ВЛИЯНИЕ ХИРАЛЬНОСТИ НА СПИНОВЫЙ ТРАНСПОРТ В НАНОТРУБКАХ GaN (8, n2)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом неэмпирических релятивистских расчетов исследована электронная структура однослойных хиральных нанотрубок GaN (8, n2), где n2 = 1–7. Установлено, что все системы являются полупроводниками с шириной запрещенной зоны 1–2 эВ. Спин-орбитальное расщепление составляет 3–13 мэВ для потолка валентной зоны и 1–10 мэВ для дна зоны проводимости. Наибольшая эффективность спиновой селективности наблюдается в нанотрубках (8, 1) и (8, 2), где доминирующий α-транспорт и высокое спинорбитальное расщепление (>10 мэВ) создают оптимальные условия для спиновых фильтров.

Об авторах

В. Б Меринов

Национальный исследовательский ядерный университет "МИФИ"; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: Merinov.V.B@gmail.com
Москва, Россия; Москва, Россия

П. А Кулямин

Национальный исследовательский ядерный университет "МИФИ"; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия; Москва, Россия

П. Н Дьячков

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Список литературы

  1. Копцева Т.С., Баранов Е.В., Федюшкин И.Л. // Коорд. хим. 2024. Т. 50. № 3 С. 149. https://doi.org/10.31857/S0132344X24030013
  2. Li Z.J., Chen X.L., Li H.J. et al. // Appl. Phys. A. 2001. V. 72. P. 629. https://doi.org/10.1007/s003390100796
  3. Dong J.-J. // Appl. Phys. A. 2013. V. 113. P. 339. https://doi.org/10.1007/s00339-013-7937-3
  4. Zhu C.F., Fong W.K., Leung B.H. et al. // Appl. Phys. A. 2001. V. 72. P. 495. https://doi.org/10.1007/s003390100797
  5. Кондратьева О.Н., Стогний А.И., Новицкий Н.Н. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1136. https://doi.org/10.7868/s0044457x16090105
  6. Yuan J., Wang K., Hou Y. et al. // Photonics. 2023. V. 10. P. 544. https://doi.org/10.3390/photonics10050544
  7. Han W. et al. // Science. 1997. V. 277. P. 1287. https://doi.org/10.1126/science.277.5330.1287
  8. Li S., Waag A. // J. Appl. Phys. 2012. V. 111. P. 071101. https://doi.org/10.1063/1.3694674
  9. Jatkar M., Jha K.K., Patra S.K. // Appl. Phys. A. 2021. V. 127. P. 418. https://doi.org/10.1007/s00339-021-04536-3
  10. Camacho-Mojica D.C., López-Urias F. // Sci. Rep. 2015. V. 5. https://doi.org/10.1038/srep17902
  11. Khaddeo K.R., Srivastava A., Kurchania R. // J. Comput. Theor. Nanosci. 2013. V. 10. P. 2066. https://doi.org/10.1166/jctn.2013.3169
  12. Pinhal G.B., Marana N.L., Fabris G.S.L. et al. // Theor. Chem. Acc. 2019. V. 138. https://doi.org/10.1007/s00214-019-2418-1
  13. Lee S.M., Lee Y.H., Hwang Y.G. et al. // Phys. Rev. B. 1999. V. 60. P. 7788. https://doi.org/10.1103/physrevb.60.7788
  14. Sodré J.M., Longo E., Taft C.A. et al. // C. R. Chim. 2016. V. 20. P. 190. https://doi.org/10.1016/j.crci.2016.05.023
  15. Xu B., Pan B.C. // Phys. Rev. B. 2006. V. 74. P. 245402. https://doi.org/10.1103/physrevb.74.245402
  16. Chen G.-X., Zhang Y., Wang D.-D. et al. // Physica E. 2010. V. 43. P. 22. https://doi.org/10.1016/j.physse.2010.06.039
  17. Chen G.-X., Zhang Y., Wang D.-D. et al. // Solid State Commun. 2011. V. 151. P. 139. https://doi.org/10.1016/j.ssc.2010.11.002
  18. Yang S.-H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
  19. Gutierrez R., Díaz E., Gaul C. et al. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
  20. Marrows C.H., Zeissler K. // Appl. Phys. Lett. 2021. V. 119. P. 250502. https://doi.org/10.1063/5.0072735
  21. Nan T., Ralph D.C., Tsymbal E.Y. et al. // APL Mater. 2021. V. 9. P. 120401. https://doi.org/10.1063/5.0076924
  22. Kurpas M. // Phys. Rev. B. 2023. V. 108. P. 195408. https://doi.org/10.1103/physrevb.108.195408
  23. Liu H. // Physica B. 2011. V. 406. P. 104. https://doi.org/10.1016/j.physb.2010.10.031
