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Abstract. The dependence of Curie temperature, spin fluctuations, average and local
magnetic moments on the concentration ofx is investigated for disordered HCC alloyFe, Ni;_, . It
is shown how the dependence of the mean and local magnetic moments on concentration varies with
temperature. The problem is treated in the renormalized Gaussian approximation of the dynamical
theory of spin fluctuations. The numerical results are in good agreement with experiment.
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1. INTRODUCTION
The analysis of the relationship between the electronic structure and magnetic properties of
iron-nickel alloys remains an important problem in theory and applications [1, 2]. A significant part
of theoretical works is devoted to the study of the phase diagram (see, e.g., [3, 4]).

In calculations of the magnetic characteristics of HCC iron-nickel alloys at finite
temperatures, nonlocal spin correlations are either neglected using the coherent potential
approximation and dynamical mean-field theory (PCP+DTSP; see, e.g., [5, 6]) or described using
various approximations for effective Hamiltonians with classical spins (see, e.g., [7-11]).

Simultaneous consideration of the quantum character and nonlocality of spin fluctuations is
realized only in the dynamic theory of spin fluctuations (DTSF) [12]. The use of DTSF allowed us
to calculate the temperature dependence of the magnetic characteristics of the invar
alloyFeq ¢5Nig 35 [13, 14] and to obtain the dependence of the Curie temperature of the disordered
HCC alloyFe,Ni;_, on the concentration ofx [15].

In the present work, we study in detail the dependence of various magnetic characteristics:
spin fluctuations, mean and local magnetic moments - on temperature and concentrationx for the
disordered HCC alloyFe,Ni;_, . We investigate how the dependence of the mean and local
magnetic moments onx changes with increasing temperature (the qualitative nature of these curves
in alloys was investigated in [16]), and analyze the similarity of the dependence of magnetic
moments and Curie temperature onx . The problem is considered in the renormalized Gaussian
approximation of dynamic spin fluctuation theory (DTSF-PGA) [12, 14] using spin-polarized
densities of electronic states calculated in QCD-PCP [15]. The DTSF-PGA results are compared
with other calculations and experiment.
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The presentation is organized as follows. Section 2 summarizes the computational scheme.
Section 3 gives an overview of the theory and experiment related to the Slater-Poling curve. Section
4 summarizes the results at finite temperatures. In Section 5, conclusions are formulated.

2. THEORETICAL MODEL
The DTSF is based on a quadratic approximation of the free energyF (V) in a fluctuating
exchange fieldV , which allows a self-consistent averaging over all field configurations. At a finite
temperatureT (in energy units), we solve a system of nonlinear equations for the mean squares of
the exchange field fluctuations at the node
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wheren, is the number of electrons with spin projectiong =T,! or ,+1n, is the total number of
electrons (per atom and band). In the given relationsyg (¢) is the dynamical susceptibility,f (¢) =

[exp((e — w)/T) + 1]~ is the Fermi function,
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- average single-node Green's function, wherev(¢) is the non-magnetic density of electronic states
(NES) per atom, band and spin,AX;(€) is the fluctuation contribution to the eigen-energy part
calculated by the formula
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In the DTSF-PGA, a renormalization of the quadratic approximation of the free energy in the
fluctuating fieldF (V) is made at the expense of high-order terms onV . In the final equations, this
leads to renormalization of the mean spin and susceptibility:

§; =1 +ms,  Xq(e) = (1+3n)xq(e). 4
The correction factorn is
N =~ (2x{ (0)(AVZ) + x{ (0)(AV2)), (5)
whereW is the d-band width,x{*(0) is the local static susceptibility.

AtT = 0 the mean squares of fluctuations(AV,2) turn to zero and the system transforms into
the system of Stoner mean-field theory equations (2) and (3). This makes it possible to find the
effective constantU from the known magnetic momentm,(T = 0) , then atT # 0 the original
system is solved by the parameter continuation method with respect to the variables |,
AAVENAVAY (V) ,andAZ,(g) [17]. The temperature dependence of the magnetic characteristics
on the parameters is calculated using the MAGPROP program [18].

