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 Abstract. The dependence of Curie temperature, spin fluctuations, average and local 
magnetic moments on the concentration of𝑥𝑥 is investigated for disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 . It 
is shown how the dependence of the mean and local magnetic moments on concentration varies with 
temperature. The problem is treated in the renormalized Gaussian approximation of the dynamical 
theory of spin fluctuations. The numerical results are in good agreement with experiment. 
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1. INTRODUCTION
 The analysis of the relationship between the electronic structure and magnetic properties of 

iron-nickel alloys remains an important problem in theory and applications [1, 2]. A significant part 
of theoretical works is devoted to the study of the phase diagram (see, e.g., [3, 4]). 

In calculations of the magnetic characteristics of HCC iron-nickel alloys at finite 
temperatures, nonlocal spin correlations are either neglected using the coherent potential 
approximation and dynamical mean-field theory (PCP+DTSP; see, e.g., [5, 6]) or described using 
various approximations for effective Hamiltonians with classical spins (see, e.g., [7-11]). 

Simultaneous consideration of the quantum character and nonlocality of spin fluctuations is 
realized only in the dynamic theory of spin fluctuations (DTSF) [12]. The use of DTSF allowed us 
to calculate the temperature dependence of the magnetic characteristics of the invar 
alloyFe0.65Ni0.35 [13, 14] and to obtain the dependence of the Curie temperature of the disordered 
HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 on the concentration of𝑥𝑥 [15]. 

In the present work, we study in detail the dependence of various magnetic characteristics: 
spin fluctuations, mean and local magnetic moments - on temperature and concentration𝑥𝑥 for the 
disordered HCC alloy Fe𝑥𝑥Ni1−𝑥𝑥  . We investigate how the dependence of the mean and local 
magnetic moments on𝑥𝑥 changes with increasing temperature (the qualitative nature of these curves 
in alloys was investigated in [16]), and analyze the similarity of the dependence of magnetic 
moments and Curie temperature on𝑥𝑥 . The problem is considered in the renormalized Gaussian 
approximation of dynamic spin fluctuation theory (DTSF-PGA) [12, 14] using spin-polarized 
densities of electronic states calculated in QCD-PCP [15]. The DTSF-PGA results are compared 
with other calculations and experiment. 
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The presentation is organized as follows. Section 2 summarizes the computational scheme. 
Section 3 gives an overview of the theory and experiment related to the Slater-Poling curve. Section 
4 summarizes the results at finite temperatures. In Section 5, conclusions are formulated. 

 
2. THEORETICAL MODEL 

 The DTSF is based on a quadratic approximation of the free energy𝐹𝐹(𝑉𝑉) in a fluctuating 
exchange field𝑉𝑉 , which allows a self-consistent averaging over all field configurations. At a finite 
temperature𝑇𝑇 (in energy units), we solve a system of nonlinear equations for the mean squares of 
the exchange field fluctuations at the node  

 〈Δ𝑉𝑉𝛼𝛼2〉 = 1
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 where𝑁𝑁 is the number of crystal lattice nodes,𝑁𝑁d = 5 is the number of d-bands per atom and spin,  
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for the average exchange field  
 〈𝑉𝑉𝑧𝑧〉 = −𝑈𝑈𝑠𝑠𝑧𝑧 ,        𝑠𝑠𝑧𝑧 = (𝑛𝑛↑ − 𝑛𝑛↓)/2, (2) 
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 where𝑛𝑛𝜎𝜎 is the number of electrons with spin projection𝜎𝜎 =↑, ↓ or ,±1𝑛𝑛e is the total number of 
electrons (per atom and band). In the given relations𝜒𝜒𝐪𝐪𝛼𝛼(𝜀𝜀) is the dynamical susceptibility,𝑓𝑓(𝜀𝜀) =
[exp((𝜀𝜀 − 𝜇𝜇)/𝑇𝑇) + 1]−1 is the Fermi function,  

