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Экспериментально исследована структурная модификация границ раздела слоев в двухслойных 
Co/Pt-спинтронных терагерцовых эмиттерах при облучении ионами Не+ с флюенсами от 1014 до 
1016 см-2. С помощью неразрушающего метода малоугловой рентгеновской рефлектометрии был 
обнаружен рост ширины интерфейса Co/Pt от 1.2 нм (исходный образец) до 1.9 нм. Эксперимен-
тальные данные находятся в хорошем соответствии с результатами моделирования с использо-
ванием программы SRIM. Проведенные магнитооптические измерения показали, что образцы 
сохраняют свои магнитные свойства при всех флюенсах. Полученные результаты могут быть ис-
пользованы для увеличения эффективности терагерцовой генерации в таких структурах.
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ВВЕДЕНИЕ
Задача генерации электромагнитного излу-

чения в терагерцовом диапазоне частот весьма 
актуальна [1]. Наряду с нелинейными кристал-
лами и фотопроводящими полупроводниковы-
ми антеннами многослойные магнитные струк-
туры “ферромагнетик/тяжелый металл”, такие 
как Co/Pt, рассматриваются в качестве перспек-
тивных источников терагерцового излучения 
[2, 3]. Механизм генерации основан на конвер-
сии импульсов спинового тока, возбуждаемо-
го фемтосекундными лазерными импульсами, 
в импульсы электрического тока, благодаря 
спин-орбитальному рассеянию. Эффектив-
ность конверсии оптической накачки в тера-
герцовую генерацию зависит от состава слоев, 
их толщины, и как было показано в ряде работ, 
от структуры интерфейса. При этом было про-
демонстрировано, что формирование на интер-
фейсе Co/Pt переходного слоя CoxPt1-x с пере-
менным составом увеличивает эффективность 

конверсии [4–6]. Авторы данных работ объясня-
ют наблюдаемый эффект уменьшением спино-
вого сопротивления на размытой границе между 
слоями. Другой известный граничный эффект в 
слоях “ферромагнетик/тяжелый металл” – вза-
имодействие Дзялошинского–Мория, которое 
также обусловлено спин-орбитальным рассе-
янием, возрастает при облучении структур Co/
Pt и Co/W ионами гелия и достигает максимума 
при флюенсе ~1015 см-2 [7]. Поэтому другое воз-
можное объяснение увеличения эффективности 
терагерцовой генерации – возрастание спин-ор-
битального взаимодействия в перемешанных 
слоях, а значит, и величины конверсии спиново-
го тока в электрический. Кроме того, известно, 
что ионное облучение многослойных магнитных 
пленок влияет на их магнитные свойства [8–10]. 
Это также связано с перемешиванием атомов на 
интерфейсе [11–13]. 

Целью данной работы было установить вли-
яние ионного облучения гелием на уширение 
интерфейсов в двухслойных структурах Co/Pt и 
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на изменение их магнитооптических характери-
стик, а также возможность использования этой 
методики в целях увеличения эффективности 
спинтронных эмиттеров. Такой подход для соз-
дания спинтронных источников ТГц-излучения 
ранее не применялся. Технически он более про-
стой по сравнению с изготовлением переходных 
слоев [4–6], однако может дать существенные 
изменения свойств тонкопленочных структур 
[7–9, 11]. Для ТГц-эмиттеров наиболее важным 
параметром, который может быть модифициро-
ван при облучении гелием, является спин-зави-
симый кондактанс на границе Co и Pt, который 
определяет эффективность инжекции спина из 
ферромагнетика в немагнитный металл и, как 
следствие, мощность излучаемого ТГц-сигнала 
[14]. Этот параметр определяется свойствами ин-
терфейса, в частности, его шириной. Для уста-
новления величины уширения при облучении 
ионами гелия структур Co/Pt в данной работе 
была развита методика исследований, сочетаю-
щая экспериментальную диагностику неразру-
шающим методом малоугловой рентгеновской 
рефлектометрии (МУРР) и моделирование про-
цесса ионного облучения в программе SRIM.