  24. McGlynn S.P., Sunseri R., Christodouleas N. // J. Chem. Phys. 1962. V. 37. P. 1818. https://doi.org/10.1063/1.1733374
  25. Chen K., Zhang S. // Phys. Rev. Lett. 2015. V. 114. P. 126602. https://doi.org/10.1103/physrevlett.114.126602
  26. Manchon A., Zelezny J., Miron T.M. et al. // Rev. Mod. Phys. 2019. V. 91. P. 035004. https://doi.org/10.1103/revmodphys.91.035004
  27. Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. https://doi.org/10.1002/adma.202002117
  28. Fu J.Y., Wu M.W. // J. Appl. Phys. 2008. V. 104. https://doi.org/10.1063/1.3018600
  29. Srivastava A., Khan M.I., Tyagi N. et al. // Sci. World J. 2014. https://doi.org/10.1155/2014/984591
  30. Hao S., Zhou G., Wu J. et al. // Phys. Rev. B. 2004. V. 69. https://doi.org/10.1103/physrevb.69.113403
  31. Saberi S.H., Baizae S.M., Kahnouji H. // Superlattices Microstruct. 2014. V. 74. P. 52. https://doi.org/10.1016/j.spmi.2014.05.013
  32. Li J.Y., Chen X.L., Qiao Z.Y. et al. // J. Mater. Sci. Lett. 2001. V. 20. P. 1987. https://doi.org/10.1023/a:101355323435
  33. Goldberger J., He R., Zhang Y. et al. // Nature. 2003. V. 422. P. 599. https://doi.org/10.1038/nature01551
  34. Hemmingsson C., Pozina G., Khromov S. et al. // Nanotechnology. 2011. V. 22. P. 085602. https://doi.org/10.1088/0957-4484/22/8/085602
  35. D'yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. https://doi.org/10.1103/physrevb.76.195411
  36. D'yachkov P., Makaev D. // Int. J. Quantum Chem. 2015. V. 116. P. 316. https://doi.org/10.1002/qua.25030
  37. D'yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves. London: CRC Press, 2019.
  38. Slater J.C. // Phys. Rev. 1937. V. 51. P. 846. https://doi.org/10.1103/physrev.51.846
  39. Andersen O.K. // Phys. Rev. B. 1975. V. 12. P. 3060. https://doi.org/10.1103/physrevb.12.3060
  40. Koelling D.D., Arbman G.O. // J. Phys. F: Met. Phys. 1975. V. 5. P. 2041. https://doi.org/10.1088/0305-4608/5/11/016
  41. Дьячков П.Н., Дьячков Е.П. // Журн. неорган. химии. 2025. Т. 70. № 6. С. 813. https://doi.org/10.31857/S0044457X25060099
  42. Дьячков П.Н., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 9. С. 1319. https://doi.org/10.31857/S0044457X24090125
  43. Дьячков П.Н., Меринов В.Б., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 757. https://doi.org/10.31857/S0044457X24050145
  44. Дьячков П.Н., Ломакин Н.А. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 492. https://doi.org/10.31857/S0044457X2260181X
  45. Levămäki H., Vitos L. // Phys. Rev. B. 2021. V. 103. P. 035118. https://doi.org/10.1103/physrevb.103.035118
  46. McMahan A.K. // Phys. Rev. B. 1984. V. 30. P. 5835. https://doi.org/10.1103/physrevb.30.5835
  47. Vitos L. The Exact Muffin-Tin Orbitals Method and Applications. Budapest: MTA SZFK1, 2008.
  48. Vitos L., Skriver H.L., Johansson B. et al. // Comput. Mater. Sci. 2000. V. 18. P. 24. https://doi.org/10.1016/s0927-0256(99)00098-1
  49. Kunstmann J. Density Functional and Linear Response Studies of sp Materials. Stuttgart: Universitat Stuttgart, 2008.
  50. Vitos L. // Phys. Rev. B. 2001. V. 64. P. 014107. https://doi.org/10.1103/physrevb.64.014107
  51. Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: Бином. Лаб. знаний, 2012.
  52. Lambrecht W.R.L., Segall B., Strite S. et al. // Phys. Rev. B. 1994. V. 50. P. 14155. https://doi.org/10.1103/physrevb.50.14155
  53. Park Y.S., Lee G., Holmes M.J. et al. // Nano Lett. 2015. V. 15. P. 4472. https://doi.org/10.1021/acs.nanolett.5b00924
  54. Ильясов В.В., Жданова Т.П., Никифоров И.Я. // Журн. структ. химии. 2007. T. 48. № 1. C. 67. https://doi.org/10.17516/1998-2486-2007-48-1-67-72
  55. Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).