= РИМИХОТОФ

УДК 661.742.24; 54-126

МЕТАКРИЛАТСОДЕРЖАЩИЕ *N*-ПРОИЗВОДНЫЕ *N,N*-ДИЭТИЛ-4-(ФЕНИЛДИАЗЕНИЛ)АНИЛИНА КАК ИНИЦИАТОРЫ В ЛВУХФОТОННОЙ ПОЛИМЕРИЗАЦИИ

© 2024 г. М. В. Арсеньев¹, Э. Р. Жиганшина^{1,*}, Д. А. Колымагин², В. А. Ильичев¹, Р. С. Ковылин¹, А. Г. Витухновский^{2,3}, С. А. Чесноков¹

¹Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук, Нижний Новгород, Россия

²Федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)", Долгопрудный, Россия

³Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, Москва, Россия

*E-mail: zhiganshinae@mail.ru

Поступила в редакцию 14.12.2023 г. После доработки 17.12.2023 г. Принята к публикации 18.12.2023 г.

Рассмотрена возможность использования ряда метакрилатсодержащих N,N-диэтил-4-(фенилдиазенил) анилинов с различными пара-заместителями по отношению к азогруппе (-H, -Br, -NO₂) в качестве фотоинициаторов радикальной полимеризации. Исследованы электрохимические и фотолюминесцентные свойства данных соединений. В присутствии азокрасителей осуществлена двухфотонная фотополимеризация триакрилата пентаэритритола сфокусированным излучением фемтосекундного лазера с длиной волны 780 нм. Методом DLW-нанолитографии получены структуры с минимальными размерами линейных элементов 94 ± 5 нм, а также изготовлены 3D-микроструктуры сложной архитектуры. *Ключевые слова:* азокрасители, метакрилат, фотоинициатор, фотополимеризация, циклическая воль-

тамперометрия, двухфотонная фотополимеризация **DOI:** 10.31857/S0023119324030022 **EDN:** UUYGVO

DOI. 10.31037/3002311/324030022 **EDIV.** (

ВВЕДЕНИЕ

В последние 10 лет метод двухфотонной нанолитографии, в частности метод прямой лазерной записи (DLW – direct laser writing), стал одним из наиболее используемых при изготовлении трехмерных микро- и наноструктур с субмикронным разрешением [1-3]. Данная технология широко применяется при создании элементов для микрофлюидики [4], изготовления метаструктур [5], фотонных кристаллов [6] и др. Основное применение нашли фотополимеризующиеся композиции (ФПК) на основе виниловых мономеров, отверждаемые по радикальному и ионному механизмам и содержащие инициаторы различной природы, способные под действием длинноволнового излучения (600-900 нм) за счет эффекта двухфотонного поглощения инициировать полимеризацию. По сравнению с традиционной полимеризацией, инициируемой УФ или видимым излучением (однофотонный процесс), метод DLW обладает двумя преимуществами. Вопервых, поскольку вероятность двухфотонного поглощения пропорциональна квадрату интенсивности излучения, то за счет его фокусировки и отсутствию поглощения компонентами ФПК есть возможность проводить процесс двухфотонной фотополимеризации в произвольном режиме в заданном объеме ФПК с использованием больших мощностей излучения [7]. При этом разрешение записи структур может превышать пределы оптической дифракции [2]. Во-вторых, энергия фотонов длинноволнового излучения намного ниже, по сравнению с фотонами УФ-излучения, поэтому использование такого источника излучения нивелирует его рассеяние образующимся полимером. В совокупности с высокой проникающей способностью это позволяет проводить процесс литографии под действием излучения, проходящего не только через ФПК, но и сквозь полимерные элементы формируемого 3D-объекта. Рассмотренные преимущества реализуются в первую очередь благодаря наличию в ФПК подходящего фотоинициатора. Среди большого разнообразия соединений, применяемых в качестве фотоинициа-

