КИШЕЧНАЯ МИКРОБИОТА В КАНЦЕРОГЕНЕЗЕ КОЛОРЕКТАЛЬНОГО РАКА: ЭВОЛЮЦИЯ ГИПОТЕЗ
- Авторы: Глазунова Е.В1, Курносов А.С1,2, Молодцова П.А1, Москаленко А.М1, Макаров В.В1, Злобовская О.А1
-
Учреждения:
- Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
- Институт биохимической физики им. Н.М. Эммануэля Российской академии наук
- Выпуск: Том 59, № 6 (2025)
- Страницы: 891–908
- Раздел: ОБЗОРЫ
- URL: https://medbiosci.ru/0026-8984/article/view/358225
- DOI: https://doi.org/10.7868/S3034555325060029
- ID: 358225
Цитировать
Аннотация
Ключевые слова
Об авторах
Е. В Глазунова
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентстваМосква, Россия
А. С Курносов
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства; Институт биохимической физики им. Н.М. Эммануэля Российской академии наукМосква, Россия; Москва, Россия
П. А Молодцова
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентстваМосква, Россия
А. М Москаленко
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентстваМосква, Россия
В. В Макаров
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентстваМосква, Россия
О. А Злобовская
Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
Email: ozlobovskaya@cspfmba.ru
Москва, Россия
Список литературы
- Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263.
- Dekker E., Tanis P.J., Vleugels J.L.A., Kasi P.M., Wallace M.B. (2019) Colorectal cancer. Lancet. 394, 1467–1480.
- Morgan E., Arnold M., Gini A., Lorenzoni V., Cabasag C.J., Laversanne M., Vignat J., Ferlay J., Murphy N., Bray F. (2023) Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 72, 338–344.
- Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249.
- Cheng Y., Ling Z., Li L. (2020) The intestinal microbiota and colorectal cancer. Front. Immunol. 11, 615056.
- Avril M., DePaolo R.W. (2021) "Driver-passenger" bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes. 13, 1941710.
- Bakulin I.G., Zharkov A.V., Zhuravleva M.S., Serkova M.Yu. (2023) Colorectal cancer screening: current status and future prospects. Profil. med. 26, 12.
- Злокачественные новообразования в Pоссии в 2023 году (заболеваемость и смертность). (2024). Ред. Каприн А.Д., Старинский В.В., Шахзадова А.О. Москва: МНИОИ им. П.А. Герцена − филиал ФГБУ "НМИЦ радиологии" Минздрава России.
- Sung H., Siegel R.L., Laversanne M., Jiang C., Morgan E., Zahwe M., Cao Y., Bray F., Jemal A. (2025) Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncol. 26, 51–63.
- Saus E., Iraola-Guzmán S., Willis J.R., Brunet-Vega A., Gabaldón T. (2019) Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol. Aspects Med. 69, 93–106.
- Doocey C.M., Finn K., Murphy C., Guinane C.M. (2022) The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol. 22, 53.
- Dougherty M.W., Jobin C. (2023) Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes. 15, 2185028.
- Gharib E., Robichaud G.A. (2024) From crypts to cancer: a holistic perspective on colorectal carcinogenesis and therapeutic strategies. IJMS. 25, 9463.
- Mori G., Pasca M.R. (2021) Gut microbial signatures in sporadic and hereditary colorectal cancer. IJMS. 22, 1312.
- Berbecka M., Berbecki M., Gliwa A.M., Szewc M., Sitarz R. (2024) Managing colorectal cancer from ethology to interdisciplinary treatment: the gains and challenges of modern medicine. IJMS. 25, 2032.
- Roncucci L., Stamp D., Medline A., Cullen J.B., Robert Bruce W. (1991) Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum. Pathol. 22, 287–294.
- Прошин С.Н., Курбанов Р.А., Лоскутов С.И., Барсуков Н.Н., Алибеков Х.О., Качанов Д.А., Глушаков Р.И., Багатурия Г.О. (2018) Фокусы аберрантных крипт и изменения микробиоты кишечника на фоне химического мутагенеза и экспериментального гипери гипотиреоза. Педиатр. 9, 63–72.
- De Santis S., Liso M., Vacca M., Verna G., Cavalcanti E., Coletta S., Calabrese F. M., Eri R., Lippolis A., Armentano R., Mastronardi M., De Angelis M., Chieppa M. (2021) Dysbiosis triggers ACF development in genetically predisposed subjects. Cancers. 13, 283.