 𝑔𝑔𝜎𝜎(𝜀𝜀) = ∫ 𝜈𝜈(𝜀𝜀′)
𝜀𝜀−𝜎𝜎〈𝑉𝑉𝑧𝑧〉−ΔΣ𝜎𝜎(𝜀𝜀)−𝜀𝜀′

 d𝜀𝜀′ 
 - average single-node Green's function, where𝜈𝜈(𝜀𝜀) is the non-magnetic density of electronic states 
(NES) per atom, band and spin,ΔΣ𝜎𝜎(𝜀𝜀) is the fluctuation contribution to the eigen-energy part 
calculated by the formula  

 ΔΣ𝜎𝜎(𝜀𝜀) = 𝑔𝑔𝜎𝜎(𝜀𝜀)〈Δ𝑉𝑉𝑧𝑧2〉
1+2𝜎𝜎〈𝑉𝑉𝑧𝑧〉𝑔𝑔𝜎𝜎(𝜀𝜀)

+ 2𝑔𝑔𝜎𝜎�(𝜀𝜀)〈Δ𝑉𝑉𝑥𝑥2〉,        𝜎𝜎� = −𝜎𝜎. 
 

In the DTSF-PGA, a renormalization of the quadratic approximation of the free energy in the 
fluctuating field𝐹𝐹(𝑉𝑉) is made at the expense of high-order terms on𝑉𝑉 . In the final equations, this 
leads to renormalization of the mean spin and susceptibility:  

 𝑠̃𝑠𝑧𝑧 = (1 + 𝜂𝜂)𝑠𝑠𝑧𝑧,        𝜒𝜒�𝐪𝐪𝛼𝛼(𝜀𝜀) = (1 + 3𝜂𝜂)𝜒𝜒𝐪𝐪𝛼𝛼(𝜀𝜀). (4) 
 The correction factor𝜂𝜂 is  

 𝜂𝜂 = − 𝜋𝜋
𝑊𝑊

(2𝜒𝜒L𝑥𝑥(0)〈Δ𝑉𝑉𝑥𝑥2〉 + 𝜒𝜒L𝑧𝑧(0)〈Δ𝑉𝑉𝑧𝑧2〉), (5) 
 where𝑊𝑊 is the d-band width,𝜒𝜒L𝛼𝛼(0) is the local static susceptibility. 

At𝑇𝑇 = 0 the mean squares of fluctuations〈Δ𝑉𝑉𝛼𝛼2〉 turn to zero and the system transforms into 
the system of Stoner mean-field theory equations (2) and (3). This makes it possible to find the 
effective constant𝑈𝑈  from the known magnetic moment𝑚𝑚𝑧𝑧(𝑇𝑇 = 0)  , then at𝑇𝑇 ≠ 0  the original 
system is solved by the parameter continuation method with respect to the variables , 
,〈Δ𝑉𝑉𝑥𝑥2〉〈Δ𝑉𝑉𝑧𝑧2〉〈𝑉𝑉𝑧𝑧〉𝜇𝜇  ,andΔΣ𝜎𝜎(𝜀𝜀) [17]. The temperature dependence of the magnetic characteristics 
on the parameters is calculated using the MAGPROP program [18]. 

The squares of the average𝑠𝑠𝑧𝑧2 ≡ 〈𝐬𝐬〉2 and local𝑠𝑠L2 ≡ 〈𝐬𝐬2〉 spins differ by the magnitude of the 
rms spin fluctuationΔ𝑠𝑠2 ≡ 〈(𝐬𝐬 − 〈𝐬𝐬〉)2〉 :  

 2 2 2
L = .zs s s+ ∆  

 (Here〈… 〉 is the quantum-statistical average at temperature𝑇𝑇 .) The spin fluctuations are made up 
of fluctuations at𝑇𝑇 = 0 ("zero") and temperature fluctuations:  



