3]:

aw :Zz_’

i 2
which serves as the fundamental equation of the autowave physics of plasticity and has a number of
consequences that explain the patterns of plastic flow.

For example, if in equation (9), in accordance with [13], we replace y and ¥ with expressions
through Planck's constant 7 =#4/2n , electron charge e , its mass m and atomic mass M, Hartree

length scales 4, =7, /mé? and sound velocity 7, » e /h(m/ M )]/ : , then the resulting equation
Wi, h
aw 2 z(mM)l/z )

expressing the autowave characteristics through physical constants, acquires interesting perspectives
for analyzing the nature of plasticity. For instance, the value 3 ~10* m */s calculated using formula

(10)

(10) turns out to be close to the experimentally found values for the studied materials [1 — 3] and sets
the minimum value of kinematic viscosity of deformable media.

From equation (10) also follows the quadratic dispersion law of the autowave at the stage of linear
strain hardening. Assuming that yy ~A*/9 , we obtain:

) 2
A ,:A—:Mzhgzlzcomt, (11)
“ T 27 K JmM

which leads to the quadratic dispersion equation for this stage, previously obtained [1]:

h 2 2
L oy (12)
2N mM

It corresponds to the nonlinear Schrodinger equation i +u" + 2|u|2 u =0 [9] for the evolution of the

()

displacement field # in a nonlinear system with potential 2|u|2u . Here i=+/-1 . During plastic

deformation, this equation is applicable for describing the self-organization process of a sequence of
thermally activated elementary shifts [11], which is characteristic of the linear strain hardening stage.
At this stage, the medium 1is self-oscillating, and it corresponds to a phase autowave with phase
ot —kx = const .

At the stage of parabolic strain hardening with ¢ ~¢'* the deformable medium forms a stationary (
v, =0 ) dissipative structure consisting of immobile centers of localized plasticity. To determine

12

the type of dependence () in this case, it is necessary to introduce an effective autowave velocity.
Keeping in mind that ¥, ~ 2yw, and e, = k.0, , where ¢ is the Debye temperature [14], we write
the denominator of equation (9) as 1/2y¥, = y>w,, and obtain:

2
A~y 2 X0 (13)
2 h
where the value
» 2 A
has the meaning of effective velocity and characterizes the increase in deformation within the center
of active plastic flow due to an increase in defect density without macroscopic displacement of

boundaries. Calculation using equation (14) gives 1’ ~ 2:10 ® m/s and 7=\ /XV[ ~1/2 . The

aw

2 2
i~ (M) kb X NQDXT?&O (14)



coincidence with the usual value of the invariant (9) indicates the validity of its application including
for the stage of parabolic strain hardening. By changing the autowave length A through deformation
conditions, it was possible to obtain a dispersion relation ®~k”* . The intermediate value of the
exponent 2< 3 =5/2<3 indicates that the stage of parabolic strain hardening can be considered as a
transition from the linear hardening stage with dispersion o~ k* to the pre-fracture stage (collapse of
the autowave of localized plasticity), where o ~ & .

Such a dispersion law was established for the pre-fracture stage, for which c~¢", an<1/2 , by

processing the X -t - diagrams ¢ for different metals presented in [1-3]. The dispersion relation of
the form o~ k* corresponds to the Kor - teweg - de Vries #—u" =0 equation, which describes the
prop - agation of excitation pulses in active excitable media [9].

Turning to the discussion of the reasons for the change in the dispersion relations in equations (2)
- (5) during deformation, it is logical to connect these relations with the evolution of sizes and shapes
of dislocation ensembles [7, 8, 15], i.e., with the structural part of the coefficient AP / J in equation

(5). In this case, the exponent B should depend on the configuration of the dislocation ensemble at
the corresponding stage. Indeed, at the yield plateau stage ( B =1), the Liiders deformation transforms
an elastic medium into a plastically deformable one, which, together with linear dispersion, allows
considering the Liiders front as a switching autowave [16] in a medium consisting of bistable
elements. The role of the latter is played by dislocations transitioning from the initial immobile state
to a new mobile state.

To understand the role of the dislocation structure at the stages of linear strain hardening and pre-
fracture, let us consider that, as already mentioned, A> =% , and A’ =Q . It follows that the length
A, area ¥ and volume Q , included in the expressions of dispersion laws for the successive stages of
strain hardening (2) - (5), are the geometric characteristics of dislocation ensembles, i.e.,
inhomogeneities of the medium causing the dispersion of autowaves of localized plasticity. They can
be assigned, respectively, the meaning of the size of the substructure element ( A) , the surface area
of dislocation cells at the stage of linear strain hardening ( 2 ) and the volume of dislocation tangles
at the pre-fracture stage ( 2 ) [8, 15].