МЕТОДИКА ЭКСПЕРИМЕНТА
Двухслойные структуры Co/Pt изготавливали 

методом магнетронного распыления [15] в ат-
мосфере Ar (давление 4·10-3 Торр) при комнатной 
температуре в вакуумной установке ВУП-5М. В 
качестве подложки использовали стекло разме-
ром 22×22 mm2 с шероховатостью поверхности 
около 0.3 нм по данным атомно-силовой микро-
скопии. Сначала на подложку осаждали слой Co 
толщиной около 2 нм, на который затем осажда-
ли слой Pt толщиной 3 нм. Параметры облуче-
ния были выбраны исходя из результатов преды-
дущих опытов по модификации поверхностного 
взаимодействия Дзялошинского–Мория [7]. 
Использование легких ионов гелия обосновы-
вается тем, что позволяет проводить модифи-
кацию интерфейсов после осаждения с мини-
мальным влиянием на свойства отдельных слоев 
в структуре и пренебрежимо малым распылени-
ем тяжелых атомов мишени. Образец разделяли 
на четыре части, которые подвергали ионному 
облучению с флюенсами 1014, 1015 и 1016 см-2 при 
энергии ионов гелия 30 кэВ, одна часть служила 
образцом сравнения. Облучение проводили на 
установке ионно-лучевой имплантации ИЛУ-3 с 
плотностью тока 1 мкА/см2. Температура образ-
ца при облучении не превышала 40°С.

Структурные исследования проводили ме-
тодом МУРР на рентгеновском дифрактометре 
Bruker D8 Discover (оборудование ЦКП “Физика 

и технология микро- и наноструктур” ИФМ 
РАН). Для определения структурных параметров 
решали обратную задачу метода МУРР путем ва-
рьирования параметров пробной модели: плот-
ности и толщины слоев, ширины интерфейсов 
между ними. Расчет модельной кривой реф-
лектометрии и ее подгонка к эксперименталь-
ной проводили с использованием программно-
го комплекса DIFFRAC.Leptos [16]. Плотности 
слоев Co и Pt оказались близки к табличным и 
не варьировались при подгонке. Для моделиро-
вания переходных слоев использовали функцию 
ошибок для гауссового распределения со стан-
дартным отклонением σ. Одновременно прово-
дили моделирование процесса ионного облуче-
ния двухслойных структур Co/Pt в программном 
комплексе SRIM [17]. При моделировании ис-
пользовали параметры, полученные методом 
МУРР для исходного образца. Результаты моде-
лирования в SRIM представляли собой графики 
распределения перемещенных атомов, которые 
затем пересчитывали в графики концентраций 
с учетом флюенса, а потом и в графики плотно-
сти для удобства сравнения с данными МУРР. 
Ширину интерфейса на полученных графиках 
определяли по интервалу глубин Δz, на котором 
значение плотности на интерфейсе изменяется в 
пределах 16–84% от величины перепада плотно-
стей между Со и Pt, что соответствует значению 
2σ для функции ошибок.

Исследование петель гистерезиса намагни-
чивания пленок проводили методами опти-
ческой магнитометрии путем измерения ме-
ридионального магнитооптического эффекта 
Керра в геометрии скрещенных поляризаторов. 
Источником излучения служил высокостаби-
лизированный He–Ne-лазер (λ = 632 нм) с мо-
дуляцией угла линейной поляризации в ячейке 
Фарадея. Синхронное детектирование мощно-
сти отраженного от образца и прошедшего через 
анализатор излучения проводили с использова-
нием синхронного детектора SRC-830 (Stanford 
Research Systems). Поскольку образцы являются 
ультратонкими пленками, измеренные зависи-
мости угла поворота плоскости поляризации от 
приложенного магнитного поля по форме и па-
раметрам подобны петлям намагничивания об-
разцов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Измеренная и рассчитанная кривые МУРР для 

исходной структуры Co/Pt приведены на рис. 1а. 
Наилучшее совпадение наблюдается при сле-
дующих подгоночных параметрах: h(Pt) = 3 нм; 
h(Co) = 2.2 нм; σ(air/Pt) = 0.2 нм σ(Pt/Co) = 
= 0.6 нм; σ(Co/glass) = 0.3 нм. Аналогичные 
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измерения были проведены для структур, облу-
ченных флюенсами 1014, 1015 и 1016 см-2, соответ-
ствующие профили плотностей, представлены 
на рис. 1б. Видно, что ширина интерфейсов воз-
растает с увеличением флюенса ионов Не+. Зна-
чения параметров σ, определенных по данным 
МУРР для всех интерфейсов в структурах, при-
ведены в табл. 1.

