ПОЛУЧЕНИЕ СТАБИЛЬНЫХ ГИДРОЗОЛЕЙ NiFe2O4 И NiFe2O4/Au С ИСПОЛЬЗОВАНИЕМ ПОЛИЭТИЛЕНИМИНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом математического планирования и обработки результатов эксперимента (ДФЭ 27-4) исследовано влияние реакционных параметров на стабилизацию гидрозолей феррита никеля(II) в присутствии полиэтиленимина (ПЭИ). В оптимальных условиях получен гидрозоль феррита никеля(II), седиментационная стабильность которого сохраняется в течение 2 мес. На его основе путем адсорбции на поверхности магнитных частиц зародышей золота и последующего четырехстадийного восстановления Au(III) гидроксиламином в присутствии ПЭИ получен гибридный материал NiFe2O4/Au. По данным просвечивающей электронной микроскопии и рентгеновской фотоэлектронной спектроскопии, он представляет собой однородные сферические наночастицы Au0 размером 4 ± 0.5 нм, равномерно распределенные на поверхности наночастиц феррита с диаметром 9.7 ± 0.2 нм. Частицы золота хорошо закреплены на поверхности и не отделяются в ходе постсинтетической и ультразвуковой обработки, а их содержание можно регулировать количеством стадий восстановления золота.

Об авторах

С. В Сайкова

Сибирский федеральный университет; Институт химии и химической технологии СО РАН – обособленное подразделение ФИЦ КНЦ СО РАН