 Δ𝑠𝑠2 = Δ𝑠𝑠zp2 + Δ𝑠𝑠temp2 . 
 In DTSF we consider only temperature fluctuations, assumingΔ𝑠𝑠zp2 = 0  . We assume that the 
"zero" fluctuations are already accounted for by renormalizing the constant𝑈𝑈  . At𝑇𝑇 = 0  the 
temperature fluctuation also goes to zero:Δ𝑠𝑠temp2 = 0 . Then the average𝑚𝑚𝑧𝑧(𝑇𝑇) = 𝑔𝑔𝑁𝑁d𝑠𝑠𝑧𝑧(𝑇𝑇)[𝜇𝜇B] 
and local𝑚𝑚L(𝑇𝑇) = 𝑔𝑔𝑠𝑠L(𝑇𝑇)[𝜇𝜇B] magnetic moments at𝑇𝑇 = 0 coincide:𝑚𝑚𝑧𝑧(0) = 𝑚𝑚L(0) . At finite 
temperature, solving the system of DTSF-PGA equations (1)-(5), we find the local magnetic 
moment by the formula  

 𝑚𝑚L(𝑇𝑇)/𝑚𝑚L(0) = [(〈𝑉𝑉𝑧𝑧(𝑇𝑇)〉2 + 〈(Δ𝑉𝑉)2〉)/〈𝑉𝑉𝑧𝑧(0)〉2]1/2. 
 

 
3. MAGNETIC TORQUE AT 𝑻𝑻 = 𝟎𝟎 

 The magnetic moment of ferromagnetic metals and alloys at𝑇𝑇 = 0 is fairly well described 
by Slater's rule, which generalizes Hund's rule for an atom to the case of metals. According to 
Slater's rule, the magnetic moment (in units of𝜇𝜇B ) is equal to the number of spin-uncompensated 
d-electrons per atom (see [21]). For ferromagnetic metals and alloys we obtain  

 𝑚𝑚𝑧𝑧(𝑁𝑁e) = 2𝑁𝑁d − 𝑁𝑁e, (6) 
 where the average number of d-electrons per atom in the metal𝑁𝑁𝑒𝑒 = 𝑁𝑁d𝑛𝑛e can be fractional1 . The 
justification of (6) follows from Stoner's theory. From (2) and (3) it follows  

 𝑚𝑚𝑧𝑧 = 𝑁𝑁d(𝑛𝑛↑ − 𝑛𝑛↓) = 2𝑁𝑁d𝑛𝑛↑ − 𝑁𝑁e. 
 If the band of d-states with spin up is completely filled (as in Co and Ni), and thus further 
polarization does not lead to an increase in the magnetic moment, we obtain a linear dependence 
decreasing at an angle of 45 degrees with increasing𝑁𝑁e  . The maximum magnetic moment is 
between Fe and Co and corresponds almost entirely to the filled d-band. The dependence of the 
magnetic moment on the average number of electrons per atom, known as the Slater-Poling curve 
[19], gives a good approximation for alloys of metals with close atomic numbers, in particular 
Fe-Co, Co-Ni and Fe-Ni (Fig. 1) .2 

 
   

Fig. 1: Slater-Poling curve for Fe, Co and Ni alloys. Experimental values are taken from [19], 
except for the HCC alloys Fe-Co [20] and Fe-Ni [4]. The values𝑚𝑚𝑧𝑧 at𝑇𝑇 = 0 , used in the 

DTSF-PGA calculations, are indicated by asterisks. 
   
The above facts were confirmed by our calculations𝑚𝑚𝑧𝑧 at𝑇𝑇 = 0 in the Stoner theory [16]. In 

the framework of Stoner's theory, one can consider that fusion leads only to a shift of the Fermi level 
[23]. Therefore, the calculations [16] were performed by varying𝑁𝑁e for iron, cobalt and nickel PES. 
However, calculations performed at finite temperatures showed that the behavior of the 
Slater-Poling curve in Stoner theory and in DTSF has even qualitatively different character, due to 
the fact that Stoner theory completely ignores spin fluctuations. 