As for the stage of parabolic strain hardening, it is known [7, 8, 15] that the cellular dislocation
substructure that emerges during its development, for which o~ (/1)K > is gradually replaced

during deformation by a tangled one, where oa~(A3 /J)k3 . This consideration can be viewed as an

argument in favor of the fact that the stage of parabolic strain hardening serves as a transition from
linear hardening to the collapse of the autowave of localized plasticity. This is also indicated by the
intermediate value [ =5/2 in the expression for the dispersion of autowaves of localized plasticity at
this stage of deformation.

The above-discussed connection between the stages of the deformation process and the dispersion
laws of autowaves of localized plasticity allows us to speculate that other characteristics of plastic
flow should also be somehow connected with the Principle of correspondence . In this respect, the
dependence of mobile dislocation density on deformation for different stages of the deformation
process is of particular interest.

As 1s known [6], the density of mobile dislocations p  enters the Taylor - Orowan equation:

de

L bpy Vs (15)

r Pma¥ aist

which underlies most dislocation models of plastic flow and connects the macroscopic rate of plastic

deformation de/dr with microscopic characteristics of the dislocation structure: the Burgers vector b



and the velocity of dislocation movement y, . The extreme behavior of this value with increasing
deformation, predicted by Gilman [6]

pmd(g):(p0+27msjexp(—gsja (16)
c

where P, — is the initial dislocation density, and m is the coefficient of their multiplication, still

appears mysterious.
It is easy to assume that both the concept of an active medium and its quantitative characteristics
are closely related to the form of the dependence pmd(S) . Therefore, it is advisable to consider it,

emphasizing the staging of the flow process. For this purpose, based on dimensional analysis, we write
the product included in equation (9) as
d( 1 (17)
Ae)-V,, =D (t)=— ’
(0072 0)=0,(0) =4[ - |
where p ~ap, is the transport coefficient in the autowave equation of plastic deformation

e=f (8)+D88" , and f(e)- 1s a nonlinear function (point kinetics [2]), describing the local

deformation rate. From equation (17), the following relation then follows:

df L) _df1)de__ 1 d__¢
dt\ . de\p,, ) dt prznd dt pid ’

which leads to the equation for the density of mobile dislocations:

pid(s)=—m- (19)

Analysis of equation (19) was performed for different stages of the deformation process. It turned
out that for Liiders deformation, when p =y, , and the number of mobile dislocations grows

proportionally to the front displacement

[ 8 1/2~ 20
Paa ) ( k(s).VLJ © 20

and at the stage of linear hardening, where 1 =const and A = const [1]

P =P, [1+exp(—21<8)]_l ~ const , (21)
where |:1+exp(—21(a):|_l _ 1is the Heaviside step function; x is the coefficient. As for the stage of

parabolic deformation hardening, for it
P (£)~ ;—/g ~ g, 22)

Fig. 2. Schematic dependence of mobile dislocation density on deformation. The dashed line is
the plastic flow curve. Stage numbers (I, II, IIT) are given in Table 1.

The obtained solutions are schematically presented in Fig. 2, which shows that the
dependence p,, (8) is consistent with the staging of plastic flow and satisfies the Correspondence

Rule , and its extremal nature emphasizes continuity with Gilman's formula.
ACTIVE DEFORMABLE MEDIA: BIRTH AND EVOLUTION

When discussing the nature of active deformable media and the evolution of their properties during
localized plastic flow, the problems of excitation of self-oscillations in the deformable medium and



mechanisms of birth of active media under different deformation conditions are of primary
importance.

According to general views [5, 16], an active medium capable of generating autowaves consists of
self-oscillating elements, which, when their oscillations are fully or partially synchronized, give rise
to various autowave modes. To understand the nature of autowaves, the question of the "seed"
excitation of self-oscillations in a non-equilibrium system, i.e., the birth of a pacemaker (rhythm
driver) [5], is fundamental. When analyzing autowave processes, especially deformation ones, its
existence is usually postulated without discussing the possible mechanism of birth. The reason for
refusing to discuss is that the characteristic frequencies of autowaves of localized plasticity
10° <w, <10°Hz are incommensurable with the oscillation frequencies of typical dislocation

segments of length ; ~10°5 , which are ©; z(b/ls)(oD ~10'"Hz, i€, 0, <<o, -

Fig. 3. Model of pacemaker birth (a); coordinate dependence of the interaction force of parallel
edge dislocations (b) [19].