Полученные результаты качественно совпа-
дают с данными, полученными ранее методом 
просвечивающей электронной микроскопии 
для периодических многослойных структур  
Co/Pt [18]. Отличие использованного мето-
да МУРР заключается в том, что он является 
неразрушающим, исключает влияние пробо-
подготовки на результат и позволяет относи-
тельно легко получить количественную оцен-
ку эффекта уширения интерфейсов в таких 
структурах. Однако существенным недостатком 
метода МУРР является ограниченная инфор-
мативность анализа в случае дальнейшего ус-
ложнения структуры (увеличение количества 
слоев и интерфейсов). В таком случае решение 
обратной задачи будет затруднено и может да-
вать неоднозначные или неадекватные количе-
ственные результаты. Поэтому для независи-
мой оценки воздействия ионного облучения на 
ширину интерфейсов в таких структурах была 
реализована методика с использованием мо-
делирования атомного перемешивания в про-
граммном комплексе SRIM.

Смещение атомов кобальта и платины и их 
перераспределение при облучении флюенсом 
1016 см-2 рассчитывали в пакете SRIM, результа-
ты приведены на рис. 2а. Облучение приводит к 
формированию области перемешивания на гра-
нице. Переход от концентраций смещенных ато-
мов к профилям плотности делали в следующем 
приближении. Считали, что пересекшие ин-
терфейс атомы кобальта заменили изначально 
находившиеся там атомы платины и наоборот. 
Поэтому плотность вблизи интерфейса в про-
стом приближении оценивали как ρ = (ρCo·nCo + 
+ ρPt·nPt)/(nCo + nPt). Эффект различного флюенса 
заключается в росте концентрации перешедших 
интерфейс атомов, т. е. увеличению доли кобаль-
та в платине и платины в кобальте, что уменьша-
ет плотность слоя платины вблизи интерфейса и 
увеличивает плотность слоя кобальта, т. е. приво-
дит к наблюдаемому эффекту уширению интер-
фейса. Таким образом, SRIM дает оценку допол-
нительного уширения интерфейсов, вызванного 
именно ионно-индуцированным перемешива-
нием. Для учета исходной шероховатости бы-
ла проведена свертка полученных в SRIM про-
филей плотности с гауссианом с параметром σ, 
определенным по данным МУРР для необлучен-
ной структуры. На рис. 2б построены профили 
плотности на интерфейсе Co/Pt для флюенсов 
облучения 1014 и 1016 см-2. Количественное срав-
нение ширины интерфейсов Co/Pt (величина 
Δz = 2σ), полученной методом МУРР и при мо-
делировании в SRIM (табл. 2), показывает хоро-
шее совпадение эксперимента и моделирования. 
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Рис. 1. Экспериментальная и смоделированная кривые 
МУРР для необлученной двухслойной структуры Co/Pt (а); 
расположение слоев в структуре Co/Pt и профили плотно-
сти, полученные на основе данных МУРР (б).

Таблица 1. Шероховатость интерфейсов σ, определен-
ная методом МУРР для структуры Co/Pt, облученной 
разными флюенсами He+

Флюенс, 
см-2

σ (воздух/Pt),  
± 0.1 нм

σ (Pt/Co),  
± 0.1 нм

σ (Co/стекло),  
± 0.1 нм

Исходная 0.2 0.6 0.3
1014 0.3 0.7 0.4
1015 0.4 0.8 0.4
1016 0.5 1 0.5
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Магнитооптические измерения петель на-
магничивания образцов подтвердили сохране-
ние магнитных свойств пленок Co/Pt при всех 

дозах облучения. Тем не менее наблюдается 
определенное изменение формы петли магнит-
ного гистерезиса при больших флюенсах. Зави-
симость угла поворота плоскости поляризации 
от приложенного магнитного поля при отраже-
нии света от исходной структуры Co/Pt и облу-
ченной с флюенсом 1016 см-2 приведены на рис. 3. 
Поскольку для наших образцов они совпадают 
с кривыми намагничивания, на правой верти-
кальной оси приведены значения намагничен-
ности в относительных единицах.