Схема 1

торов в двухфотонной нанолитографии, азобензолы и его производные (азокрасители) встречаются крайне редко. В литературе известен лишь один пример такого их применения [8]. В основном азокрасители используются для создания оптически переключаемых материалов (в том числе полимерных [9]) за счет их способности к обратимой фотоизомеризации цис- и транс-форм под действием излучения УФ [10] видимого [11] и ИК спектральных диапазонов [12]. Подобные материалы обладают нелинейно-оптическими свойствами, что делает их привлекательными для применения в оптических устройствах хранения данных [13], средствах связи [14], двухфотонных флуоресцентных микроскопах [15] и фотодинамической терапии [16]. Кроме того, введение донорных (NR₂-группы) и акцепторных (-Cl, -NO₂) фрагментов в структуру азобензола способствует усилению этих свойств [17]. В работах [18, 19] из ФПК, легированных подобным push-pull азокрасителем, методом двухфотонной фотополимеризации были изготовлены оптически активные полимерные 3D-структуры, и при действии на них излучения Ar+ лазера (514.5 нм) полученные полимеры проявляли двойное лучепреломление. Однако известно, что при воздействии излучения высокой интенсивности на азокрасители есть большая вероятность расщепления связи N=N [20], что может привести к образованию радикалов, способных инициировать полимеризацию. В данном исследовании продемонстрирована возможность использования push-pull азокрасителей, содержащих в своей структуре метакрилатные группы, в качестве фотоинициаторов двухфотонной фотополимеризации пен-

таэритритола триакрилата (ПЭТА). Приведены спектральные, фотофизические и электрохимические характеристики этих красителей. Структурные формулы используемых в работе соединений и их обозначения приведены на Схеме 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

(Е)-2-(этил(4-(фенилдиазенил)фенил)амино) этил метакрилат (1), (Е)-2-((4-((4-бромофенил)диазенил)фенил)(этил)амино) этил метакрилат (2) и (Е)-((4-((4-нитрофенил)диазенил)фенил)азандиил) бис(этан-2,1-диил) бис(2-метакрилат) (4) получены по методикам, описанным в [21-23]. (Е)-2-(этил(4-((4-нитрофенил)диазенил)фенил)амино) этил метакрилат (3) — disperse Red 1 methacrylate (Aldrich). Пентаэритритол триакрилат (ПЭТА) (Aldrich) использовали без дополнительной очистки. Растворители очищали по стандартной методике [24].

УФ- и видимая спектроскопия: электронные спектры поглощения и эмиссии записаны на спектрометрах СФ-56 ("ЛОМО", Россия) и Perkin-Elmer Lambda UV-vis при комнатной температуре.

Электрохимические исследования. Окислительновосстановительные потенциалы определяли методом циклической вольтамперометрии (ЦВА) в трехэлектродной ячейке (потенциостат-гальваностат PS-50 (SmartStat)) в атмосфере аргона. Рабочий электрод — неподвижный стеклоуглеродный электрод (d=2 мм), вспомогательный электрод — платиновая проволока. Электрод сравнения Ag/AgCl/KCl (нас.) с водонепроницаемой диафрагмой. Скорости развертки потенциала составили: 0.05, 0.1, 0.2, 0.3, 0.4,

Краситель	λ_{max} (толуол), нм	λ _{max} (ДМСО), нм	ε (ДМСО), M ⁻¹ см ⁻¹
1	413	422	39900
2	425	435	46100
3	493	500	34100
4	467	472	37700

Таблица 1. Спектральные характеристики исследуемых азокрасителей 1-4

 $0.5~B~c^{-1}$. Растворитель — ацетонитрил. Фоновый электролит — $0.1~M~(NBu_4)ClO_4~(Aldrich)$, дважды перекристаллизованный из водного раствора этанола и высушенный в вакууме (48 ч) при 50° С.

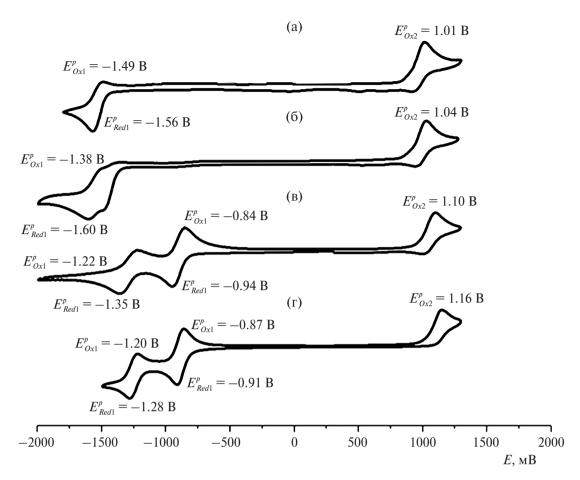
Термополимеризация ПЭТА в присутствии красителей. Исследуемые красители (0.03 моль/л) и термоинициатор динитрил азоизомасляной кислоты (ДАК) (0.03 моль/л) растворяли в ПЭТА. Композицию помещали в полость формы, образованной двумя силикатными стеклами с демпферирующей прокладкой между ними толщиной 1 мм и затем грели при 80°C в течение 3 ч.