- Hong B., Ideta T., Lemos B.S., Igarashi Y., Tan Y., DiSiena M., Mo A., Birk J.W., Forouhar F., Devers T.J., Weinstock G.M., Rosenberg D.W. (2019) Characterization of mucosal dysbiosis of early colonic neoplasia. NPJ Precis Oncol. 3, 29.
- Ruiz-Saavedra S., Zapico A., Del Rey C.G., Gonzalez C., Suárez A., Díaz Y., De Los Reyes-Gavilán C.G., González S. (2022) Dietary xenobiotics derived from food processing: association with fecal mutagenicity and gut mucosal damage. Nutrients. 14, 3482.
- Fidelle M., Yonekura S., Picard M., Cogdill A., Hollebecque A., Roberti M.P., Zitvogel L. (2020) Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front. Immunol. 11, 600886.
- Nagtegaal I.D., Odze R.D., Klimstra D., Paradis V., Rugge M., Schirmacher P., Washington K.M., Carneiro F., Cree I.A. (2019) The 2019 WHO classification of tumours of the digestive system. Histopathology. 76, 182–188.
- Czene K., Lichtenstein P., Hemminki K. (2002) Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. Int. J. Cancer. 99, 260–266.
- Rustgi A.K. (2007) The genetics of hereditary colon cancer. Genes Dev. 21, 2525–2538.
- Purcell R.V., Visnovska M., Biggs P.J., Schmeier S., Frizelle F.A. (2017) Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 7.
- Rejali L., Seifollahi Asl R., Sanjabi F., Fatemi N., Asadzadeh Aghdaei H., Saeedi Niasar M., Ketabi Moghadam P., Nazemalhosseini Mojarad E., Mini E., Nobili S. (2023) Principles of molecular utility for CMS classification in colorectal cancer management. Cancers. 15, 2746.
- Yu Y.-N., Fang J.-Y. (2015) Gut microbiota and colorectal cancer. Gastrointest Tumors. 2, 26–32.
- Sun C., Li B., Wang B., Zhao J., Zhang X., Li T., Li W., Tang D., Qiu M., Wang X., Zhu C., Qian Z. (2019) The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis. Transl. Med. 5, 178–187.
- Wang Y., Zhang C., Hou S., Wu X., Liu J., Wan X. (2020) Analyses of potential driver and passenger bacteria in human colorectal cancer. CMAR. 12, 11553–11561.
- Sobhani I., Rotkopf H., Khazaie K. (2020) Bacteria-related changes in host DNA methylation and the risk for CRC. Gut Microbes. 12, 1800898.
- Tilg H., Adolph T.E., Gerner R.R., Moschen A.R. (2018) The intestinal microbiota in colorectal cancer. Cancer Cell. 33, 954–964.
- Raskov H., Burcharth J., Pommergaard H.-C. (2017) Linking gut microbiota to colorectal cancer. J. Cancer. 8, 3378–3395.
- Juge N. (2022) Relationship between mucosa-associated gut microbiota and human diseases. Biochem. Soc. Trans. 50, 1225–1236.
- Chen C., Zhang Y., Yao X., Li S., Wang G., Huang Y., Yang Y., Zhang A., Liu C., Zhu D., Li H., Yan Q., Ma W. (2023) Characterizations of the gut bacteriome, mycobiome, and virome in patients with osteoarthritis. Microbiol. Spectr. 11, e01711-22.
- Chávez-Carbajal A., Nirmalkar K., Pérez-Lizaur A., Hernández-Quiroz F., Ramírez-Del-Alto S., García-Mena J., Hernández-Guerrero C. (2019) Gut microbiota and predicted metabolic pathways in a sample of mexican women affected by obesity and obesity plus metabolic syndrome. Int. J. Mol. Sci. 20, 438.
- Bombin A., Yan S., Bombin S., Mosley J.D., Ferguson J.F. (2022) Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa. Physiol. Rep. 10, e15254.
- Zhernakova A., Kurilshikov A., Bonder M.J., Tigchelaar E.F., Schirmer M., Vatanen T., Mujagic Z., Vila A.V., Falony G., Vieira-Silva S., Wang J., Imhann F., Brandsma E., Jankipersadsing S.A., Joossens M., Cenit M.C., Deelen P., Swertz M.A., Weersma R.K., Feskens E.J.M., Netea M.G., Gevers D., Jonkers D., Franke L., Aulchenko Y.S., Huttenhower C., Raes J., Hofker M.H., Xavier R.J., Wijmenga C., Fu J. (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 352, 565–569.
- Raethong N., Nakphaichit M., Suratannon N., Sathitkowitchai W., Weerapakorn W., Keawsompong S., Vongsangnak W. (2021) Analysis of human gut microbiome: taxonomy and metabolic functions in Thai adults. Genes. 12, 331.