 
   

Fig. 2: PES of d-electrons of disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 at0.1 ≤ 𝑥𝑥 ≤ 0.6 , smoothed using 
convolution with the Lorentz half-width functionΓ = 0.001 𝑊𝑊 . The vertical dash indicates the 

Fermi level .𝜀𝜀F 
   
 

 
1 Generalizations of Slater's rule were proposed in [22] (see also [12, Chapter~13]). 
2 As can be seen from Fig. 1, for the Fe-Co and Fe-Ni HCC alloys, branches from the Slater-Poling curve are observed at high iron concentrations. 



4. RESULTS AT END TEMPERATURES 
 We investigate the disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 at iron concentrations𝑥𝑥 from 0.1 to 0.63 

, using the same initial non-magnetic PES at𝑇𝑇 = 0 , as in [15]. The spin-polarized PES calculated in 
QCD-PCP for HCC Fe𝑥𝑥Ni1−𝑥𝑥  at 𝑥𝑥  from 0.1 to 0.6 [15] are in good agreement with the 
spin-polarized PES for𝑥𝑥 = 0.4 and 0.6 calculated in [24]. The non-magnetic PES of the alloy is 
calculated according to the scheme described in [13]. The obtained PESs are smoothed using 
convolution with the Lorentz half-width functionΓ = 0.001 𝑊𝑊 to remove unphysical peaks in the 
zone calculation, which completely ignores the damping of one-electron states. The PESs of the 
alloysFe𝑥𝑥Ni1−𝑥𝑥 , normalized to a single d-state (per atom, band and spin), are shown in Fig. 2. The 
dependence of the magnetic moment at𝑇𝑇 = 0 on the number of electrons lies on the right branch of 
the Slater-Poling curve corresponding to alloys with HCC lattice (Fig. 1). 

   
 
   

Magnetic moment𝑚𝑚𝑧𝑧/𝑚𝑚𝑧𝑧
0 (calculation −−−−−−  , experiment∘∘∘ [25]), rms fluctuations 

(〈Δ𝑉𝑉𝑥𝑥2〉  −−−  ⋅  ⋅   −−−  ) and〈Δ𝑉𝑉𝑧𝑧2〉 ( −     −     −     −  ) in units of mean field square𝑉𝑉�𝑧𝑧2 at𝑇𝑇 =
0 , local magnetic moment𝑚𝑚L/𝑚𝑚𝑧𝑧

0 ( ⋅⋅⋅⋅⋅⋅  ) and inverse paramagnetic susceptibility𝜒𝜒−1 ( −−−   ⋅
  −−−  ) in units𝑘𝑘B𝑇𝑇C

exp/𝜇𝜇B2  of disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 at iron concentrations0.1 ≤ 𝑥𝑥 ≤
0.6 , calculated in DTSF-PGA as functions of relative temperature .𝑇𝑇/𝑇𝑇C

exp 
   
The results of calculations of magnetic characteristics in DTSF-PGA are shown in Fig. 4. 

The temperature dependence of the magnetic moment is in good agreement with experiment [25]. 
The temperature dependence of the other characteristics agrees well with the results of calculations 
given in [12] for pure Fe, Co, and Ni. Thus, longitudinal spin fluctuations〈Δ𝑉𝑉𝑧𝑧2〉 predominate in 
HCC Fe𝑥𝑥Ni1−𝑥𝑥  at concentrations 𝑥𝑥 = 0.1  - 0.3  , as in pure Ni. Longitudinal 〈Δ𝑉𝑉𝑧𝑧2〉  and 
transverse〈Δ𝑉𝑉𝑥𝑥2〉 spin fluctuations are approximately the same at concentrations𝑥𝑥 = 0.4 -0.5 , as in 
pure Co. Finally, the transverse〈Δ𝑉𝑉𝑥𝑥2〉 spin fluctuations predominate at concentrations𝑥𝑥 = 0.6 , as in 
pure Fe. Similarly, the local moment𝑚𝑚L increases with temperature at𝑥𝑥 = 0.1 -0.3 , as in Ni, is 
nearly constant at𝑥𝑥 = 0.4 , as in Co, and decreases with temperature at𝑥𝑥 = 0.5 -0.6 , as in Fe. The 
homogeneous paramagnetic susceptibility𝜒𝜒0(0) satisfies the Curie-Weiss law at all𝑥𝑥 , as for pure 
metals. 

