ANALYSIS OF CLOSO-DECABORATE ANION AND ITS DERIVATIVES BY CAPILLARY ZONE ELECTROPHORESIS
- 作者: Kalistratova A.V1, Novikova D.V1, Kubasov A.S2, Zhizhin K.Y.2, Kuznetsov N.T2
-
隶属关系:
- Mendeleev University of Chemical Technology of Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS
- 期: 卷 70, 编号 9 (2025)
- 页面: 1148-1156
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://medbiosci.ru/0044-457X/article/view/356287
- DOI: https://doi.org/10.7868/S3034560X25090063
- ID: 356287
如何引用文章
详细
作者简介
A. Kalistratova
Mendeleev University of Chemical Technology of Russia
Email: a.kalistratova@inbox.ru
Moscow, Russia
D. Novikova
Mendeleev University of Chemical Technology of RussiaMoscow, Russia
A. Kubasov
Kurnakov Institute of General and Inorganic Chemistry RASMoscow, Russia
K. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry RASMoscow, Russia
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry RASMoscow, Russia
参考
- Mahfouz N., Ghaida F.A., El Hajj Z. et al. // Chemistryselect. 2022. V. 7. № 21. P. e202200770. https://doi.org/10.1002/slct.202200770
- Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
- Mukherjee S., Thilagar P. // Chem. Commun. 2016. V. 52. № 6. P. 1070. https://doi.org/10.1039/c5cc08213g
- Guo L., Yu X., Tu D. et al. // Chem. A Eur. J. 2022. V. 28. № 33. P. e202200303. https://doi.org/10.1002/chem.202200303
- Nikiforova S.E., Khan N.A., Kubasov A.S. et al. // Crystals. 2023. V. 13. № 10. P. 1449. https://doi.org/10.3390/cryst13101449
- Korolenko S.E., Zhuravlev K.P., Tsaryuk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
- Tong D., Wang H., Chen L. et al. // High Perform. Polym. 2019. V. 31. № 6. P. 694. https://doi.org/10.1177/0954008318788389
- Yue J., Li Y., Li H. et al. // Rsc. Adv. 2015. V. 5. № 119. P. 98010. https://doi.org/10.1039/c5ra15743a
- Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. P. 123239. https://doi.org/10.1016/j.talanta.2022.123239
- Kopytin A.V., Turyshev E.S., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 1. P. 6. https://doi.org/10.1134/S0036023622700103
- Jacob L., Rzeszotarska E., Kaszyński P. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 32. P. 3083. https://doi.org/10.1002/ejic.202000456
- Leśnikowski Z.J. // Expert Opin. Drug Discov. 2016. V. 11. № 6. P. 569. https://doi.org/10.1080/17460441.2016.1174687
- Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
- Das B.C., Nandwana N.K., Das S. et al. // Molecules. 2022. V. 27. № 9. P. 2615. https://doi.org/10.3390/molecules27092615
- Messner K., Vuong B., Tranmer G.K. // Pharmaceuticals. 2022. V. 15. № 3. P. 263. https://doi.org/10.3390/ph15030264
- Fink K., Uchman M. // Coord. Chem. Rev. 2021. V. 431. P. 213684. https://doi.org/10.1016/j.ccr.2020.213684
- Bogucka-Kocka A., Kołodziej P., Makuch-Kocka A. et al. // Chem. Commun. 2022. V. 58. № 15. P. 2528. https://doi.org/10.1039/d1cc07075d
- Wang S., Ren Y., Wang Z. et al. // Expert Opin. Drug Discov. 2022. V. 17. № 12. P. 1329. https://doi.org/10.1080/17460441.2023.2153829
- Barba-Bon A., Salluce G., Lostalé-Seijo I. et al. // Nature. 2022. V. 603. № 7902. P. 637. https://doi.org/10.1038/s41586-022-04413-w
- Hu X.-Y., Guo D.-S. // Angew. Chem. Int. Ed. 2022. V. 61. № 26. P. e202204979. https://doi.org/10.1002/anie.202204979
- Lesnikowski Z.J. // Collect. Czechoslov. Chem. Commun. 2007. V. 72. № 12. P. 1646. https://doi.org/10.1135/cccc20071646