- Barengolts E., Green S.J., Eisenberg Y., Akbar A., Reddivari B., Layden B.T., Dugas L., Chlipala G. (2018) Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS One. 13, e0194171.
- Bressa C., Bailén-Andrino M., Pérez-Santiago J., González-Soltero R., Pérez M., Montalvo-Lominchar M.G., Maté-Muñoz J.L., Domínguez R., Moreno D., Larrosa M. (2017) Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 12, e0171352.
- Volokh O., Klimenko N., Berezhnaya Y., Tyakht A., Nesterova P., Popenko A., Alexeev D. (2019) Human gut microbiome response induced by fermented dairy product intake in healthy volunteers. Nutrients. 11, 547.
- Huffnagle G.B., Noverr M.C. (2013) The emerging world of the fungal microbiome. Trends Microbiol. 21, 334–341.
- Pandey H., Tang D.W.T., Wong S.H., Lal D. (2023) Gut microbiota in colorectal cancer: biological role and therapeutic opportunities. Cancers. 15, 866.
- Liang B., Wu C., Wang C., Sun W., Chen W., Hu X., Liu N., Xing D. (2022) New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front Microbiol. 13, 1065608.
- Оганезова И.А. (2018) Кишечная микробиота и иммунитет: иммуномодулирующие эффекты Lactobacillus rhamnosus GG 39–44. Русский мед. журн. 9, 39–44.
- Sears C.L., Pardoll D.M. (2011) Perspective: Alpha-Bugs, their microbial partners, and the link to colon cancer. J. Infect. Dis. 203, 306–311.
- Yadav D., Sainatham C., Filippov E., Kanagala S.G., Ishaq S.M., Jayakrishnan T. (2024) Gut microbiome–colorectal cancer relationship. Microorganisms. 12, 484.
- Viljoen K.S., Dakshinamurthy A., Goldberg P., Blackburn J.M. (2015) Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One. 10, e0119462.
- Siscar-Lewin S., Hube B., Brunke S. (2019) Anti-virulence and avirulence genes in human pathogenic fungi. Virulence. 10, 935–947.
- Wang Z., Dan W., Zhang N., Fang J., Yang Y. (2023) Colorectal cancer and gut microbiota studies in China. Gut Microbes. 15, 2236364.
- Hajishengallis G., Darveau R.P., Curtis M.A. (2012) The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725.
- Candela M. (2014) Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J. Gastroenterol. 20, 908.
- Кит О.И., Никипелова Е.А., Шапошников А.В., Златник Е.Ю., Новикова И.А., Франциянц Е.М., Владимирова Л.Ю., Шатова Ю.С., Шевченко А.Н., Позднякова В.В. (2018). Воспаление и рак толстой кишки. Молекулярно-иммунологические механизмы. Вопросы онкологии. 64, 34–40.
- Eaden J.A. (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 48, 526–535.
- Canavan C., Abrams K.R., Mayberry J. (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol. Ther. 23, 1097–1104.
- Yamamoto M., Matsumoto S. (2016) Gut microbiota and colorectal cancer. Genes Environ. 38, 11.
- Dai Z., Zhang J., Wu Q., Chen J., Liu J., Wang L., Chen C., Xu J., Zhang H., Shi C., Li Z., Fang H., Lin C., Tang D., Wang D. (2019) The role of microbiota in the development of colorectal cancer. Int. J. Cancer. 145, 2032–2041.
- Kibriya M.G., Jasmine F., Pekow J., Munoz A., Weber C., Raza M., Kamal M., Ahsan H., Bissonnette M. (2023) Pathways related to colon inflammation are associated with colorectal carcinoma: a transcriptomeand methylome-wide study. Cancers. 15, 2921.
- Singh S., Sharma P., Sarma D., Kumawat M., Tiwari R., Verma V., Nagpal R., Kumar M. (2023) Implication of obesity and gut microbiome dysbiosis in the etiology of colorectal cancer. Cancers. 15, 1913.
- Chew S.-S., Tan L.T.-H., Law J.W.-F., Puspaparajah P., Goh B.-H., Ab Mutalib N.S., Lee L.-H. (2020) Targeting gut microbial biofilms – a key to hinder colon carcinogenesis? Cancers. 12, 2272.
- Allen-Vercoe E., Jobin C. (2014) Fusobacterium and enterobacteriaceae: important players for CRC? Immunol. Lett. 162, 54–61.