The squares of the averages? = (s)? and locals? = (s?) spins differ by the magnitude of the
rms spin fluctuationAs? = ((s — (s))?) :

¢ =24Ad

(Here(...) is the quantum-statistical average at temperatureT .) The spin fluctuations are made up
of fluctuations atT = 0 ("zero") and temperature fluctuations:



As? = AsZ, + AsSfamp.
In DTSF we consider only temperature fluctuations, assumingAsZZp =0 . We assume that the
"zero" fluctuations are already accounted for by renormalizing the constantU . AtT = 0 the
temperature fluctuation also goes to zero:AstZemp = 0 . Then the averagem,(T) = gNgs,(T)[ug]
and localm(T) = gs.(T)[ug] magnetic moments atT = 0 coincide:m,(0) = m(0) . At finite
temperature, solving the system of DTSF-PGA equations (1)-(5), we find the local magnetic
moment by the formula

my(T)/my,(0) = [((V;(T))? + ((AV)?)) /(V,(0))]"/2.

3. MAGNETIC TORQUEAT T =0
The magnetic moment of ferromagnetic metals and alloys atT = 0 is fairly well described
by Slater's rule, which generalizes Hund's rule for an atom to the case of metals. According to

Slater's rule, the magnetic moment (in units ofug ) is equal to the number of spin-uncompensated
d-electrons per atom (see [21]). For ferromagnetic metals and alloys we obtain

m;(Ne) = 2ZNg — N, (6)
where the average number of d-electrons per atom in the metalN, = Ngqn. can be fractional' . The
justification of (6) follows from Stoner's theory. From (2) and (3) it follows
m, = Nd(nT - ‘I’ll) = 2NdnT - Ne'

If the band of d-states with spin up is completely filled (as in Co and Ni), and thus further
polarization does not lead to an increase in the magnetic moment, we obtain a linear dependence
decreasing at an angle of 45 degrees with increasingN, . The maximum magnetic moment is
between Fe and Co and corresponds almost entirely to the filled d-band. The dependence of the
magnetic moment on the average number of electrons per atom, known as the Slater-Poling curve
[19], gives a good approximation for alloys of metals with close atomic numbers, in particular
Fe-Co, Co-Ni and Fe-Ni (Fig. 1) .2

Fig. 1: Slater-Poling curve for Fe, Co and Ni alloys. Experimental values are taken from [19],
except for the HCC alloys Fe-Co [20] and Fe-Ni [4]. The valuesm, atT = 0 , used in the
DTSF-PGA calculations, are indicated by asterisks.

The above facts were confirmed by our calculationsm, atT = 0 in the Stoner theory [16]. In
the framework of Stoner's theory, one can consider that fusion leads only to a shift of the Fermi level
[23]. Therefore, the calculations [16] were performed by varyingN, for iron, cobalt and nickel PES.
However, calculations performed at finite temperatures showed that the behavior of the
Slater-Poling curve in Stoner theory and in DTSF has even qualitatively different character, due to
the fact that Stoner theory completely ignores spin fluctuations.

Fig. 2: PES of d-electrons of disordered HCC alloyFe,Ni;_, at0.1 < x < 0.6 , smoothed using
convolution with the Lorentz half-width functionl' = 0.001 W . The vertical dash indicates the
Fermi level .&g

1 Generalizations of Slater's rule were proposed in [22] (see also [12, Chapter~13]).
2 As can be seen from Fig. 1, for the Fe-Co and Fe-Ni HCC alloys, branches from the Slater-Poling curve are observed at high iron concentrations.



4. RESULTS AT END TEMPERATURES

We investigate the disordered HCC alloyFe,Ni;_, at iron concentrationsx from 0.1 to 0.6
, using the same initial non-magnetic PES atT = 0 , as in [15]. The spin-polarized PES calculated in
QCD-PCP for HCC Fe,Ni;_, atx from 0.1 to 0.6 [15] are in good agreement with the
spin-polarized PES forx = 0.4 and 0.6 calculated in [24]. The non-magnetic PES of the alloy is
calculated according to the scheme described in [13]. The obtained PESs are smoothed using
convolution with the Lorentz half-width function' = 0.001 W to remove unphysical peaks in the
zone calculation, which completely ignores the damping of one-electron states. The PESs of the
alloysFe,Ni;_, , normalized to a single d-state (per atom, band and spin), are shown in Fig. 2. The
dependence of the magnetic moment atT = 0 on the number of electrons lies on the right branch of
the Slater-Poling curve corresponding to alloys with HCC lattice (Fig. 1).

