AQUACOMPLEXES OF RARE EARTH ELEMENTS (Ce3+, Eu3+, Gd3+ and Yb3+) WITH closo-DODECABORATE ANION: SYNTHESIS, STRUCTURE, PROPERTIES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Aquacomplexes [M(H2O)8]2[B12H12]3·15H2O (M = Eu3+, Gd3+, Yb3+) and [Ce(H2O)9]2[B12H12]3·15H2O stabilized by closo-dodecaborate anion have been synthesized by neutralization of (H3O)2[B12H12] solution with rare earth element (REE) oxides M2O3 (M = Eu3+, Gd3+, Yb3+) and CeO2 and characterized. The structures of [Eu(H2O)8]2[B12H12]3·15H2O and [Ce(H2O)9]2[B12H12]3·15H2O have been determined by X-ray diffraction analysis. It was found that the reaction in the CeO2/(H3O)2[B12H12] system is accompanied by the redox transformation Ce4+ → Ce3+, while for the M2O3 (M = Eu3+, Gd3+, Yb3+)/(H3O)2[B12H12] systems, stabilization of the oxidation state of the corresponding REE has been observed. The luminescent properties of [Ce(H2O)9]2[B12H12]3·15H2O have been studied. It was shown that this compound emits in the near ultraviolet region with an emission maximum at 370 nm.

作者简介

I. Myshletsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: korolencko0110@yandex.ru
Moscow, Russia

E. Malinina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

L. Goeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

S. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

A. Son

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

N. Kuznetsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

参考

  1. Titova S.A., Kruglova M.P., Stupin V.A. et al. // Pharmaceuticals. 2025. V. 18. P. 154. https://doi.org/10.3390/ph18020154
  2. Zheng A.L.T., Sinin A.E., Jin W.T. et al. // Int. J. Environ. Sci. Technol. 2025. V. 22. P. 7247. https://doi.org/10.1007/s13762-024-06203-5
  3. An J., Qu Y., Guofeng Wang // Inorg. Chem. Front. 2024. V. 11. P. 11. https://doi.org/10.1039/D3QI02006A
  4. Rocha R.A., Alexandrov K., Scott C. // Microb. Biotechnol. 2024. V. 17. P. e14503. https://doi.org/10.1111/1751-7915.14503
  5. Yin X., Deng L., Ruan L. et al. // Materials. 2023. V. 16. P. 3568. https://doi.org/10.3390/ma16093568
  6. Li J., Kim J.S., Fan J. et al. // Chem. Soc. Rev. 2025. V. 54. P. 4104. https://doi.org/10.1039/D4CS01288G
  7. Kawasaki R., Miura Y., Kono N. et al. // ChemMedChem. 2024. V. 19. P. e202400323. https://doi.org/10.1002/cmdc.202400323
  8. Cebula J., Fink K., Boratyński J. et al. // Coord. Chem. Rev. 2023. V. 477. P. 214940. https://doi.org/10.1016/j.ccr.2022.214940
  9. Avdeeva V.V., Nikiforova S.E., Malinina E.A. et al. // Materials. 2023. V. 16. P. 6099. https://doi.org/10.3390/ma16186099
  10. Канаева О.А., Кузнецов Н.Т. // Труды МИТХТ. 1972. Т. 2. С. 21.
  11. Tiritiris I., Schleid T. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 1353. https://doi.org/10.1002/zaac.200800073
  12. Malinina Е.А., Korolenko S.E., Kubasov A.S. et al. // J. Solid State Chem. 2021. V. 302. P. 122413. https://doi.org/10.1016/j.jssc.2021.122413
  13. White III J.P., Deng H., Boyd E.P. et al. // Inorg. Chem. 1994. V. 33. P. 1685. https://doi.org/10.1021/ic00086a019
  14. Yapryntsev A.D., Bykov A.Yu., Baranchikov A.E. et al. // Inorg. Chem. 2017. V. 56. P. 3421. https://doi.org/10.1021/acs.inorgchem.6b02948
  15. Akimov S.S., Matveev E.Yu., Kubasov A.S. et al. // Russ. Chem. Bull. 2013. V. 62. P. 1417. https://doi.org/10.1007/s11172-013-0204-0
  16. Ryabchikova M.N., Nelyubin A.V., Buzanov G.A. et al. // Polyhedron. 2025. V. 272. P. 117462. https://doi.org/10.1016/j.poly.2025.117462
  17. Greenwood N.N., Morris J.H. // Proc.Chem. Soc. 1963. V. 11. P. 338.
  18. Bruker, SAINT, v. 8.40A, Bruker AXS Inc., Madison, WI, 2019.
  19. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  20. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  21. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339 https://doi.org/10.1107/S002188980804272
  22. Inerbaev T.M., Han Y., Bekker T.B., Kilin D.S. // J. Phys. Chem. C. 2023. V. 127. P. 9213. https://doi.org/10.1021/acs.jpcc.2c08711
  23. Chen X., Huang X. // Prog. Mater. Sci. 2025. P. 101535. https://doi.org/10.1016/j.pmatsci.2025.101535
  24. Rittisut W., Wantana N., Butburee A. et al. // Radiat. Phys. Chem. 2021. V. 185. P. 109498. https://doi.org/10.1016/j.radphyschem.2021.109498
  25. Frolov M.P., Leonov S.O., Korostelin Yu.V. et al. // Opt. Mater. Express. 2022. V. 12. P. 4619. https://doi.org/10.1364/OME.472550
  26. Wen J., Wang Y., Jiang G. // Inorg. Chem. 2020. V. 59. P. 5170. https://doi.org/10.1021/acs.inorgchem.0c00406

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).