- Razi S., Baradaran Noveiry B., Keshavarz-Fathi M., Rezaei N. (2019) IL-17 and colorectal cancer: from carcinogenesis to treatment. Cytokine. 116, 7–12.
- Qu R., Zhang Y., Ma Y., Zhou X., Sun L., Jiang C., Zhang Z., Fu W. (2023) Role of the gut microbiota and its metabolites in Tumorigenesis or development of colorectal cancer. Adv. Sci. 10, 2205563.
- Wang D., DuBois R.N. (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 29, 781–788.
- Малихова О.А., Карасев И.А., Давыдкина Т.С., Верещак В.В., Малихов А.Г., Туманян А.О. (2019) Кишечный микробиом и колоректальный рак. Обзор литературы. Поволжский онкологический вестник. 10, 45–51.
- Zhou Y., Kuang Y., Wang C., Yu Y., Pan L., Hu X. (2024) Impact of KRAS mutation on the tumor microenvironment in colorectal cancer. Int. J. Biol. Sci. 20, 1947–1964.
- Kyriazi A.A., Karaglani M., Agelaki S., Baritaki S. (2024) Intratumoral microbiome: foe or friend in reshaping the tumor microenvironment landscape? Cells. 13, 1279.
- Nicolini A., Ferrari P. (2024) Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front. Immunol. 15, 1353787.
- Wei Z., Cao S., Liu S., Yao Z., Sun T., Li Y., Li J., Zhang D., Zhou Y. (2016) Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 7, 46158–46172.
- Kim J., Lee H.K. (2022) Potential role of the gut microbiome in colorectal cancer progression. Front. Immunol. 12, 807648.
- Sears C.L., Geis A.L., Housseau F. (2014) Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest. 124, 4166–4172.
- Wang Y., Wan X., Wu X., Zhang C., Liu J., Hou S. (2021) Eubacterium rectale contributes to colorectal cancer initiation via promoting colitis. Gut Pathog. 13, 2.
- Wu S., Shin J., Zhang G., Cohen M., Franco A., Sears C.L. (2006) The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect. Immun. 74, 5382–5390.
- Chung G.-T., Franco A.A., Wu S., Rhie G.-E., Cheng R., Oh H.-B., Sears C.L. (1999) Identification of a third metalloprotease toxin gene in extraintestinal isolates of Bacteroides fragilis. Infect. Immun. 67, 4945–4949.
- Kato N., Liu C.-X., Kato H., Watanabe K., Tanaka Y., Yamamoto T., Suzuki K., Ueno K. (2000) A new subtype of the metalloprotease toxin gene and the incidence of the three bft subtypes among Bacteroides fragilis isolates in Japan. FEMS Microbiol. Lett. 182, 171–176.
- Ahmad Kendong S.M., Raja Ali R.A., Nawawi K.N., Ahmad H.F., Mokhtar N.M. (2021) Gut dysbiosis and intestinal barrier dysfunction: potential explanation for early-onset colorectal cancer. Front. Cell. Infect. Microbiol. 11, 744606.
- Barrett M., Hand C.K., Shanahan F., Murphy T., O’Toole P.W. (2020) Mutagenesis by microbe: the role of the microbiota in shaping the cancer genome. Trends Cancer. 6, 277–287.
- Gilmore W.J., Johnston E.L., Bitto N.J., Zavan L., O’Brien-Simpson N., Hill A.F., Kaparakis-Liaskos M. (2022) Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Front. Immunol. 13, 970725.
- Zakharzhevskaya N.B., Vanyushkina A.A., Altukhov I.A., Shavarda A.L., Butenko I.O., Rakitina D.V., Nikitina A.S., Manolov A.I., Egorova A.N., Kulikov E.E., Vishnyakov I.E., Fisunov G.Y., Govorun V.M. (2017) Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Sci. Rep. 7, 5008.
- Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., Baselga J., Liu C., Shivdasani R., Ogino S., Birren B.W., Huttenhower C., Garrett W.S., Meyerson M. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298.
- Wassenaar T.M. (2018) E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 44, 619–632.
- Faïs T., Delmas J., Barnich N., Bonnet R., Dalmasso G. (2018) Colibactin: more than a new bacterial toxin. Toxins. 10, 151.
- Diakité M.T., Diakité B., Koné A., Balam S., Fofana D., Diallo D., Kassogué Y., Traoré C.B., Kamaté B., Ba D., Ly M., Ba M., Koné B., Maiga A.I., Achenbach C., Holl J., Murphy R., Hou L., Maiga M. (2022) Relationships between gut microbiota, red meat consumption and colorectal cancer. J. Carcinog. Mutagen. 13, 1000385.