The proposed pacemaker model considers the passage of an individual dislocation past a
dislocation ensemble, which for simplicity can be considered as a planar pile-up of dislocations, with
the dislocation moving parallel to the plane of the pile-up (Fig. 3a). The interaction force between the
moving dislocation and a parallel dislocation in the pile-up [6]

_, G x(¥-y) (23)

F =+ .
xl 27‘5(1—‘/) (x2+y2)2
is non-monotonic (Fig. 3b), which causes a region of compression-rarefaction of defects to move
along with the dislocation in the planar pile-up, equivalent to oscillations of their density with
frequency ~v, /5 .
At a minimum velocity y, ~ 10 “m/s and a distance between dislocations in a planar cluster

§~10”° mitis close to 10 > Hz, i.e., to the characteristic frequency of the autowave.

Obviously, this frequency limits the lower end of the spectrum of possible oscillations of
dislocation systems. The considered mechanism is also applicable for dislocation ensembles of more
complex configurations and is suitable for explaining the problem of the origin of oscillatory processes
during plastic flow.

For the autowave physics of plasticity, an important question is whether the nature of the activity
of the deformable medium is determined only by its structure or also depends on the deformation
conditions and can change during plastic deformation. To answer this question, let us discuss the
results of studying the deformation of polycrystalline o -Fe—0.1 wt.%C in the temperature range of
300-500 K, which is realized by the Liiders mechanism [12, 17, 18].

During tests at ~300 K, the loading diagram of a -Fe (Fig. 4a) has [12] a yield point and yield

plateau, characterized by upper G(y”) and lower G(yl) yield limits. The Liiders band nucleates at a stress

(u
}7

the cross-section of the sample, and then expands in the direction of the tensile axis [18].
In this case, the band boundaries (Liiders fronts) move uniformly along the sample in different

6~0" in the form of a narrow wedge of plastically deformed material, which quickly grows through

directions at a constant stress 0 % G(yl) . When the entire working part of the sample is swept by these

fronts, the yield plateau is replaced by parabolic strain hardening. As mentioned above, the Liiders
front transfers the medium from an elastic to a plastically deformable state, separating the elastic and



plastic regions of the material. In doing so, it possesses all the characteristics of an autowave of
switching in a bistable medium [3, 16].

Fig. 4. Tensile diagrams of aFe samples at 296 (a), 373 (b), and 433 K (c).

Increasing the test temperature to 373 K changes the shape of the flow curve (Fig. 4b). The yield
tooth and yield plateau are preserved, but the lower yield point decreases. The main difference is that
at this temperature, deformation jumps appear during the parabolic hardening stage. A further increase
in temperature to 433 K causes stress jumps to appear already on the yield plateau, as shown in Fig.
4c.

At a temperature of ~300 K, the transition is realized by uniform movement of the Liiders front,
while at temperatures above 433 K, it occurs through sequential deformation jumps [18, 19]. With
each jump, a narrow deformation band runs along the sample, at the leading front of which the medium
is transferred to a plastic state, similar to the propagation of the Liiders front. At the trailing front of
the band, the medium returns to an elastic state, so that the plastically deformed state exists only
between the leading and trailing fronts at any given moment [18, 19], which allows considering the
medium as excitable and the discontinuous deformation band as an autowave of excitation [3, 16].

Thus, in the same material under identical deformation conditions but at different temperatures,
the emergence of different active media is natural. To explain the role of temperature, we turn to the
mechanism of strain aging proposed in [20], according to which in interstitial solid solutions of C and
N in a -Fe, as temperature increases, it is possible to re-form condensed atmospheres on dislocations
that became mobile during the birth of the Liiders band. This leads to a decrease in the density of
mobile dislocations and changes the deformation kinetics. The restoration of atmospheres on mobile
dislocations becomes possible at a sufficiently high value of the carbon diffusion coefficient p_ in o

-Fe.