При этом при дозах по 1015 см-2 включитель-
но петли практически не изменяются (и поэтому 
не приведены на рисунке) и совпадают с петлей 
намагничивания исходного образца. Видно, что 
поле, необходимое для намагничивания струк-
туры до насыщения, заметно возрастает с уве-
личением флюенса, что говорит о возникнове-
нии неоднородных магнитных состояний при 
перемагничивании в результате возникновения 
неоднородностей (дефектов) при больших флю-
енсах. Также можно заметить, что с увеличени-
ем флюенса ионов He+ увеличивается величи-
на магнитооптического вращения. Это может 
быть обусловлено ростом эффективной вели-
чины спин-орбитального взаимодействия в ре-
зультате перемешивания слоев. Можно наде-
яться на изменение эффективности генерации 
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Рис. 2. Смоделированное в программном комплексе SRIM 
распределение атомов Co и Pt, перемещенных под действи-
ем ионного облучения при флюенсе ионов He 1016 см-2 (а); 
фрагмент профилей плотности на интерфейсе Pt/Co для 
флюенсов ионов He 1014 и 1016 см-2, определенных из расче-
тов SRIM (б).

Таблица 2. Ширина интерфейсов Δz (2σ), определен-
ная методом МУРР и полученная в результате модели-
рования в программном комплексе SRIM, для струк-
туры Co/Pt, облученной разными флюенсами He+

Флюенс, 
см-2

Ширина 
интерфейса Co/Pt 
(МУРР), ± 0.1 нм

Ширина интерфейса 
Co/Pt (SRIM),  

± 0.1 нм

Исходная 1.2 Была принята равной 
исходной МУРР

1014 1.5 1.6
1015 1.7 1.7
1016 1.9 1.9
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Рис. 3. Зависимость угла поворота плоскости поляризации 
от приложенного магнитного поля при отражении света от 
исходной структуры Co/Pt (а) и структуры, облученной ио-
нами He+ c флюенсом 1016 см-2 (б).
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терагерцового излучения облученными струк-
турами. Экспериментальная проверка данного 
утверждения выходит за рамки данной работы и 
будет выполнена в дальнейших исследованиях. 

ЗАКЛЮЧЕНИЕ
Таким образом, в данной работе показано, 

что облучение ионами гелия позволяет уширять 
интерфейс в структурах “ферромагнетик/тяже-
лый металл”, таких как Co/Pt, используемых в 
качестве спинтроных эмиттеров терагерцового 
излучения. Факт уширения подтвержден экспе-
риментально неразрушающим методом МУРР, а 
также с помощью моделирования в SRIM. Оцен-
ки дополнительного вклада ионно-индуциро-
ванного уширения совпадают количественно, 
что позволяет использовать методику моделиро-
вания и для более сложных структур, когда при-
менение метода МУРР малоинформативно. 

Показано, что в двухслойных структурах  
Co/Pt с ростом флюенса ионов гелия растет как 
ширина интерфейсов, так и величина магнито-
оптического вращения. Полученные результаты 
позволяют ожидать, что изменения структур-
ных и магнитооптических характеристик облу-
ченных структур спинтронных эмиттеров могут 
привести к изменению мощности генерируемо-
го ими терагерцового излучения.

Финансирование: работа выполнена при 
поддержке гранта Российского Научного 
Фонда (проект № 23-22-00295 https://rscf.ru/
project/23-22-00295/, ФГБНУ “Федеральный ис-
следовательский центр Институт прикладной 
физики им. А.В. Гапонова-Грехова Российской 
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EFFECT OF He+ ION IRRADIATION ON INTERFACE WIDTH  
IN THIN-FILM Co/Pt TERAHERTZ SPINTRONIC SOURCES

I. A. Antonov1, 2, *,  R. V. Gorev1,  Yu. A. Dudin2,  E. A. Karashtin1,  D. S. Korolev2,  
I. Yu. Pashenkin1,  M. V. Sapozhnikov1, 2,  and  P. A. Yunin1, 2

1Institute for Physics of Microstructures, Russian Academy of Sciences, Afonino, Nizhny Novgorod region, 603087 Russia
2N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603600 Russia

*e-mail: ivan.antonov@sci-phys.ru

In this work, we experimentally studied the structural modification of the interfaces in bilayer Co/Pt 
spintronic terahertz emitters under irradiation with He+ ions with a fluence of up to 1016 cm-2. Using the 
non-destructive method of small-angle X-ray reflectometry, an increase in the Co/Pt interface width from 
1.2 nm (initial sample) to 1.9 nm under irradiation with He+ with a fluence of 1016 cm-2 was detected. The 
experimental data are in good agreement with the results of modeling using SRIM. The magneto-optical 
measurements showed that the samples retain their magnetic properties at all fluences. The results can be 
used to increase the efficiency of terahertz generation in such structures.

Keywords: spintronic emitters, Co/Pt, ion irradiation, magneto-optical properties, X-ray reflectometry, inter-
faces, magnetic structures, thin films 
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