- Tjalsma H., Boleij A., Marchesi J.R., Dutilh B.E. (2012) A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582.
- Brennan C.A., Garrett W. (2019) Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166.
- Osman M.A., Neoh H.-M., Ab Mutalib N.-S., Chin S.-F., Mazlan L., Raja Ali R.A., Zakaria A.D., Ngiu C.S., Ang M.Y., Jamal R. (2021) Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 11, 2925.
- Bozomitu L., Miron I., Adam Raileanu A., Lupu A., Paduraru G., Marcu F.M., Buga A.M.L., Rusu D.C., Dragan F., Lupu V.V. (2022) The gut microbiome and its implication in the mucosal digestive disorders. Biomedicines. 10, 3117.
- Hosseini K., Ahangari H., Chapeland-leclerc F., Ruprich-Robert G., Tarhriz V., Dilmaghani A. (2021) Role of fungal infections in carcinogenesis and cancer development: a literature review. Adv. Pharm. Bull. 1, 747–756.
- Senthakumaran T., Moen A.E.F., Tannæs T.M., Endres A., Brackmann S.A., Rounge T.B., Bemanian V., Tunsjø H.S. (2023) Microbial dynamics with CRC progression: a study of the mucosal microbiota at multiple sites in cancers, adenomatous polyps, and healthy controls. Eur. J. Clin. Microbiol. Infect Dis. 42, 305–322.
- Anderson S.M., Sears C.L. (2023) The role of the gut microbiome in cancer: a review, with special focus on colorectal neoplasia and Clostridioides difficile. Clin. Infect Dis. 77, S471–S478.
- Fabbri A., Travaglione S., Ballan G., Loizzo S., Fiorentini C. (2013) The cytotoxic necrotizing factor 1 from E. coli: a Janus toxin playing with cancer regulators. Toxins. 5, 1462–1474.
- Cai P., Xiong J., Sha H., Dai X., Lu J. (2023) Tumor bacterial markers diagnose the initiation and four stages of colorectal cancer. Front. Cell. Infect. Microbiol. 13, 1123544.
- Yachida S., Mizutani S., Shiroma H., Shiba S., Nakajima T., Sakamoto T., Watanabe H., Masuda K., Nishimoto Y., Kubo M., Hosoda F., Rokutan H., Matsumoto M., Takamaru H., Yamada M., Matsuda T., Iwasaki M., Yamaji T., Yachida T., Soga T., Kurokawa K., Toyoda A., Ogura Y., Hayashi T., Hatakeyama M., Nakagama H., Saito Y., Fukuda S., Shibata T., Yamada T. (2019) Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976.
- Zwinsová B., Petrov V.A., Hrivňáková M., Smatana S., Micenková L., Kazdová N., Popovici V., Hrstka R., Šefr R., Bencsiková B., Zdražilová-Dubská L., Brychtová V., Nenutil R., Vídeňská P., Budinská E. (2021) Colorectal tumour mucosa microbiome is enriched in oral pathogens and defines three subtypes that correlate with markers of tumour progression. Cancers. 13, 4799.
- Geng J., Song Q., Tang X., Liang X., Fan H., Peng H., Guo Q., Zhang Z. (2014) Co-occurrence of driver and passenger bacteria in human colorectal cancer. Gut Pathog. 6, 26.
- Marchesi J.R., Dutilh B.E., Hall N., Peters W.H.M., Roelofs R., Boleij A., Tjalsma H. (2011) towards the human colorectal cancer microbiome. PLoS One. 6, e20447.
- Zou S., Fang L., Lee M.-H. (2018) Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. (Oxf). 6, 1–12.
- Kong C., Gao R., Yan X., Huang L., He J., Li H., You J., Qin H. (2019) Alterations in intestinal microbiota of colorectal cancer patients receiving radical surgery combined with adjuvant CapeOx therapy. Sci. China Life Sci. 62, 1178–1193.
- Xu S., Yin W., Zhang Y., Lv Q., Yang Y., He J. (2020) Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers. 12, 372.
- John Kenneth M., Tsai H.-C., Fang C.-Y., Hussain B., Chiu Y.-C., Hsu B.-M. (2023) Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. J. Adv. Res. 52, 45–57.
- Boonanantanasarn K., Gill A.L., Yap Y., Jayaprakash V., Sullivan M.A., Gill S.R. (2012) Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect. Immun. 80, 3545–3558.
- Sears C.L., Garrett W.S. (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe. 15, 317–328.
