ТВЕРДЫЕ РАСТВОРЫ С ПИРОХЛОРОПОДОБНОЙ СТРУКТУРОЙ В СИСТЕМЕ Y2O3–Fe2O3–Ta2O5–WO3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Цель настоящей работы — синтез и исследование свойств соединения Y2Fe4/3W2/3O7 и пирохлороподобных твердых растворов в системе Y2O3–Fe2O3–Ta2O5–WO3. Разработан метод получения Y2Fe4/3W2/3O7 на основе цитратного метода. Впервые установлено, что соединение имеет слоистую пирохлороподобную структуру, описываемую пр. гр. R3. Исследование теплоемкости Y2Fe4/3W2/3O7 показало, что в отличие от Y2FeTaO7, соединение не имеет полиморфных переходов во всем интервале температур 25–1460°C. Показано существование непрерывного твердого раствора xY2FeTaO7–(1–x)Y2Fe4/3W2/3O7, а также ограниченного твердого раствора xY1.85Fe1.15TaO7–(1–x)Y2Fe4/3W2/3O7, где x = 0.7–1. Установлено, что твердый раствор Y2Fe4/3+xW2/3O7 не реализуется. Рассмотрены ИК- и КР-спектры синтезированных твердых растворов. Определено положение края их поглощения.

Об авторах

А. В Егорышева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: anna_egorysheva@rambler.ru
Москва, Россия

Е. Ф Попова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

В. С Омельянюк

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

О. Г Эллерт

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

С. Я Котцов

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

Е. С Куликова

Национальный исследовательский центр "Курчатовский институт"

Москва, Россия

Список литературы

  1. Valant M., Babu G.S., Vrcon M. et al. // J. Am. Ceram. Soc. 2012. V. 95. P. 644. https://doi.org/10.1111/j.1551-2916.2011.04801.x
  2. Krayzman V., Levin I., Woicik J.C. // Chem. Mater. 2007. V. 19. P. 932. https://doi.org/10.1021/cm062429g
  3. Talanov M.V. Pyrochlore Ceramics: Properties, Processing, and Applications / Еd. Chowdhury A. Amsterdam: Elsevier, 2022. P. 295. https://doi.org/10.1016/B978-0-323-90483-4.00008-8
  4. Huang S., Zhang J., Qin Y. et al. // J. Photochem. Photobiol. A: Chem. 2021. P. 404. https://doi.org/10.1016/j.jphotochem.2020.112947
  5. Yasuhara R., Ikesue A. // Optics Express. 2019. V. 27. P. 7485. https://doi.org/10.1364/OE.27.007485
  6. Krasnov A.G., Napalkov M.S., Vlasov et al. // Inorg. Chem. 2020. V. 59. P. 12385. https://doi.org/10.1021/acs.inorgchem.0c01472.
  7. Sreena T.S., Rao P.P., Raj A.K.V. et al. // Chem. Select. 2016. V. 1. P. 3413. https://doi.org/10.1002/slct.201600630
  8. Москвин А.С. // Журн. эксп. и теор. физики. 2021. Т. 159. С. 607. https://doi.org/10.31857/S0044451021040040
  9. Ellert O.G., Egorysheva A.V. Pyrochlore Ceramics: Properties, Processing, and Applications / Еd. Chowdhury A. Amsterdam: Elsevier, 2022. P. 315. https://doi.org/10.1016/B978-0-323-90483-4.00009-X
  10. Subramanian M.A., Toby B.H., Ramirez A.P. et al. // Science. 1996. V. 273. P. 81. https://doi.org/10.1126/science.273.5271.81
  11. Эллерт О.Г., Попова Е.Ф., Кирдянкин Д.И. и др. // Журн. неорган. химии. 2023. Т. 68. С. 1339. https://doi.org/10.31857/S0044457X23600937
  12. Egorysheva A.V., Ellert O.G., Popova E.F. et al. // Mendeleev Commun. 2023. V. 33. P. 519. https://doi.org/10.1016/j.mencom.2023.06.025
  13. Егорышева А.В., Попова Е.Ф., Тюрин А.И. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1154. https://doi.org/10.1134/S0044457X19110059
  14. Ellert O.G., Popova E.F., Kirdyankin D.I. et al. // Mendeleev Commun. 2024. V. 34. P. 291. https://doi.org/10.1016/j.mencom.2024.02.043
  15. Filoti G., Rosenberg M., Kuncser V. et al. // J. Alloys Compd. 1998. V. 268. P. 16. https://doi.org/10.1016/S0925-8388(97)00621-X
  16. Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  17. Dias A., Khalam L.A., Sebastian M.T. et al. // Chem. Mater. 2008. V. 20. P. 5253. https://doi.org/10.1021/cm800969m
  18. Li L., Zheng Y.-L., Hu Y.-X. et al. // Chin. Phys. B. 2020. V. 29. P. 083301. https://doi.org/10.1088/1674-1056/ab8a3d
  19. Joseph C., Bourson P.M., Fontana M.D. // J. Raman Spectrosc. 2012. V. 43. P. 1146. https://doi.org/10.1002/jrs.3142
  20. Jia S., Zhou Q., Huang F. et al. // AIP Advances. 2020. V. 10. P. 065324. https://doi.org/10.1063/5.0009821
  21. Diaz-Anichtchenko D., Aviles-Coronado J.E., Lopez-Moreno S. et al. // Inorg. Chem. 2024. V. 63. P. 6898. https://doi.org/10.1021/acs.inorgchem.4c00345
  22. Weber M.C., Guennou M., Zhao H.J. et al. // Phys. Rev. B. 2016. V. 94. P. 214103. https://doi.org/10.1103/PhysRevB.94.214103
  23. Saha J., Jana Y.M., Mukherjee G.D. et al. // Mater. Chem. Phys. 2020. V. 240. P. 122286. https://doi.org/10.1016/j.matchemphys.2019.122286
  24. Burcham L.J., Wachs I.E. // Spectrochim. Acta, Part A. 1998. V. 54. P. 1355. https://doi.org/10.1016/S1386-1425(98)00036-5
  25. Sousa M.H., Tourinho F.A., Rubim J.C. // J. Raman Spectrosc. 2000. V. 31. P. 185. https://doi.org/10.1002/(SICI)0971-4555(200005)31:3<185>AI>JIRSSI>10.1002>

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).