- Purohit M., Kumar M. // Mater. Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.12.181
- Mahmoud B.S., Alamri A.H., McConville C. // Cancers (Basel). 2020. V. 12. № 1. P. 175. https://doi.org/10.3390/cancers12010175
- Fithroni A.B., Ohtsuki T., Matsuura E. et al. // Cells. 2022. V. 11. № 20. P. 3307. https://doi.org/10.3390/cells11203307
- Kaniowski D., Suwara J., Ebenryter-Olbińska K. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14793. https://doi.org/10.3390/ijms232314793
- Plesek J. // Chem. Rev. 1992. V. 92. № 2. P. 269. https://doi.org/10.1021/cr00010a005
- Kumar R., Rathore A.S., Guttman A. // Electrophoresis. 2022. V. 43. № 1–2. P. 143. https://doi.org/10.1002/elps.202100182
- Palmblad M., van Eck N.J., Bergquist J. // Trac Trends Anal. Chem. 2023. V. 159. P. 116899. https://doi.org/10.1016/j.trac.2022.116899
- Ermolenko Y., Nazarova N., Belov A. et al. // J. Drug Deliv. Sci. Technol. 2022. V. 70. P. 103220. https://doi.org/10.1016/j.jddst.2022.103220
- Wang M., Liu W., Tan S. et al. // J. Sep. Sci. 2022. V. 45. № 11. P. 1918. https://doi.org/10.1002/jssc.202100727
- Van Schepdael A. // Trac Trends Anal. Chem. 2023. V. 160. P. 116992. https://doi.org/10.1016/j.trac.2023.116992
- Kostal V., Arriaga E.A. // Electrophoresis. 2008. V. 29. № 12. P. 2578. https://doi.org/10.1002/elps.200700917
- Ibáñez C., Acunha T., Valdés A. et al. Capillary electrophoresis in food and foodomics / Springer, 2016. https://doi.org/10.1007/978-1-4939-6403-1_22
- Dong Y. // Trends Food Sci. Technol. 1999. V. 10. № 3. P. 87. https://doi.org/10.1016/S0924-2244(99)00031-X
- Parvez H., Caudy P., Parvez S. et al. Capill. Electroph. Biotech. Environ. Anal. / CRC Press, London, 2023. https://doi.org/10.1201/9780429070280
- Riu J., Barceló D. // Tech. Inst. Anal. Chem. 2000. V. 21. P. 739. https://doi.org/10.1016/S0167-9244(00)80023-2
- Slavíček V., Grüner B., Vespalec R. // J. Chromatogr. A. 2003. V. 984. № 1. P. 121. https://doi.org/10.1016/S0021-9673(02)01816-2
- Teixidor F., Laromaine A., Viñas C. et al. // Dalton Trans. 2008. № 3. P. 345. https://doi.org/10.1039/b715362g
- Vítová L., Fojt L., Vespalec R. // J. Chromatogr. A. 2014. V. 1338. P. 174. https://doi.org/10.1016/j.chroma.2014.02.060
- Horáková H., Vespalec R. // Electrophoresis. 2007. V. 28. № 20. P. 3639. https://doi.org/10.1002/elps.200600814
- Valeri A.L., Kremser L., Kenndler E. et al. // Electrophoresis. 2008. V. 29. № 8. P. 1658. https://doi.org/10.1002/elps.200700815
- Williams B.A., Vigh G. // Anal. Chem. 1996. V. 68. № 7. P. 1174. https://doi.org/10.1021/ac950968r
- Holub J., El Anwar S., Grüner B. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4499. https://doi.org/10.1002/ejic.201700651
- El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
- Kubasov A.S., Golubev A.V., Bykov A.Y. et al. // J. Mol. Struct. 2021. V. 1241. P. 130591. https://doi.org/10.1016/j.molstruc.2021.130591
- Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
- Monti Hughes A., Hu N. // Cancers (Basel). 2023. V. 15. № 16. P. 1491. https://doi.org/10.3390/cancers15164091
- Melanson J.E., Baryla N.E., Lucy C.A. // Trac Trends Anal. Chem. 2001. V. 20. № 6–7. P. 365. https://doi.org/10.1016/S0165-9936(01)00067-X
- Kaniansky D., Masár M., Marák J. et al. // J. Chromatogr. A. 1999. V. 834. № 1–2. P. 133. https://doi.org/10.1016/S0021-9673(98)00789-4
- Aupiais J. // J. Solution Chem. 2011. V. 40. № 9. P. 1629. https://doi.org/10.1007/s10953-011-9734-y
补充文件