- Noguchi N., Ohashi T., Shiratori T., Narui K., Hagiwara T., Ko M., Watanabe K., Miyahara T., Taira S., Moriyasu F., Sasatsu M. (2007) Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J. Gastroenterol. 42, 346–351.
- Mizutani S., Yamada T., Yachida S. (2020) Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci. 111, 766–773.
- Wirbel J., Pyl P.T., Kartal E., Zych K., Kashani A., Milanese A., Fleck J.S., Voigt A.Y., Palleja A., Ponnudurai R., Sunagawa S., Coelho L.P., Schrotz-King P., Vogtmann E., Habermann N., Niméus E., Thomas A.M., Manghi P., Gandini S., Serrano D., Mizutani S., Shiroma H., Shiba S., Shibata T., Yachida S., Yamada T., Waldron L., Naccarati A., Segata N., Sinha R., Ulrich C.M., Brenner H., Arumugam M., Bork P., Zeller G. (2019) Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689.
- Löwenmark T., Löfgren-Burström A., Zingmark C., Eklöf V., Dahlberg M., Wai S.N., Larsson P., Ljuslinder I., Edin S., Palmqvist R. (2020) Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci. Rep. 10, 15250.
- Boleij A., Hechenbleikner E.M., Goodwin A.C., Badani R., Stein E.M., Lazarev M.G., Ellis B., Carroll K.C., Albesiano E., Wick E.C., Platz E.A., Pardoll D.M., Sears C.L. (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60, 208–215.
- Li J., Zhang A., Wu F., Wang X. (2022) Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects. Front. Oncol. 12, 841552.
- Dejea C.M., Fathi P., Craig J.M., Boleij A., Taddese R., Geis A.L., Wu X., DeStefano Shields C.E., Hechenbleikner E.M., Huso D.L., Anders R.A., Giardiello F.M., Wick E.C., Wang H., Wu S., Pardoll D.M., Housseau F., Sears C.L. (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 359, 592–597.
- McCoy A.N., Araújo-Pérez F., Azcárate-Peril A., Yeh J.J., Sandler R.S., Keku T.O. (2013) Fusobacterium is associated with colorectal adenomas. PLoS One. 8, e53653.
- Kostic A.D., Xavier R.J., Gevers D. (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 146, 1489–1499.
- Rubinstein M.R., Wang X., Liu W., Hao Y., Cai G., Han Y.W. (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 14, 195–206.
- Kerdreux M., Edin S., Löwenmark T., Bronnec V., Löfgren-Burström A., Zingmark C., Ljuslinder I., Palmqvist R., Ling A. (2023) Porphyromonas gingivalis in colorectal cancer and its association to patient prognosis. J. Cancer. 14, 1479–1485.
- Pasquereau-Kotula E., Martins M., Aymeric L., Dramsi S. (2018) Significance of Streptococcus gallolyticus subsp. gallolyticus association with colorectal cancer. Front. Microbiol. 9, 614.
- Périchon B., Lichtl-Häfele J., Bergsten E., Delage V., Trieu-Cuot P., Sansonetti P., Sobhani I., Dramsi S. (2022) Detection of Streptococcus gallolyticus and four other CRC-associated bacteria in patient stools reveals a potential “Driver” role for enterotoxigenic Bacteroides fragilis. Front. Cell. Infect. Microbiol. 12, 794391.
- Rezasoltani S., Asadzadeh Aghdaei H., Dabiri H., Akhavan Sepahi A., Modarressi M.H., Nazemalhosseini Mojarad E. (2018) The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb. Pathog. 124, 244–249.
- Hua H., Sun Y., He X., Chen Y., Teng L., Lu C. (2022) Intestinal microbiota in colorectal adenoma-carcinoma sequence. Front. Med. 9, 888340.
- Long X., Wong C.C., Tong L., Chu E.S.H., Ho Szeto C., Go M.Y.Y., Coker O.O., Chan A.W.H., Chan F.K.L., Sung J.J.Y., Yu J. (2019) Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330.
- Lo C.-H., Wu D.-C., Jao S.-W., Wu C.-C., Lin C.-Y., Chuang C.-H., Lin Y.-B., Chen C.-H., Chen Y.-T., Chen J.-H., Hsiao K.-H., Chen Y.-J., Chen Y.-T., Wang J.-Y., Li L.-H. (2022) Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas. J. Biomed. Sci. 29, 88.
- Ou S., Wang H., Tao Y., Luo K., Ye J., Ran S., Guan Z., Wang Y., Hu H., Huang R. (2022) Fusobacterium nucleatum and colorectal cancer: from phenomenon to mechanism. Front. Cell. Infect. Microbiol. 12, 1020583.