To assess the required value p_ we apply the diffusion approximation D ~ jif / 2t , in which ¢ is
the duration of the strain jump, and the diffusion length equals the distance between mobile
dislocations, 1.e., ljif ~ p,_n;, . The assessment shows that with plausible values p  ~ 6:10 *m 2 and

t = 1.6, the diffusion coefficient value needed for locking recovery D ~(2tp,,)" = 5:10 ®m 2 /s

is achieved at 7'=500 K [21], confirming the feasibility of the proposed mechanism. At 300 K the
diffusion coefficient p, ~ 2.4-10 “2I'm 2 /s is much lower, and the recovery of Cottrell atmospheres on

moving dislocations is impossible.
The considerations presented can be generalized by introducing a dimensionless criterion that
determines the conditions for the generation of switching autowaves and excitation in a deformable

[16], during
which the active medium is indifferent to external influences, to the characteristic time of the

medium. For this purpose, one can use the ratio of the medium's refractoriness time T,

deformation process [, , which is taken as the duration of the Liiders front run along the sample

exp o

length f,, 102-107s, i, T=1,/t

«p - As mentioned, T, has a diffusive nature, can be estimated

by the relation
12
T R— 24
ref 2 DC ( )
and depends on temperature through the diffusion coefficient. Next, one can compare the criteria for
two temperatures corresponding to Liiders and serrated deformations.




At T=300K p,~ 2.4:10 *'m?/s, and according to equation (24), t,_. = 10 °s. Consequently,
under these conditions =z, Jtop >>1 5 and during the experiment time a new dislocation locking is

impossible, so the Liiders front can only run through the sample once.
At T =400 K the increase in the carbon diffusion coefficient to p, ~ 2.4:10 " m ?/s reduces the

refractoriness time, calculated using equation (24), to ~4-10 ?s. In this case = T flop =1 > i.e., during

the front run time, the dislocation locking has time to recover, and repeated strain jumps are observed
on the yield plateau.
Without involving diffusion characteristics, let's consider the case when r=r_ Jtop <<1 Since

exp

T~ 9<<t,, > the refractoriness of the active medium in this case is insignificant. Then the elements

of the deformable medium do not lose their activity and, synchronizing with each other, form phase
autowaves characteristic of the stage of linear strain hardening [3].

This leads to the conclusion that physically different types of active media can emerge in the same
deformable material at different temperature intervals. Their plastic flow and strain hardening are
realized through different dislocation mechanisms [6-8].

It is natural to assume that the kinetics of the movement of Liiders fronts and discontinuous plastic
deformation fronts is determined by the velocity of dislocation movement in the field of applied
stresses [22]. Then understanding the discovered difference can be achieved by comparing the
dependencies y, () for these cases. The movement of the Liders front is controlled by thermally

activated dislocation movement, so that, in accordance with [3, 4, 18], its velocity can be described
by an exponential relation characteristic of thermally activated processes of dislocation movement

[11]:
Vi~V (6) ~V,exp [_M) ~exXpo- (25)
kT
Such dependence is valid near the lower boundary of the temperature interval indicated above.
However, at high stresses and temperatures corresponding to the development of discontinuous

deformation, the value of (U —v0) [T in equation (25) may become small. Assuming then, as usual,

that e ~1-x , we obtain a stress-linear equation for the velocity of overbarrier movement of
discontinuous plasticity fronts:
V;"NV‘HSI(G)z%(I_%+kBLTGjNG' (26)

Thus, the transition from Liiders deformation to the discontinuous deformation with increasing
temperature turns out to be associated with a change in the mechanism from thermally activated
overcoming of local barriers to an over-barrier mode of dislocation motion, which is controlled by
phonon and electron drag mechanisms [23]. It can be considered that the change in the motion regime
of plasticity carriers initiates the transformation of an active bistable deformable medium into an
excitable one and is accompanied by a restructuring of the autowave structure of the deformable
medium, in which the switching autowave (Liiders front) is replaced by an excitation autowave
(discontinuous deformation band). The conditions for the implementation of these mechanisms were
theoretically substantiated in [24] using the basic provisions of the theory of non-equilibrium media
[25].

CONCLUSION

The comparison of dislocation and autowave approaches to the nature of plastic flow shows that

the dislocation structure provides the activity of the deformable medium due to the appearance of

distributed energy sources, which are the elastic fields of dislocation ensembles. In turn, the
emergence of an active medium makes it possible to generate autowave modes of localized plasticity



in it. The birth and evolution of autowaves determine the kinetics and dynamics of the development
of an active deformable me dium. The coherence of the processes of forming an active medium and
generating autowaves in it underlies the Principle of correspondence [1 - 3].

The emerging new view on the nature of plasticity is that dislocation effects ensure the emergence
of activity in the deformable medium and the subsequent generation of autowave processes, while the
autowaves of localized plasticity generated in the medium form a macroscopic heterogeneity in their
spatial distribution and differences in the kinetics of development of active elements of dislocation
nature. The proposed perspective on the relationship between multi-scale deformation processes
makes it possible to reconcile the geometric scales of plastic flow phenomena.
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