Фотолюминесцентная (ФЛ) спектроскопия. Образцы полимеров, содержащие азокрасители 1—4, возбуждали диодным лазером с длиной волны 405 нм мощностью 100 мВт и регистрировали фотолюминесценцию при температурах 298 и 77 К с помощью спектрофлуориметра OceanOptics USB2000. Кинетические исследования ФЛ образца полимера с азокрасителем 3 были проведены при 298 и 77 К с использованием в качестве источника возбуждения импульсного диодного лазера SSP-MD-NS-375-50-20M-2 компании CNI Laser (375 нм, 10 нс) при регистрации ФЛ сигнала на длине волны 680 нм при помощи ФЭУ детектора спектрофлуориметра Zolix Omni Fluo 990LSP.

Исследования одно- и двухфотонной фотополимеризации красителей проводили согласно методикам, описанным в [3].

Изображения полимерных микроструктур, полученных на стеклянной подложке, фиксировали с использованием растрового электронного микроскопа сверхвысокого разрешения Regulus SU8100 (Hitachi, Япония). Образцы исследовали без нанесения проводящего покрытия при ускоряющем напряжении от 0.7 до 1.0 кВ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Были синтезированы четыре метакриловых аналога n-производных N, N-диэтил-4-(фенилдиазенил) анилина — три монометакрилата 1-3 и один диметакрилат 4 (Схема 1), содержащие различные пара-заместители по отношению к азогруппе.

В табл. 1 представлены спектральные характеристики азокрасителей **1–4**.

Для всех соединений в электронных спектрах поглощения наблюдаются полосы в интервале 350-570 нм, свидетельствующие о внутримолекулярном переносе электронов от донорных фрагментов (NR₂-групп) к акцепторным ($-N=N-и-NO_2$ группы). Введение в структуру красителей метакрилатной группы не оказывает существенного влияния на вид и характер электронного спектра поглощения по сравнению со спектрами исходных соединений [22]. В ряду азокрасителей 1-3 с увеличением акцепторности заместителя смещается максимум длины волны поглощения с 413 до 493 нм в толуоле и с 422 до 500 нм в ДМСО. При введении второй метакрилатной группы (краситель 4) положение максимума, напротив, сдвигается на 26 нм в синюю область спектра. При регистрации спектров поглощения в ДМСО наблюдается положительный сольватохромизм, особенно заметный в случае красителя 2. Молярные коэффициенты экстинкции для всех указанных соединений близки по значению (табл. 1).

Электрохимические характеристики азокрасителей в растворах ацетонитрила исследованы методом ЦВА. Кривые ЦВА для красителей 1-4 приведены на рис. 1. Для соединений 1 и 2 кривые ЦВА имеют аналогичный вид: квазиобратимая волна восстановления в области -1.60-1.38 В соответствует восстановлению азобензольного фрагмента, необратимая волна окисления в области 1.01-1.04 В — окисление третичных аминов. В то же время для NO_2 -производных азокрасителей наблюдается появление еще одной волны восстановления, свидетельствующей о восстановлении также и нитрогруппы. Кроме того, введение сильноакцепторной группы приводит к смещению потенциалов восстановления в анодную область.