- Mima K., Nishihara R., Qian Z.R., Cao Y., Sukawa Y., Nowak J.A., Yang J., Dou R., Masugi Y., Song M., Kostic A.D., Giannakis M., Bullman S., Milner D.A., Baba H., Giovannucci E.L., Garraway L.A., Freeman G.J., Dranoff G., Garrett W.S., Huttenhower C., Meyerson M., Meyerhardt J.A., Chan A.T., Fuchs C.S., Ogino S. (2016) Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 65, 1973–1980.
- Flanagan L., Schmid J., Ebert M., Soucek P., Kunicka T., Liska V., Bruha J., Neary P., De Zeeuw N., Tommasino M., Jenab M., Prehn J.H.M., Hughes D.J. (2014) Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1381–1390.
- Агейкина Н.В., Дуванский В.А., Князев М.В., Мальков П.Г., Данилова Н.В., Харлова О.А. (2014) Альтернативный путь развития колоректального рака. Гистогенетические и молекулярные особенности зубчатых поражений. Эксп. клин. гастроэнтерол. 7, 4–12.
- Nevels M., Täuber B., Spruss T., Wolf H., Dobner T. (2001) “Hit-and-Run” transformation by adenovirus oncogenes. J. Virol. 75, 3089–3094.
- Knippel R.J., Drewes J.L., Sears C.L. (2021) The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11, 2378–2395.
- Arike L., Hansson G.C. (2016) The densely O-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J. Mol. Biol. 428, 3221–3229.
- Chervy M., Barnich N., Denizot J. (2020) Adherent-Invasive E. coli: update on the lifestyle of a troublemaker in crohn’s disease. Int. J. Mol. Sci. 21, 3734.
- Van der Post S., Subramani D.B., Bäckström M., Johansson M.E.V., Vester-Christensen M.B., Mandel U., Bennett E.P., Clausen H., Dahlén G., Sroka A., Potempa J., Hansson G.C. (2013) Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288, 14636–14646.
- Gibold L., Garenaux E., Dalmasso G., Gallucci C., Cia D., Mottet-Auselo B., Faïs T., Darfeuille-Michaud A., Nguyen H.T.T., Barnich N., Bonnet R., Delmas J. (2016) The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli: Vat-AIEC favours mucus layer’s crossing by LF82 E. coli. Cell. Microbiol. 18, 617–631.
- Gutierrez A., Pucket B., Engevik M. (2023) Bifidobacterium and the intestinal mucus layer. Microbiome Res. Rep. 2, 36.
- Colina A.R., Aumont F., Deslauriers N., Belhumeur P., De Repentigny L. (1996) Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect. Immun. 64, 4514–4519.
- De Repentigny L., Aumont F., Bernard K., Belhumeur P. (2000) Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect. Immun. 68, 3172–3179.
- Li S., Konstantinov S.R., Smits R., Peppelenbosch M.P. (2017) Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol. Med. 23, 18–30.
- Jian C., Yinhang W., Jing Z., Zhanbo Q., Zefeng W., Shuwen H. (2024) Escherichia coli on colorectal cancer: a two-edged sword. Microb. Biotechnol. 17, e70029.
- Higashi D.L., Krieger M.C., Qin H., Zou Z., Palmer E.A., Kreth J., Merritt J. (2023) Who is in the driver’s seat? Parvimonas micra: an understudied pathobiont at the crossroads of dysbiotic disease and cancer. Environ. Microbiol. Rep. 15, 254–264.
- Songtanin B., Peterson C.J., Molehin A.J., Nugent K. (2022) Biofilms and benign colonic diseases. Int. J. Mol. Sci. 23, 14259.
- Perry E.K., Tan M.-W. (2023) Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front. Cell Infect. Microbiol. 13, 1237164.
- Srivastava A., Gupta J., Kumar S., Kumar A. (2017) Gut biofilm forming bacteria in inflammatory bowel disease. Microb. Pathog. 112, 5–14.
- Baumgartner M., Lang M., Holley H., Crepaz D., Hausmann B., Pjevac P., Moser D., Haller F., Hof F., Beer A., Orgler E., Frick A., Khare V., Evstatiev R., Strohmaier S., Primas C., Dolak W., Köcher T., Klavins K., Rath T., Neurath M.F., Berry D., Makristathis A., Muttenthaler M., Gasche C. (2021) Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis. Gastroenterology. 161, 1245–1256.e20.
- Motta J.-P., Wallace J.L., Buret A.G., Deraison C., Vergnolle N. (2021) Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 314–334.
