SYNTHESIS, STRUCTURE, AND OPTICAL PROPERTIES OF CYCLOMETALATED IRIDIUM(III) COMPLEXES WITH 1,2-DIPHENYLBENZIMIDAZOLE AND N-SUBSTITUTED PERIMIDINES
- 作者: Kiseleva M.A1, Bezzubov S.I1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- 期: 卷 70, 编号 9 (2025)
- 页面: 1157-1164
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://medbiosci.ru/0044-457X/article/view/356288
- DOI: https://doi.org/10.7868/S3034560X25090079
- ID: 356288
如何引用文章
详细
Two novel bis-cyclometalated iridium(III) complexes with 1,2-diphenylbenzimidazole (pbi) and ancillary 1-methyl-2-(pyridin-2-yl)-1H-perimidine (L1, complex 1) and ethyl 2-(2-(pyridin-2-yl)-1H-perimidin-1-yl)acetate (L2, complex 2) were synthesized and characterized by set of physicochemical methods. Comparison of the results of crystal packing analysis and electronic absorption spectroscopy demonstrates that while exclusion of the rigid perimidine system from conjugation does not allow red-shifting of absorption maxima, both complexes exhibit broad absorption up to 600 nm (ε = 27 000 − 800 M-1 cm-1), comparable to iridium analogs. The results of the study clarify the influence of steric factors on the absorption properties of the complexes and will be used for further development of strongly light-absorbing materials.
作者简介
M. Kiseleva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
S. Bezzubov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: bezzubov@igic.ras.ru
Moscow, Russia
参考
- Longhi E., De Cola L. Iridium(III) Complexes for OLED Application, in: Iridium(III) Optoelectron. Photonics Appl. Chichester / Wiley, 2017. https://doi.org/10.1002/9781119007166.ch6
- Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
- Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13. № 12. P. 2403273. https://doi.org/10.1002/adom.202403273
- Muñoz-García A.B., Benesperi I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/D0CS01336F
- Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
- Légalité F., Escudero D., Pellegrin Y. et al. // Dye. Pigment. 2019. V. 171. P. 107693. https://doi.org/10.1016/j.dyepig.2019.107693
- Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
- Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
- Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. P. E202403309. https://doi.org/10.1002/chem.202403309
- Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
- Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
- Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
- Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
- Aghazada S., Gao P., Yella A. et al. // Inorg. Chem. 2016. V. 55. № 13. P. 6653. https://doi.org/10.1021/acs.inorgchem.6b00842
- Han G., Li G., Huang J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1. https://doi.org/10.1038/s41467-022-29981-3
- Ботезату А., Токарев С.Д., Федоров Ю.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1805. https://doi.org/10.31857/S0044457X24120133
- Colombo A., Dragonetti C., Fagnani F. et al. // Electronics. 2025. V. 14. № 8. P. 1639. https://doi.org/10.3390/electronics14081639
- Vigueras G., Gasser G., Ruiz J. // Dalton Trans. 2025. V. 54. № 4. P. 1320. https://doi.org/10.1039/D4DT03014A
- Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
- DiLuzio S., Connell T.U., Mdluli V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
- De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
- Tatarin S. V., Meshcheriakova E.A., Kozyukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
- Wang Y., Huang Y., Chen S. et al. // Inorg. Chem. 2023. V. 62. № 19. P. 7212. https://doi.org/10.1021/acs.inorgchem.2c04471
- Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // Журн. неорган. химии. 2024. Т. 69. № 11. С. 1565. https://doi.org/10.31857/S0044457X24110064
- Zhang H., Wang H., Tanner K. et al. // Dalton Trans. 2021. V. 50. № 30. P. 10629. https://doi.org/10.1039/d1dt01557e
- Hohlfeld B.F., Gitter B., Kingsbury C.J. et al. // Chem. Eur. J. 2021. V. 27. № 21. P. 6440. https://doi.org/10.1002/chem.202004776
- Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
- Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
- Bobo M.V., Paul A., Robb A.J. et al. // Inorg. Chem. 2020. V. 59. № 9. P. 6351. https://doi.org/10.1021/acs.inorgchem.0c00456
- Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
- Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
- Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
- Kalle P., Tatarin S.V., Zakharov A.Y. et al. // Acta Crystallogr., Sect. E: Crystallogr. Commun. 2021. V. 77. № 2. P. 96. https://doi.org/10.1107/S205698902100013X
- Смирнов Д.Е., Татарин С.В., Киселева М.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1202. https://doi.org/10.31857/S0044457X23601049
- Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/s2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/s0021889808042726
- Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- Rowland R.S., Taylor R. // J. Phys. Chem. 1996. V. 100. № 18. P. 7384. https://doi.org/10.1021/jp953141+
- Bezzubov S.I., Doljenko V.D., Troyanov S.I. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 22. https://doi.org/10.1016/j.ica.2014.02.024
补充文件