Красноярск, Россия; Красноярск, Россия

Д. И Немкова

Сибирский федеральный университет

Красноярск, Россия

А. Е Кроликов

Сибирский федеральный университет

Email: antonkrolikov@mail.ru
Красноярск, Россия

Список литературы

  1. Laurent S., Forge D., Port M. et al. // Chem. Rev. 2008. V. 108. № 6. P. 2064. https://doi.org/10.1021/cr068445e
  2. Cernat A., Florea A., Rus I. et al. Biopolymer. Nanomater.: Fundamentals and Applications / Elsevier, 2021. P. 639. https://doi.org/10.1016/B978-0-12-824364-0.00014-9
  3. Lapusan R., Borlan R., Focsan M. // Nanoscale Adv. 2024. V. 6. № 9. P. 2234. https://doi.org/10.1039/D3NA01064C
  4. Llano-Sepúlveda S., Sánchez-Ríos Y., Fontalvo J. // Chem. Eng. Process. - Process Intensification. 2024. V. 202. P. 109866. https://doi.org/10.1016/j.cep.2024.109866
  5. Böck N.C., Sundermann J., Koziolek M. et al. // Eur. J. Pharm. Biopharm. 2025. V. 208. Р. 114651. https://doi.org/10.1016/j.ejpb.2025.114651
  6. Muthukumaran T., Philip J. // Adv. Colloid Interface Sci. 2024. V. 334. P. 103314. https://doi.org/10.1016/j.cis.2024.103314
  7. Milanovic M., Stijepovic I., Pavlovic V. et al. // Proc. Application Ceram. 2016. V. 10. № 4. P. 287. https://doi.org/10.2298/PAC1604287M
  8. Cacua K., Ordoñez F., Zapata C. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2019. V. 583. https://doi.org/10.1016/j.colsurfa.2019.123960
  9. Soares P.I.P., Alves A.M.R., Pereira L.C.J. et al. // J. Colloid Interface Sci. 2014. V. 419. P. 46. https://doi.org/10.1016/j.jcis.2013.12.045
  10. Soares P.I.P., Laia C.A.T., Carvalho A. et al. // Appl. Surf. Sci. 2016. V. 383. P. 240. https://doi.org/10.1016/j.apsusc.2016.04.181
  11. Soares P.I.P., Lochte F., Echeverria C. et al. // Nanotechnology. 2015. V. 26. № 42. https://doi.org/10.1088/0957-4484/26/42/425704
  12. Khmara I., Strbak O., Zavisova V. et al. // J. Magn. Magn. Mater. 2019. V. 474. P. 319. https://doi.org/10.1016/j.jmmm.2018.11.026
  13. Goon I.Y., Lai L.M.H., Lim M. et al. // Chem. Mater. 2009. V. 21. № 4. P. 673. https://doi.org/10.1021/cm8025329
  14. Reguera J., Flora T., Winckelmans N. et al. // Nanoscale Adv. 2020. V. 2. № 6. P. 2525. https://doi.org/10.1039/D0NA00102C
  15. Saykova D., Saikova S., Mikhlin Y. et al. // Metals (Basel). 2020. V. 10. № 8. P. 1075. https://doi.org/10.3390/met10081075
  16. Nemkova D., Saikova S., Krolikov A. // Crystals (Basel). 2025. V. 15. № 1. P. 72. https://doi.org/10.3390/cryst15010072
  17. Silvestri A., Mondini S., Marelli M. et al. // Langmuir. 2016. V. 32. № 28. P. 7117. https://doi.org/10.1021/acs.langmuir.6b01266
  18. Hu Y., Meng L., Niu L. et al. // ACS Appl. Mater. Interfaces. 2013. V. 5. № 11. P. 4586. https://doi.org/10.1021/am400843d
  19. Fan Z., Shelton M., Singh A.K. et al. // ACS Nano. 2012. V. 6. № 2. P. 1065. https://doi.org/10.1021/nn2045246
  20. Zhao H., Ning X., Yao H. et al. // Mater. Chem. Phys. 2021. V. 265. № 666. P. 124480. https://doi.org/10.1016/j.matchemphys.2021.124480
  21. Yeap S.P., Ahmad A.L., Ooi B.S. et al. // Langmuir. 2012. V. 28. № 42. P. 14878. https://doi.org/10.1021/la303169g
  22. Mikalauskaitė A., Kondrotas R., Niaura G. et al. // J. Phys. Chem. C. 2015. V. 119. № 30. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
  23. Saikova S., Pavlikov A., Trofimova T. et al. // Metals (Basel). 2021. V. 11. № 5. P. 705. https://doi.org/10.3390/met11050705
  24. Pavlikov A.Y., Saikova S.V., Karpov D.V. et al. // Inorg. Mater. 2024. V. 60. № 11. P. 1344. https://doi.org/10.1134/S0020168525700086
  25. Sun Y., Diao Y., Wang H. et al. // Ceram. Int. 2017. V. 43. https://doi.org/10.1016/j.ceramint.2017.09.029
  26. Rarokar N., Yadav S., Saoji S. et al. // Int. J. Pharm. X. 2024. V. 7. P. 100231. https://doi.org/https://doi.org/10.1016/j.ijpx.2024.100231
  27. de Lizarrondo S.M., Jacqmarcq C., Naveau M. et al. // Sci. Adv. 2022. V. 8. № 28. P. 1. https://doi.org/10.1126/sciadv.abm3596
  28. Сайкова С.В., Кроликов А.Е., Немкова Д.И. и др. // Журн. Сиб. фед. ун-та. 2024. Т. 17. № 1. С. 151.
  29. Сайкова С.В., Пантелеева М.В., Немкова Д.И. и др. // Способ получения суперпарамагнитных наночастиц феррита никеля. Патент № 2801852 РФ. Опубл. 17.08.2023.
  30. Kaszuba M., McKnight D., Connah M.T. et al. // J. Nanopart. Res. 2008. V. 10. № 5. P. 823. https://doi.org/10.1007/s11051-007-9317-4
  31. Ribeiro C.A.S., Panico K., Handajevsky T.J. et al. // Langmuir. 2023. V. 39. № 48. P. 17353. https://doi.org/10.1021/acs.langmuir.3c02538
  32. Berger P., Maurer R., Celli G. // Experimental Design with Applications in Management, Engineering, and the Science, 2nd Edition. Springer. 2018. https://doi.org/10.1007/978-3-319-64583-4
  33. Gilb S., Hartl K., Kartouzian A. et al. // Eur. Phys. J. D. 2007. V. 45. № 3. P. 501. https://doi.org/10.1140/epjd/e2007-00211-9
  34. Ramírez F.J., Tuñón I., Silla E. // Chem. Phys. 2004. V. 303. № 1–2. P. 85. https://doi.org/10.1016/j.chemphys.2004.05.007
  35. Wiercigroch E., Szafraniec E., Czamara K. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017. V. 185. P. 317. https://doi.org/10.1016/j.saa.2017.05.045
  36. Balakrishnan G., Barnett G.V., Kar S.R. et al. // Anal. Chem. 2018. V. 90. № 11. P. 6959. https://doi.org/10.1021/acs.analchem.8b01238
  37. Mikalauskaite A., Kondrotas R., Niaura G. et al. // J. Phys. Chem. C. 2015. V. 119. № 30. P. 17398. https://doi.org/10.1021/acs.jpcc.5b03528
  38. Трофимова Т.В., Сайкова С.В., Сайкова Д.И. // Журн. Сиб. фед. ун-та. 2016. Т. 9. № 4. С. 496. https://doi.org/10.17516/1998-2836-2016-9-4-496-503

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».