The dependence of Curie temperature on nickel concentration is shown in Fig. 3. The 
experimental curve has a maximum near 70 at.% Ni. The curve in DTSF-PGA is in good agreement 
with the experimental curve [3, 26]. The results of local approximations: static PCP approximation 
[27] and dynamic PCP+DTSP approximation [6] are presented for comparison. As can be seen, in 
the static [27] the maximum𝑇𝑇C is noticeably shifted towards bо′ lier concentrations of Ni4 . The 
calculation in the single-node dynamic PCP+DTSP approximation [6] leads to significant 
differences from the static results [27]. 

 
   
Fig. 3: Curie temperature dependence𝑇𝑇C for disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 on nickel 

concentration1 − 𝑥𝑥 at0.1 ≤ 𝑥𝑥 ≤ 0.6 , calculated in the dynamic nonlocal DTSF-PGA theory, in 
one-hole theories: static PCP approximation [27] and dynamic PCP+DTSP approximation [6] - and 

in experiment [3, 26]. 
   

 
3 At iron concentrations𝑥𝑥 > 0.7 HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 becomes antiferromagnetic. 
4 In [28], an attempt was made to go beyond the one-node approximation in statics [27], but it did not yield noticeable differences for Fe-Ni alloys. 



The results obtained using various approximations for the effective Hamiltonians with 
classical spins [9, 10, 15] give good quantitative agreement with experiment at some concentrations, 
but do not give the correct course of the temperature dependence of𝑇𝑇C on concentration in general. 
In particular, the maximum of𝑇𝑇C in the calculations [9, 10, 15] is noticeably shifted toward small Ni 
concentrations, contrary to experiment (Fig. 3). 

The dependence of the Curie temperature𝑇𝑇C on the average number of electrons per atom for 
Fe, Co and Ni alloys is shown in Fig. 4. This dependence has some similarity with the Slater-Poling 
curve (Fig. 1). However, the differences in the behavior of𝑇𝑇C for HCC Fe-Ni and Co-Ni alloys (as 
well as for OCC Fe-Ni and Co-Ni alloys) are much more noticeable than in the behavior of𝑚𝑚𝑧𝑧 
at𝑇𝑇 = 0  . In addition, for the disordered HCC alloy Fe𝑥𝑥Ni1−𝑥𝑥  , the maximum of the Curie 
temperature 𝑇𝑇C  is reached at b о′  higher nickel concentrations than the maximum of the𝑚𝑚𝑧𝑧 
dependence at𝑇𝑇 = 0 on the Slater-Poling curve. 

The curves of the average magnetic moment𝑚𝑚𝑧𝑧 , as a function of nickel concentration at 
finite temperatures, are shown in Fig. 5. As can be seen, with increasing temperature, the 
Slater-Poling curve shifts to zero.  

   
Fig. 4: Dependence of Curie temperature𝑇𝑇C on the average number of electrons per atom for Fe, Co 
and Ni alloys. The experimental values are taken from [26], except for the HCC alloys Fe-Co [29] 

and Fe-Ni [4]. The values𝑇𝑇C , calculated in DTSF-PGA, are indicated by asterisks. 
 

   The dependence of𝑚𝑚𝑧𝑧 on Ni concentration at room temperatures remains practically a 
straight line parallel to the Slater-Poling curve, in full agreement with the experiment [30]. With 
further temperature increase, the dependence of the magnetic moment𝑚𝑚𝑧𝑧 on concentration becomes 
curved and becomes similar to the Curie temperature dependence𝑇𝑇C on concentration (Fig. 3). The 
maximum of𝑚𝑚𝑧𝑧 is gradually shifted towards bо′ higher Ni concentrations and at high temperatures 
is between 50 at.% and 60 at.% Ni. These results are in qualitative agreement with the results of 
DTSF calculations, which were obtained by varying the number of d-electrons for iron, cobalt and 
nickel PES in our work [16]. 

