PHOTOELECTROCHEMICAL DEGRADATION OF IBUPROFEN ON A TITANIUM DIOXIDE NANOTUBE PHOTOANODE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Titanium dioxide nanotube photoanodes were obtained by anodizing titanium foil at 60 V in an ethylene glycol-based electrolyte using a two-stage scheme with intermediate removal of the amorphous coating and subsequent annealing at 450 °C. The nanotubes consist of titanium dioxide in the form of anatase and have a length of 20–22 μm, an average diameter of 90–100 nm and a wall thickness of 20 nm. The activity of such a photoanode in the reaction of photoelectrochemical oxidation of ibuprofen (IBP) in the molecular and ionic form of potassium salt of 2-(4-isobutylphenyl)-propionic acid (2-(4-IBFPA) was studied. Regardless of the form of IBP, its photoelectrocatalytic oxidation on titanium dioxide nanotubes occurs with the intermediate formation of oxygenated forms of IBP. The results of intensity modulated photocurrent spectroscopy (IMPS) show that the addition of IBP to the 0.9% NaCl solution helps to suppress the recombination of electron-hole pairs due to the increased rate of charge transfer to the IBP. The TNT/Ti photoanode showed stable operation in the process of long-term photoelectrooxidation of IBP.

Sobre autores

V. Grinberg

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Moscow, Russia

V. Emets

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: victoremets@mail.ru
Moscow, Russia

A. Averin

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Chopra S., Kumar D. // Heliyon. 2020. V. 6. P. e04087. https://doi.org/10.1016/j.heliyon.2020.e04087
  2. Bing J., Hu C., Nie Y. et al. // Environ. Sci. Technol. 2015. V. 49. P. 1690. https://doi.org/10.1021/es503729h
  3. Eslami A., Amini M.M., Yazdanbakhsh A.R. et al. // J. Chem. Technol. Biotechnol. 2016. V. 91. P. 2693. https://doi.org/10.1002/jctb.4877
  4. Gomes A., Videira A., Monteiro O. et al. // J. Solid State Electrochem. 2013. V. 17. P. 2349. https://doi.org/10.1007/s10008-013-2099-y
  5. Moeinpour F., Moodi D., Omoori–Sarabi H. et al. // Iranian Journal of Analytical Chemistry. 2021. V. 8. № 2. P. 69. https://doi.org/10.30473/ijac.2022.62513.1215
  6. Kim D.H., Anderson M.A.// Environ. Sci. Technol. 1994. V. 28. P. 479. https://doi.org/10.1021/es00052a021
  7. Li X.Z., Liu H.L., Yue P.T., Sun Y.P. // Environ. Sci. Technol. 2000. V. 34. P. 4401. https://doi.org/10.1021/es000939k
  8. Quan X., Yang S., Ruan X., Zhao H. // Environ. Sci. Technol. 2005. V. 39. № 10. P. 3770. https://doi.org/10.1021/es048684o
  9. Li L., Zhang X., Ai Z. et al. // J. Phys. Chem. C. 2007. V. 111. P. 6832. https://doi.org/10.1021/jp070694z
  10. Yu H.B., Quan X., Zhang Y. et al. // Langmuir. 2008. V. 24. P. 7599. https://doi.org/10.1021/la800835k
  11. Shimodaira Y., Kato H., Kobayashi H., Kudo A. // J. Phys. Chem. B. 2006. V. 110. P. 17790. https://doi.org/10.1021/jp0622482
  12. Bi J.H., Wu L., Li J. et al. // Acta Materialia. 2007. V. 55. P. 4699. https://doi.org/10.1016/j.actamat.2007.04.034
  13. Huber M.M., Canonica S., Park G.Y., Gunten U. // Environ. Sci. Technol. 2003. V. 37. P. 1016. https://doi.org/10.1021/es025896h
  14. Zwiener C., Frimmel F.H. // Water Res. 2000. V. 34. P. 1881. https://doi.org/10.1016/S0043-1354(99)00338-3
  15. Mdez-Arriaga F., Esplugas S., Gimez J. // Water Res. 2008. V. 42. P. 585. https://doi.org/10.1016/j.watres.2007.08.002
  16. Vogna D., Marotta R., Napolitano A. et al. // Water Res. 2004. V. 38. P. 414. https://doi.org/10.1016/j.watres.2003.09.028
  17. Zhao X., Qu J., Liu H. et al. // Applied Catalysis B: Environmental. 2009. V. 91. P. 539. https://doi.org/10.1016/j.apcatb.2009.06.025
  18. Sun Q., Peng Y.-P., Chen H. et al. // J. Hazar. Mater. 2016. V. 319. P. 121. https://doi.org/10.1016/j.jhazmat.2016.02.078
  19. Wu L., Tsui L-k., Swami N., Zangari G. // J. Phys. Chem. C. 2010. V. 114. P. 11551. https://doi.org/10.1021/jp103437y
  20. Grinberg V., Emets V., Shapagin A. et al. // J. Solid State Electrochem. 2025. V. 29. P. 629. https://doi.org/10.1007/s10008-024-06090-3
  21. Robin A., de Almeida Ribeiro M.B., Rosa J.L. et al. // J. Surf. Eng. Mater. Adv. Techn. 2014. V. 4. P. 123. https://doi.org/10.4236/jsemat.2014.43016
  22. Miranda M.O., Cavalcanti W.E.C., Barbosa F.F. et al. // RSC Adv. 2021. V. 11. P. 27720. https://doi.org/10.1039/d1ra04340d
  23. Гринберг В.А., Васильев Ю.Б. Ротенберг З.А. и др. // Электрохимия. 1986. Т. 22. С. 140.
  24. Murdoch R.W., Hay A.G. // Appl. Environm. Microb. 2005. V. 71. № 10. P. 6121. https://doi.org/10.1128/AEM.71.10.6121–6125.2005
  25. Murdoch R.W., Hay A.G. // Microbiology. 2013. V. 159. P. 621. https://doi.org/10.1099/mic.0.062273-0
  26. Peter L.M., Ponomarev E.A., Fermin D.J. // J. Electroanal. Chem. 1997. V. 427. P. 79. https://doi.org/10.1016/S0022-0728(96)05033-4
  27. Thorne E.J., Jang J.W., Liu E.Y., Wang D. // J. Chem. Sci. 2016. V. 7. P. 3347. https://doi.org/10.1039/C7CP06533G

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).