- Huq M., Wahid S.U.H., Istivan T. (2023) Biofilm formation in Campylobacter concisus: the role of the luxS gene. Microorganisms. 12, 46.
- Kaplan C.W., Lux R., Haake S.K., Shi W. (2009) The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71, 35–47.
- Kaplan A., Kaplan C.W., He X., McHardy I., Shi W., Lux R. (2014) Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. Microb. Ecol. 68, 379–387.
- Engevik M.A., Danhof H.A., Auchtung J., Endres B.T., Ruan W., Bassères E., Engevik A.C., Wu Q., Nicholson M., Luna R.A., Garey K.W., Crawford S.E., Estes M.K., Lux R., Yacyshyn M.B., Yacyshyn B., Savidge T., Britton R.A., Versalovic J. (2021) Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus. Gastroenterology. 160, 1301–1314.e8.
- Wang B., Deng J., Donati V., Merali N., Frampton A. E., Giovannetti E., Deng D. (2024) The roles and interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in oral and gastrointestinal carcinogenesis: a narrative review. Pathogens. 13, 93.
- Wu T., Cen L., Kaplan C., Zhou X., Lux R., Shi W., He X. (2015) Cellular components mediating coadherence of Candida albicans and Fusobacterium nucleatum. J. Dent. Res. 94, 1432–1438.
- Li Y., Guo H., Wang X., Lu Y., Yang C., Yang P. (2015) Coinfection with Fusobacterium nucleatum can enhance the attachment and invasion of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans to human gingival epithelial cells. Arch. Oral Biol. 60, 1387–93.
- Olsen I., Yamazaki K. (2019) Can oral bacteria affect the microbiome of the gut? J. Oral Microbiol. 11, 1586422.
- Dohlman A.B., Klug J., Mesko M., Gao I.H., Lipkin S.M., Shen X., Iliev I.D. (2022) A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 185, 3807–3822.e12.
- Talapko J., Meštrović T., Dmitrović B., Juzbašić M., Matijević T., Bekić S., Erić S., Flam J., Belić D., Petek Erić A., Milostić Srb A., Škrlec I. (2023) A putative role of Candida albicans in promoting cancer development: a current state of evidence and proposed mechanisms. Microorganisms. 11, 1476.
- MacAlpine J., Robbins N., Cowen L.E. (2023) Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol. Ecol. 32, 2565–2581.
- Nobbs A.H., Vickerman M.M., Jenkinson H.F. (2010) Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryot. Cell. 9, 1622–1634.
- Talapko J., Juzbašić M., Matijević T., Pustijanac E., Bekić S., Kotris I., Škrlec I. (2021) Candida albicans – the virulence factors and clinical manifestations of infection. J. Fungi (Basel). 7, 79.
- Li L., Huang X., Chen H. (2024) Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes. 16, 2328868.
- Coker O.O., Wu W.K.K., Wong S.H., Sung J.J.Y., Yu J. (2020) Altered gut archaea composition and interaction with bacteria are associated with colorectal cancer. Gastroenterology. 159, 1459–1470.e5.
- Mathlouthi N.E.H., Belguith I., Yengui M., Oumarou Hama H., Lagier J.-C., Ammar Keskes L., Grine G., Gdoura R. (2023) The Archaeome’s role in colorectal cancer: unveiling the DPANN group and investigating archaeal functional signatures. Microorganisms. 11, 2742.
- Ianiro G., Iorio A., Porcari S., Masucci L., Sanguinetti M., Perno C.F., Gasbarrini A., Putignani L., Cammarota G. (2022) How the gut parasitome affects human health. Therap. Adv. Gastroenterol. 15, 175628482210915.
- Sulżyc-Bielicka V., Kołodziejczyk L., Adamska M., Skotarczak B., Jaczewska S., Safranow K., Bielicki P., Kładny J., Bielicki D. (2021) Colorectal cancer and Blastocystis sp. infection. Parasites Vectors. 14, 200.
- Grondin J.A., Jamal A., Mowna S., Seto T., Khan W.I. (2024) Interaction between intestinal parasites and the gut microbiota: implications for the intestinal immune response and host defence. Pathogens. 13, 608.
- Abdel Hamed E.F., Mostafa N.E., Farag S.M., Ibrahim M.N., Ibrahim B.H., Rashed H.E., Radwan M., Mohamed S.Y., El Hendawy R., Fawzy E.M. (2023) Human protozoa infection and dysplasia in ulcerative colitis: a neglected aspect in a prominent disease. Parasitol. Res. 122, 2709–1278.
Дополнительные файлы