Азокрасители 1—4 не обладают ФЛ в растворах ДМСО и толуола при комнатной температуре при возбуждении длиной волны, соответствующей максимуму их поглощения (422 и 472 нм). Однако при возбуждении светом длины волны 405 нм в полимерных образцах на основе ПЭТА, полученных термополимеризацией и содержащих встроенные в них

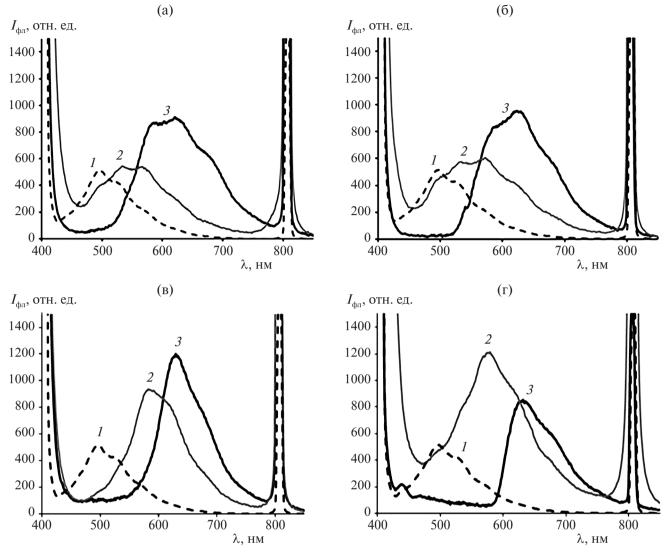
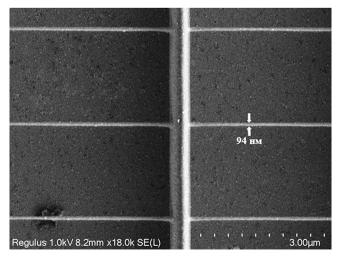


Рис. 1. Кривые ЦВА азокрасителей **1** (а), **2** (б), **3** (в) и **4** (г). MeCN, Ag/AgCl/KCl(нас.), $0.1 \text{ M} \text{ (NBu}_4\text{)ClO}_4$, скорость сканирования -200 мB c^{-1} .


красители 1-4, при комнатной температуре была обнаружена умеренная ФЛ активность (рис. 2, кривые 3 на всех графиках) — спектр флуоресценции состоит из широкой полосы в области 500-700 нм и отличен от содержащихся в чистом полиПЭТА люминесцентных примесей (рис. 2, кривая 1). При понижении температуры до 77 К интенсивность ФЛ образцов увеличивается, а максимум спектра ФЛ сдвигается в красную область (рис. 2, кривые 3 на всех графиках). Кинетические исследования ФЛ образца полимерной матрицы на основе ПЭТА, содержащей встроенный краситель 3, проведенные при импульсном возбуждении диодным лазером с длиной волны 375 нм, показали, что при 298 К демонстрирует только флуоресценцию на длине волны 680 нм, описываемую биэкспоненциальной функцией затухания с временами жизни 3 (22.5 %) и 13.5 нс (77.5 %). Тогда как при 77 K в кинетике Φ Л того же образца наряду с флуоресцентной компонентой присутствует и фосфоресценция, которая также соответствует биэкспоненциальной функции с микросекундным порядком времен затухания — 1(28%)и 8.3 мкс (72%) соответственно. Фосфоресценция

образца красителя **3** в матрице ПЭТА, вероятно, обусловлена эмиссией его триплетных возбужденных состояний, а увеличение интенсивности ФЛ и сдвиг спектра ФЛ в красную область иммобилизованых в ПЭТА красителей **1—4** связаны с увеличением доли такого свечения при охлаждении до 77 К. Таким образом, релаксация красителей **1—4** представляет собой сложный процесс, включающий образование нескольких синглетных и триплетных возбужденных состояний.

Исследуемые азокрасители были протестированы в условиях одно- и двухфотонной фотополимеризации. Были приготовлены ФПК на основе ПЭТА К1-К5 и содержащие данные красители в качестве фотоинициаторов (табл. 2). Установлено, что данные соединения практически не инициируют однофотонную фотополимеризацию ПЭТА (по данным ИК-спектроскопии степень превращения С=С связей даже при максимальной мощности LED-излучения установки 48 мВт 395 нм не превышала 5%). Кроме того, облучение тех же ФПК светом ртутной лампы разной мощности не приводит к образованию полимера.

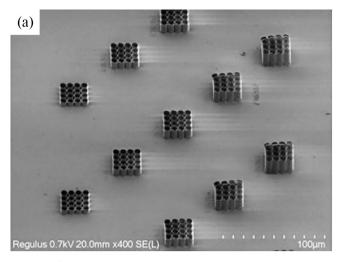



Рис. 2. Спектры люминесценции полимерных образцов на основе ПЭТА и азокрасителей **1** (а), **2** (б), **3** (в), **4** (г). На всех графиках: кривая I — полиПЭТА без азокрасителя; кривая 2 — спектр полиПЭТА с красителем, зарегистрированный при комнатной температуре; 3 — спектр полиПЭТА с красителем, зарегистрированный при 77 К. Длина волны возбуждения — 405 нм, мощность излучения — 100 мВт.