Magnetic momentm,/m?2 (calculation — — — — — — , experimentooo [25]), rms fluctuations
(AV2Yy ——— -« ———)and(AV,2) (— — — — )inunits of mean field squareV,? atT =
0 , local magnetic momentmy /m2 ( -+ ) and inverse paramagnetic susceptibilityy ™! (— — — -

——— )in unitskBT(':3 *P /u? of disordered HCC alloyFe,Ni;_, at iron concentrations0.1 < x <
0.6 , calculated in DTSF-PGA as functions of relative temperature .T' / Tg P

The results of calculations of magnetic characteristics in DTSF-PGA are shown in Fig. 4.
The temperature dependence of the magnetic moment is in good agreement with experiment [25].
The temperature dependence of the other characteristics agrees well with the results of calculations
given in [12] for pure Fe, Co, and Ni. Thus, longitudinal spin fluctuations(AV,?) predominate in
HCC Fe,Ni;_, at concentrations x = 0.1 - 0.3 , as in pure Ni. Longitudinal (AV,?) and
transverse(AV,2) spin fluctuations are approximately the same at concentrationsx = 0.4 -0.5 , as in
pure Co. Finally, the transverse(AV,?) spin fluctuations predominate at concentrationsx = 0.6 , as in
pure Fe. Similarly, the local momentm;, increases with temperature atx = 0.1 -0.3 , as in Ni, is
nearly constant atx = 0.4 , as in Co, and decreases with temperature atx = 0.5 -0.6 , as in Fe. The
homogeneous paramagnetic susceptibilityy®(0) satisfies the Curie-Weiss law at allx , as for pure
metals.

The dependence of Curie temperature on nickel concentration is shown in Fig. 3. The
experimental curve has a maximum near 70 at.% Ni. The curve in DTSF-PGA is in good agreement
with the experimental curve [3, 26]. The results of local approximations: static PCP approximation
[27] and dynamic PCP+DTSP approximation [6] are presented for comparison. As can be seen, in
the static [27] the maximumT is noticeably shifted towards bo’ lier concentrations of Ni* . The
calculation in the single-node dynamic PCP+DTSP approximation [6] leads to significant
differences from the static results [27].

Fig. 3: Curie temperature dependenceT for disordered HCC alloyFe, Ni;_, on nickel
concentrationl — x at0.1 < x < 0.6 , calculated in the dynamic nonlocal DTSF-PGA theory, in
one-hole theories: static PCP approximation [27] and dynamic PCP+DTSP approximation [6] - and
in experiment [3, 26].

3 Atiron concentrationsx > 0.7 HCC alloyFe,Ni;_, becomes antiferromagnetic.
4 In [28], an attempt was made to go beyond the one-node approximation in statics [27], but it did not yield noticeable differences for Fe-Ni alloys.



The results obtained using various approximations for the effective Hamiltonians with
classical spins [9, 10, 15] give good quantitative agreement with experiment at some concentrations,
but do not give the correct course of the temperature dependence ofT on concentration in general.
In particular, the maximum ofT in the calculations [9, 10, 15] is noticeably shifted toward small Ni
concentrations, contrary to experiment (Fig. 3).

The dependence of the Curie temperatureT on the average number of electrons per atom for
Fe, Co and Ni alloys is shown in Fig. 4. This dependence has some similarity with the Slater-Poling
curve (Fig. 1). However, the differences in the behavior of T for HCC Fe-Ni and Co-Ni alloys (as
well as for OCC Fe-Ni and Co-Ni alloys) are much more noticeable than in the behavior ofm,
atT =0 . In addition, for the disordered HCC alloy Fe,Ni;_, , the maximum of the Curie
temperature Tc is reached at bo’ higher nickel concentrations than the maximum of them,
dependence atT = 0 on the Slater-Poling curve.

The curves of the average magnetic momentm, , as a function of nickel concentration at
finite temperatures, are shown in Fig. 5. As can be seen, with increasing temperature, the
Slater-Poling curve shifts to zero.

