СРЕДСТВА КОМПЬЮТЕРНОЙ АЛГЕБРЫ ДЛЯ ГЕОМЕТРИЗАЦИИ УРАВНЕНИЙ МАКСВЕЛЛА

Обложка

Цитировать

Полный текст

Аннотация

При расчете оптических приборов в рамках геометризованной теории Максвелла используются широко известные формализмы общей теории относительности и дифференциальной геометрии. В частности, для подобных вычислений требуется знать аналитический вид уравнений геодезических. Что приводит к необходимости вычислять большое количество однообразных математических выражений. Одним из предназначений средств компьютерной алгебры является облегчение работы исследователя путем автоматизации громоздких символьных расчетов. Таким образом, использование систем компьютерной алгебры представляется вполне очевидным действием. В работе рассмотрено несколько свободных реализаций символьных вычислений для аппарата общей теории относительности. В конце статьи приводится практический пример символьных расчетов для геометризованной теории Максвелла.

Об авторах

А. В. Королькова

Российский университет дружбы народов

Email: korolkova-av@rudn.ru
Россия, 117198, Москва, ул. Миклухо-Маклая, д. 6

М. Н. Геворкян

Российский университет дружбы народов

Email: gevorkyan-mn@rudn.ru
Россия, 117198, Москва, ул. Миклухо-Маклая, д. 6

Д. С. Кулябов

Российский университет дружбы народов; Объединенный институт ядерных исследований

Email: kulyabov-ds@rudn.ru
Россия, 117198, Москва, ул. Миклухо-Маклая, д. 6; Россия, 141980, Московская область, Дубна, ул. Жолио-Кюри 6

Л. А. Севастьянов

Российский университет дружбы народов; Объединенный институт ядерных исследований

Автор, ответственный за переписку.
Email: sevastianov-la@rudn.ru
Россия, 117198, Москва, ул. Миклухо-Маклая, д. 6; Россия, 141980, Московская область, Дубна, ул. Жолио-Кюри 6

Список литературы

  1. Тамм И.Е. Электродинамика анизотропной среды в специальной теории относительности // Журнал Русского физико-химического общества. Часть физическая. 1924. Т. 56. № 2–3. С. 248–262.
  2. Тамм И.Е. Кристаллооптика теории относительности в связи с геометрией биквадратичной формы // Журнал Русского физикохимического общества. Часть физическая. 1925. Т. 57. № 3–4. С. 209–240.
  3. Mandelstam L.I., Tamm I.Y. Elektrodynamik der anisotropen medien in der speziellen relativittstheorie // Mathematische Annalen. 1925. Bd. 95. H. 1. S. 154–160.
  4. Gordon W. Zur Lichtfortpflanzung nach der Relativita‥tstheorie // Annalen der Physik. 1923. Bd. 72. S. 421–456.
  5. Plebanski J. Electromagnetic waves in gravitational fields // Physical Review. 1960. V. 118. № 5. P. 1396–1408.
  6. Felice F. On the Gravitational Field Acting as an Optical Medium // General Relativity and Gravitation. 1971. V. 2. № 4. P. 347–357.
  7. Smolyaninov I.I. Metamaterial ‘Multiverse’ // Journal of Optics. 2011. V. 13. № 2. P. 024004.
  8. Pendry J.B., Schurig D., Smith D.R. Controlling Electromagnetic Fields // Science. 2006. V. 312. № 5781. P. 1780–1782.
  9. Schurig D., Pendry J.B., Smith D.R. Calculation of Material Properties and Ray Tracing in Transformation Media // Optics express. 2006. V. 14. № 21. P. 9794–9804.
  10. Leonhardt U. Optical Conformal Mapping // Science. 2006. V. 312. № June. P. 1777–1780.
  11. Leonhardt U., Philbin T.G. Transformation Optics and the Geometry of Light // Progress in Optics. 2009. V. 53. P. 69–152.
  12. Foster R., Grant P., Hao Y. et al. Spatial Transformations: from Tundamentals to Applications // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015. 8. V. 373. № 2049. P. 20140365.
  13. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. A naive geometrization of maxwell’s equations // The 15th small triangle meeting of Theoretical Physics. Star Lesn, 2013. P. 104–111.
  14. Кулябов Д.С., Королькова А.В., Севастьянов Л.А. Простейшая геометризация уравнений Максвелла // Вестник РУДН. Серия. Математика. Информатика. Физика. 2014. № 2. С. 115–125.
  15. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. et al. Algorithm for lens calculations in the geometrized maxwell theory // Saratov Fall Meeting 2017. V. 10717 of Proceedings of SPIE. Saratov : SPIE, 2018. 4. P. 107170Y.1–6.
  16. Королькова А.В., Кулябов Д.С., Севастьянов Л.А. Тензорные расчеты в системах компьютерной алгебры // Программирование. 2013. № 3. С. 47–57.
  17. Кулябов Д.С., Королькова А.В., Севастьянов Л.А. Новые возможности второй версии пакета компьютерной алгебры cadabra // Программирование. 2019. № 2. С. 41–48.
  18. Sandon D. Symbolic Computation with Python and SymPy. Independently published, 2021. ISBN: 979-8489815208.
  19. Диваков Д.В., Тютюнник А.А. Символьное исследование спектральных характеристик направляемых мод плавно-нерегулярных волноводов // Программирование. 2022. № 2. С. 23–32.
  20. Sympy. 2022. URL: http://www.sympy.org/ru/index.html.
  21. Project jupyter. 2022. URL: https://jupyter.org/.
  22. Einsteinpy–making einstein possible in python. 2022. URL:https://einsteinpy-einsteinpy.readthedocs.io/en /latest/index.html.
  23. Gravipy tensor calculus package for general relativity based on sympy. 2022. URL: https://github.com/wojciechczaja/GraviPy.
  24. Bruns H. Das Eikonal. Leipzig: S. Hirzel, 1895. Bd. 35.
  25. Borovskikh A.V. The two-dimensional eikonal equation // Siberian Math. J. 2006. V. 47. P. 813–834.
  26. Moskalensky E.D. Finding exact solutions to the two-dimensional eikonal equation // Num. Anal. Appl. 2009. V. 2. P. 201–209.
  27. Kabanikhin S.I., Krivorotko O.I. Numerical solution eikonal equation // Sib. Elektron. Mat. Izv. 2013. V. 10. P. 28–34.
  28. Kulyabov D.S., Korolkova A.V., Velieva T.R., Gevorkyan M.N. Numerical analysis of eikonal equation // Saratov Fall Meeting 2018. Vol. 11066 of Proceedings of SPIE. Saratov: SPIE, 2019. 6. P. 56.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© А.В. Королькова, М.Н. Геворкян, Д.С. Кулябов, Л.А. Севастьянов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».