Рис. 3. СЭМ-изображение линейных элементов из композиции K5 при увеличении ×18000 крат.

С другой стороны, облучение подготовленных ФПК, содержащих азокрасители, сфокусированным фемтосекундным лазерным излучением инициирует двухфотонную фотополимеризацию ПЭТА, в отличие от однофотонного процесса. Пороговые значения мощности излучения при использовании объектива $\times 20$ (NA = 0.5) для всех композиций (K1-K4) с концентрацией азокрасителей 2.5 ммоль/л составляет 17-18 мВт (табл. 2). Увеличение концентрации инициатора 4 до 25 ммоль/л (композиция К5) приводит к снижению величины пороговой мощности до 13 мВт. Для композиции К5 были проведены эксперименты по достижению наименьшего размера линейного элемента литографии. В ходе экспериментов были получены линейные элементы с шириной линии 94 нм (рис. 3). Их отличительной осо-

Рис. 4. СЭМ-изображения цилиндрических спиралевидных 3D-микроструктур, полученных на композиции K5 при увеличении $\times 400$ (a) и $\times 2500$ (б) крат.

Таблица 2. Используемые композиции на основе ПЭТА и пороговая мощность для них в условиях двухфотонной фотополимеризации

Обозначение ФПК	Краситель	Концентрация инициатора, ммоль/л	Пороговая мощность, мВт
K1	1	2.5	17
K2	2	2.5	18
K3	3	2.5	17
K4	4	2.5	17
K5	4	25	13

бенностью, по сравнению со структурами, полученными на композициях с известными (мет)акрилат-содержащими инициаторами, является более равномерное формирование линий вблизи опорных элементов (рис. 3). Кроме того, данная композиция пригодна и для создания наноразмерных объектов сложной формы (рис. 4).

ЗАКЛЮЧЕНИЕ

Азокрасители являются многочисленными и доступными соединениями – на их долю приходится более 50% выпускаемых марок красителей [25]. В данной работе азокрасители, содержащие метакрилатную группу, были успешно использованы в качестве фотоинициаторов двухфотонной фотополимеризации ПЭТА. Наличие метакрилатной группы увеличивает растворимость данных соединений в среде олигомера до 25 ммоль/л. На примере композиции с диметакрилатным азокрасителем методом двухфотонной нанолиографии получены структуры с минимальным размером линейных элементов 94 ± 5 нм и изготовлены 3D-микроструктуры сложной архитектуры. Кроме того, продемонстрирована умеренная люминесцентная активность полимерных образцов полиПЭТА, содержащих исследуемые азокрасители, что в совокупности может найти применение при создании композиций для печати единичных источников излучения методом DLW.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержки Российского научного фонда (проект № 19-73-10173-П). Работа выполнена с использованием оборудования центра коллективного пользования "Аналитический центр ИМХ РАН" при поддержке гранта "Обеспечение развития материально-технической инфраструктуры центров коллективного пользования научным оборудованием" (Уникальный идентификатор RF----2296.61321X0017, Номер Соглашения 075-15-2021-670).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Jaiswal A., Rastogi C. K., Rani S., Singh G. P. et al.* // iScience. 2023. V. 26. № 106374.
- 2. Zhiganshina E.R., Arsenyev M.V., Chesnokov S.A. // Polym. Sci., B. 2023. V. 65. P. 247.
- 3. *Zhiganshina E.R.*, *Arsenyev M.V.*, *Chubich D.A. et al.* // Eur. Polym. J. 2021. V. 162. P. 110917.
- 4. Liu Y.J., Yang J.Y., Nie Y.M. et al. // Microfluid Nanofluidics. 2015. V. 18. P. 427.

