SYNTHESIS OF PERHALOGENATED MONOHYDROXY DERIVATIVES OF THE closo-DECABORATE ANION [2-B10X9OH]2– (X = Cl, Br)
- 作者: Golubev A.V1, Mantsireva V.A1,2, Kubasov A.S1, Bykov A.Y.1, Zhizhin K.Y.1, Kuznetsov N.T1
-
隶属关系:
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- D.I. Mendeleev University of Chemical Technology of Russia
- 期: 卷 70, 编号 11 (2025)
- 页面: 1486-1499
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://medbiosci.ru/0044-457X/article/view/378178
- DOI: https://doi.org/10.7868/S3034560X25110074
- ID: 378178
如何引用文章
详细
作者简介
A. Golubev
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: golalekseival@mail.ru
Moscow, Russia
V. Mantsireva
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; D.I. Mendeleev University of Chemical Technology of RussiaMoscow, Russia
A. Kubasov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. Bykov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
K. Zhizhin
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
N. Kuznetsov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
参考
- Knapp C. // Compr. Inorg. Chem. II (Second Ed.) From Elem. to Appl. 2013. V. 1. P. 651. https://doi.org/10.1016/B978-0-08-097774-4.00125-X
- Kim K.C., Reed C.A., Long G.S. et al. // J. Am. Chem. Soc. 2002. V. 124. No 26. P. 7662. https://doi.org/10.1021/ja0259990
- Kessler M., Knapp C., Sagave V. et al. // Inorg. Chem. 2010. V. 49. No 11. P. 5223. https://doi.org/10.1021/ic100337k
- Kessler M., Knapp C., Zogaj A. // Organometallics. 2011. V. 30. No 14. P. 3786. https://doi.org/10.1021/om2003333
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2023. V. 68. No 6. P. 657. https://doi.org/10.1134/S0036023623600314
- Dymon J., Wibby R., Kleingardner J. et al. // Dalton Trans. 2008. No 22. P. 2999. https://doi.org/10.1039/b802374c
- Zhou N., Zhao G., Dong K. et al. // RSC Adv. 2012. V. 2. No 26. P. 9830. https://doi.org/10.1039/c2ra21700g
- Stoyanov E.S., Hoffmann S.P., Juhasz M. et al. // J. Am. Chem. Soc. 2006. V. 128. No 10. P. 3160. https://doi.org/10.1021/ja0585811
- Avelar A., Tham F.S., Reed C.A. // Angew. Chem. - Int. Ed. 2009. V. 48. No 19. P. 3491. https://doi.org/10.1002/anie.200900214
- Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
- Oligomers D., Kultyshev R.G., Liu J. et al. // Society. 2002. V. 124. No 11. P. 1291.
- Kultyshev R.G., Liu J., Meyers E.A. et al. // Inorg. Chem. 2000. V. 39. No 15. P. 3333. https://doi.org/10.1021/ic000198o
- Bayer M.J., Hawthorne M.F. // Inorg. Chem. 2004. V. 43. P. 2018.
- Peymann T., Knobler C.B., Frederick Hawthorne M. // Inorg. Chem. 2000. V. 39. No 6. P. 1163. https://doi.org/10.1021/ic991105+
- Bragin V.I., Sivaev I.B., Bregadze V.I. et al. // J. Organomet. Chem. 2005. V. 690. No 11. P. 2847. https://doi.org/10.1016/JJORGANCHEM.2005.01.053
- Bondarev O., Khan A.A., Tu X. et al. // J. Am. Chem. Soc. 2013. V. 135. No 35. P. 13204. https://doi.org/10.1021/ja4069613
- John K.C., Kaczmarczyk A., Soloway A.H. // J. Med. Chem. 1969. V. 12. No 1. P. 54. https://doi.org/10.1021/jm00301a015
- Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. No 8. P. 563. https://doi.org/10.1134/S1070328419080098
- Trofimenko S. // J. Am. Chem. Soc. 1966. V. 88. No 9. P. 1899. https://doi.org/10.1021/ja00961a010
- Kamin A.A., Juhasz M.A. // Inorg. Chem. 2020. V. 59. No 1. P. 189. https://doi.org/10.1021/acs.inorgchem.9b03037
- Axtell J.C., Saleh L.M.A., Qian E.A. et al. // Inorg. Chem. 2018. V. 57. No 5. P. 2333. https://doi.org/10.1021/acs.inorgchem.7b02912
- Zhang Y., Liu J., Duttwyler S. // Eur. J. Inorg. Chem. 2015. V. 2015. No 31. P. 5158. https://doi.org/10.1002/ejic.201501009
- Assaf K.I., Ural M.S., Pan F. et al. // Angew. Chem. - Int. Ed. 2015. V. 54. No 23. P. 6852. https://doi.org/10.1002/anie.201412485
- Nelson Y.A., Irshad A., Kim S. et al. // Inorg. Chem. 2023. V. 62. No 37. P. 15084. https://doi.org/10.1021/acs.inorgchem.3c01992
- Holub J., El Anwar S., Jelinek T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. No 38. P. 4499. https://doi.org/10.1002/ejic.201700651
- El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
- Jenne C., Kirsch C. // Dalton Trans. 2015. V. 44. No 29. P. 13119. https://doi.org/10.1039/c5dt01633a
- El Anwar S., Assaf K.I., Begaj B. et al. // Chem. Commun. 2019. V. 55. No 91. P. 13669. https://doi.org/10.1039/c9cc07678f
- Bruker, SAINT, v. 8.40A, Bruker AXS Inc., Madison, WI, 2019
- Krause L., Herbst-Immer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. No 1. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. No 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. No 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- Golubev A.V., Kubasov A.S., Turyshev E.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. No 9. P. 1333. https://doi.org/10.1134/S0036023620090041
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Inorg. Chem. 2021. V. 60. No 12. P. 8592. https://doi.org/10.1021/acs.inorgchem.1c00516
- Golubev A.V., Kubasov A.S., Bykov A.Y. et al. // Dokl. Chem. 2021. V. 500. No 2. P. 205. https://doi.org/10.1134/S0012500821100025
补充文件