The dependences of the local magnetic moment as a function of nickel concentration at 
different temperatures are shown in Fig. 6 (temperatures are the same as in Fig. 5). As can be seen, 
the linear dependence of the local magnetic moment on concentration changes weakly with 
increasing temperature up to room temperature. With further temperature increase, the decreasing 
dependence remains, but the scatter of the local moment values gradually decreases. Extrapolation 
of our results at𝑇𝑇C is in reasonable agreement with the experimental values𝑚𝑚L , obtained in neutron 
scattering: 1.55-1.7 for Fe and 0.6-0.9 for Ni (for details see [12, 31] and references there). The 
appearance of the dependence of the local moment on concentration is fundamentally different from 
the dependences of the Curie temperature and the mean magnetic moment on concentration (Figs. 3 
and 5). In particular, the maximum𝑚𝑚L is reached at the concentration of nickel1 − 𝑥𝑥 = 0.4 at all 
temperatures, except for temperatures near𝑇𝑇 = 600 K, where it shifts slightly toward bо′ higher 
nickel concentrations: .1 − 𝑥𝑥 = 0.5 

The qualitative course of the local momentum-concentration dependence at high 
temperatures was correctly predicted in our DTSF calculations [16]. However, for the real alloy, the 
curves at high temperatures turned out to be more convex upward (Fig. 6) than predicted by our 
preliminary analysis. 

 
   

Fig. 5: Dependence of average magnetic moment𝑚𝑚𝑧𝑧 for disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 on nickel 
concentration1 − 𝑥𝑥 at0.1 ≤ 𝑥𝑥 ≤ 0.6 , calculated in DTSF-PGA at different temperatures. 



   
 

5. CONCLUSION 
 Simultaneous consideration of the quantum and non-local character of spin fluctuations in 

DTSF-PGA allowed us to calculate the dependences of average and local magnetic moments, spin 
fluctuations and paramagnetic susceptibility on temperature for disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 at 
.0.1 ≤ 𝑥𝑥 ≤ 0.6 

The temperature dependence of the magnetic moment is in good agreement with experiment. 
Longitudinal spin fluctuations dominate at concentrations𝑥𝑥 = 0.1 -0.3 (as in pure Ni), longitudinal 
and transverse fluctuations approximately coincide at concentrations𝑥𝑥 = 0.4 -0.5 (as in Co) and 
finally transverse fluctuations dominate at concentrations𝑥𝑥 = 0.6 (as in Fe). 

The dependence of the average magnetic moment on concentration remains practically a 
straight line parallel to the Slater-Poling curve up to room temperature, in full agreement with the 
experiment. With further temperature increase, the dependence of the magnetic moment on 
concentration becomes curved and becomes similar to the Curie temperature dependence on 
concentration: it has a pronounced maximum between 50 at.% and 60 at.% Ni. 

The dependence of the local magnetic moment on concentration also remains almost linear 
up to room temperatures. However, this straight line is not parallel to the Slater-Poling curve, and its 
slope decreases with increasing temperature. With further temperature increase, the dependence of 
the local magnetic moment on concentration remains decreasing, but becomes nonlinear. The 
maximum of the local moment is reached at concentrations of 40 at.% and 50 at.% Ni. 

A detailed study of the paramagnetic properties of HCC iron-nickel alloys in DTSF-PGA is 
the task of our further investigation. 

 
   

Fig. 6: Dependence of local magnetic moment𝑚𝑚L for disordered HCC alloyFe𝑥𝑥Ni1−𝑥𝑥 on nickel 
concentration1 − 𝑥𝑥 at0.1 ≤ 𝑥𝑥 ≤ 0.6 , calculated in DTSF-PGA at different temperatures. The inset 

shows larger values at nickel concentrations1 − 𝑥𝑥 = 0.7 and .1 − 𝑥𝑥 = 0.8 
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