- Sakellari I., Yin X., Nesterov M.L., Terzaki K. et al. // Adv. Opt. Mater. 2017. V. 5. № 1700200.
- 6. Rakhymzhanov A., Gueddida A., Alonso-Redondo E., et al. // Appl. Phys. Lett. 2016. V.108. № 201901.
- 7. *Zheng C., Jin F., Zhao Yu. et al.* // Sens. Actuators B Chem. 2020. V. 304. № 127345.
- 8. *Otuka A.J.G.*, *Torres B.B.M.*, *Dipold J. et al.* // Opt. Mater. Express. 2020. V. 10. № 8. P. 1792.
- 9. Fominykh O.D., Sharipova A.V., Balakina M.Yu. // Comput. Mater. Sci. 2019. V. 168. P. 32.
- 10. *Lu Y.*, *Hasegawa F.*, *Goto T. et al.* // J. Mater. Chem. 2003. V. 14. P. 75.
- 11. *Beharry A.A., Sadovski O., Woolley G.A.* // J. Am. Chem. Soc. 2011. V. 133. P. 19684.
- 12. *Vivas M.G.*, *Silva D.L.*, *De Boni L. et al.* // J. Phys. Chem. B. 2012. V. 116. P. 14677.
- 13. *Zhou L., Mao J., Ren Y. et al.* // Small. 2018. V. 14. № 1703126.
- 14. *Ghanavatkar C.W.*, *Mishra V.R.*, *Nagaiyan S.* // Dyes Pigm. 2021. V. 191. № 109367.
- 15. *Xu L., Zhang J., Yin L. et al.* // J. Mater. Chem. C. 2020. V. 8. P. 6342.

- 16. *McKenzie L.K.*, *Bryant H.E.*, *Weinstein J.A.* // Coord. Chem. Rev. 2019. V. 379. P. 2.
- 17. *Balakina M. Yu.*, *Shalin N.I.*, *Sharipova A.V.*, *Fominykh O.D.* // Mol. Phys. 2020. V. 118. № 21–22. P. 1.
- 18. *Mendonca C.R., Baldacchini T., Tayalia P., Mazur E.* // J. Appl. Phys. 2007. V. 102. № 1. P. 013109.
- 19. *Tribuzi V., Fonseca R.D., Correa D.S., Mendonca C.R.* // Opt. Mater. Express. 2013. V. 3. № 1. P. 21.
- 20. *Turro N.J.* Modern Molecular Photochemistry. University Science Books, 1991. P. 628.
- 21. *Vijayakumar C., Balan B., Kim M.-J., Takeuchi M. //* J. Phys. Chem. C. 2011. V. 115. P. 4533.
- 22. *Lim S.L.*, *Li N.-J.*, *Lu J.-M. et al.* // ACS Appl. Mater. Interfaces. 2009. V. 1. № 1. P. 60.
- 23. *Qiu F.X., Zhang Q., Yang D.Y.* // Mater. Sci. Forum. 2010. V. 663–665. P. 645.
- 24. *Armarego W.L.F.*, *Chai C.L.L.* Purification of laboratory chemicals. Amsterdam: Elsevier Inc. Butterworth-Heinemann, 2003.
- 25. *Eltaboni F., Bader N., El-Kailany R. et al.* // J. Chem. Rev. 2022. V. 4. № 4. P. 313.

METHACRYLATE-CONTAINING *n*-DERIVATIVES OF N,N-DIETHYL-4-(PHENYLDIAZENYL)ANILINE AS INITIATORS IN TWO-PHOTON POLYMERIZATION

M. V. Arseniev^a, E. R. Zhiganshin^{a,*}, D. A. Kolymagin^b, V. A. Ilyichev^a, R. S. Kovylin^a, A. G. Vitukhnovskiy^{b, c}, S. A. Chesnokov^a

^aFederal State Budgetary Institution of Science G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Nizhny Novgorod, Russia

^bFederal State Autonomous Educational Institution of Higher Education "Moscow Institute of Physics and Technology (National Research University)", Dolgoprudny, Russia

^cFederal State Budgetary Institution of Science P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

*E-mail: zhiganshinae@mail.ru

The possibility of using a number of methacrylate-containing N,N-diethyl-4-(phenyldiazenyl)anilines with various para-substituents with respect to the azo group (-H, -Br, -NO₂) as photoinitiators of radical polymerization is considered. The electrochemical and photoluminescent properties of these compounds have been studied. In the presence of azo dyes, two-photon photopolymerization of pentaerythritol triacrylate was carried out by focused radiation from a femtosecond laser with a wavelength of 780 nm. Structures with minimum linear element sizes of 94 ± 5 nm were obtained by DLW nanolithography, as well as 3D microstructures of complex architecture.