Fig. 4: Dependence of Curie temperatureT on the average number of electrons per atom for Fe, Co
and Ni alloys. The experimental values are taken from [26], except for the HCC alloys Fe-Co [29]
and Fe-Ni [4]. The valuesT( , calculated in DTSF-PGA, are indicated by asterisks.

The dependence ofm, on Ni concentration at room temperatures remains practically a
straight line parallel to the Slater-Poling curve, in full agreement with the experiment [30]. With
further temperature increase, the dependence of the magnetic momentm, on concentration becomes
curved and becomes similar to the Curie temperature dependenceT on concentration (Fig. 3). The
maximum ofm,, is gradually shifted towards bo’ higher Ni concentrations and at high temperatures
is between 50 at.% and 60 at.% Ni. These results are in qualitative agreement with the results of
DTSF calculations, which were obtained by varying the number of d-electrons for iron, cobalt and
nickel PES in our work [16].

The dependences of the local magnetic moment as a function of nickel concentration at
different temperatures are shown in Fig. 6 (temperatures are the same as in Fig. 5). As can be seen,
the linear dependence of the local magnetic moment on concentration changes weakly with
increasing temperature up to room temperature. With further temperature increase, the decreasing
dependence remains, but the scatter of the local moment values gradually decreases. Extrapolation
of our results atT; is in reasonable agreement with the experimental valuesm;, , obtained in neutron
scattering: 1.55-1.7 for Fe and 0.6-0.9 for Ni (for details see [12, 31] and references there). The
appearance of the dependence of the local moment on concentration is fundamentally different from
the dependences of the Curie temperature and the mean magnetic moment on concentration (Figs. 3
and 5). In particular, the maximumm,, is reached at the concentration of nickell — x = 0.4 at all
temperatures, except for temperatures nearT = 600 K, where it shifts slightly toward bo’ higher
nickel concentrations: .1 — x = 0.5

The qualitative course of the local momentum-concentration dependence at high
temperatures was correctly predicted in our DTSF calculations [16]. However, for the real alloy, the
curves at high temperatures turned out to be more convex upward (Fig. 6) than predicted by our
preliminary analysis.

Fig. 5: Dependence of average magnetic momentm, for disordered HCC alloyFe,Ni;_, on nickel
concentrationl — x at0.1 < x < 0.6 , calculated in DTSF-PGA at different temperatures.



5. CONCLUSION
Simultaneous consideration of the quantum and non-local character of spin fluctuations in
DTSF-PGA allowed us to calculate the dependences of average and local magnetic moments, spin
fluctuations and paramagnetic susceptibility on temperature for disordered HCC alloyFe,Ni;_, at
01<x<06

The temperature dependence of the magnetic moment is in good agreement with experiment.
Longitudinal spin fluctuations dominate at concentrationsx = 0.1 -0.3 (as in pure Ni), longitudinal
and transverse fluctuations approximately coincide at concentrationsx = 0.4 -0.5 (as in Co) and
finally transverse fluctuations dominate at concentrationsx = 0.6 (as in Fe).

The dependence of the average magnetic moment on concentration remains practically a
straight line parallel to the Slater-Poling curve up to room temperature, in full agreement with the
experiment. With further temperature increase, the dependence of the magnetic moment on
concentration becomes curved and becomes similar to the Curie temperature dependence on
concentration: it has a pronounced maximum between 50 at.% and 60 at.% Ni.

The dependence of the local magnetic moment on concentration also remains almost linear
up to room temperatures. However, this straight line is not parallel to the Slater-Poling curve, and its
slope decreases with increasing temperature. With further temperature increase, the dependence of
the local magnetic moment on concentration remains decreasing, but becomes nonlinear. The
maximum of the local moment is reached at concentrations of 40 at.% and 50 at.% Ni.

A detailed study of the paramagnetic properties of HCC iron-nickel alloys in DTSF-PGA is
the task of our further investigation.

Fig. 6: Dependence of local magnetic momentm;, for disordered HCC alloyFe,Ni;_, on nickel
concentrationl — x at0.1 < x < 0.6 , calculated in DTSF-PGA at different temperatures. The inset
shows larger values at nickel concentrations1 —x = 0.7 and .1 —x = 0.8
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