Keywords: azo dyes, methacrylate, photoinitiator, photopolymerization, cyclic voltammetry, two-photon photopolymerization

REFERENCES

- 26. Jaiswal A., Rastogi C. K., Rani S., Singh G. P. et al. // iScience. 2023. V. 26. № 106374.
- 27. Zhiganshina E.R., Arsenyev M.V., Chesnokov S.A. // Polym. Sci., B. 2023. V. 65. P. 247.
- 28. Zhiganshina E.R., Arsenyev M.V., Chubich D.A. et al. // Eur. Polym. J. 2021. V. 162. P. 110917.
- 29. Liu Y.J., Yang J.Y., Nie Y.M. et al. // Microfluid Nanofluidics. 2015. V. 18. P. 427.
- 30. *Sakellari I., Yin X., Nesterov M.L., Terzaki K. et al.* // Adv. Opt. Mater. 2017. V. 5. № 1700200.
- 31. Rakhymzhanov A., Gueddida A., Alonso-Redondo E., et al. // Appl. Phys. Lett. 2016. V.108. № 201901.
- 32. *Zheng C., Jin F., Zhao Yu. et al.* // Sens. Actuators B Chem. 2020. V. 304. № 127345.

- 33. *Otuka A.J.G.*, *Torres B.B.M.*, *Dipold J. et al.* // Opt. Mater. Express. 2020. V. 10. № 8. P. 1792.
- 34. Fominykh O.D., Sharipova A.V., Balakina M.Yu. // Comput. Mater. Sci. 2019. V. 168. P. 32.
- 35. Lu Y., Hasegawa F., Goto T. et al. // J. Mater. Chem. 2003. V. 14. P. 75.
- 36. *Beharry A.A.*, *Sadovski O.*, *Woolley G.A.* // J. Am. Chem. Soc. 2011. V. 133. P. 19684.
- 37. *Vivas M.G., Silva D.L., De Boni L. et al.* // J. Phys. Chem. B. 2012. V. 116. P. 14677.
- 38. *Zhou L., Mao J., Ren Y. et al.* // Small. 2018. V. 14. № 1703126.
- 39. *Ghanavatkar C.W.*, *Mishra V.R.*, *Nagaiyan S.* // Dyes Pigm. 2021. V. 191. № 109367.
- 40. *Xu L., Zhang J., Yin L. et al.* // J. Mater. Chem. C. 2020. V. 8. P. 6342.
- 41. *McKenzie L.K.*, *Bryant H.E.*, *Weinstein J.A.* // Coord. Chem. Rev. 2019. V. 379. P. 2.

- 42. *Balakina M.Yu.*, *Shalin N.I.*, *Sharipova A.V.*, *Fominykh O.D.* // Mol. Phys. 2020. V. 118. № 21–22. P. 1.
- 43. *Mendonca C.R., Baldacchini T., Tayalia P., Mazur E.* // J. Appl. Phys. 2007. V. 102. № 1. P. 013109.
- 44. *Tribuzi V., Fonseca R.D., Correa D.S., Mendonca C.R.* // Opt. Mater. Express. 2013. V. 3. № 1. P. 21.
- 45. *Turro N.J.* Modern Molecular Photochemistry. University Science Books, 1991. P. 628.
- 46. *Vijayakumar C., Balan B., Kim M.-J., Takeuchi M. //* J. Phys. Chem. C. 2011. V. 115. P. 4533.
- 47. *Lim S.L.*, *Li N.-J.*, *Lu J.-M. et al.* // ACS Appl. Mater. Interfaces. 2009. V. 1. № 1. P. 60.
- 48. *Qiu F.X., Zhang Q., Yang D.Y.* // Mater. Sci. Forum. 2010. V. 663–665. P. 645.
- 49. *Armarego W.L.F.*, *Chai C.L.L.* Purification of laboratory chemicals. Amsterdam: Elsevier Inc. Butterworth-Heinemann, 2003.
- 50. *Eltaboni F., Bader N., El-Kailany R. et al.* // J. Chem. Rev. 2022. V. 4. № 4. P. 313.