ФУНКЦИОНАЛЬНАЯ РОЛЬ КАНАЛОВ Piezo1 В ГЛАДКОМЫШЕЧНЫХ КЛЕТКАХ АРТЕРИЙ ГОЛОВНОГО МОЗГА КРЫСЫ В НОРМЕ И ПРИ ХРОНИЧЕСКОМ СТЕНОЗЕ СОННЫХ АРТЕРИЙ
- Авторы: Гайнуллина Д.К1,2, Борзых A.A1, Печкова M.Г1, Богоцкой K.A1, Тарасова O.C1,2,3
-
Учреждения:
- Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАН
- Московский государственный университет имени М.В. Ломоносова
- Московский государственный университет имени М.В. Ломоносова, Медицинский научно-образовательный институ
- Выпуск: Том 42, № 6 (2025)
- Страницы: 465-474
- Раздел: СТАТЬИ
- URL: https://medbiosci.ru/0233-4755/article/view/362237
- DOI: https://doi.org/10.7868/S3034521925060027
- ID: 362237
Цитировать
Аннотация
Об авторах
Д. К Гайнуллина
Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАН; Московский государственный университет имени М.В. Ломоносова
Email: dina.gaynullina@gmail.com
Москва, Россия; Москва, Россия
A. A Борзых
Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАНМосква, Россия
M. Г Печкова
Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАНМосква, Россия
K. A Богоцкой
Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАНМосква, Россия
O. C Тарасова
Государственный научный центр Российской Федерации – Институт медико-биологических проблем РАН; Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова, Медицинский научно-образовательный институМосква, Россия; Москва, Россия; Москва, Россия
Список литературы
- Coste B., Mathur J., Schmidt M., Earley T.J., Ranade S., Petrus M.J., Dubin A.E., Patapoutian A. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 7–12. https://doi.org/10.1126/science.1193270
- Beech D.J., Kalli A.C. 2019. Force sensing by Piezo channels in cardiovascular health and disease. Arterioscler. Thromb. Vasc. Biol. 39, 2228–2239. https://doi.org/10.1161/ATVBAHA.119.313348
- Nagase T., Nagase M. 2024. Piezo ion channels: Long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens. Res. 47, 2786–2799. https://doi.org/10.1038/s41440-024-01820-6
- Retailleau K., Duprat F., Arhatte M., Ranade S.S., Peyronnet R., Martins J.R., Jodar M., Moro C., Offermanns S., Feng Y., Demolombe S., Patel A., Honore E. 2015. Piezo1 in smooth muscle cells is involved in hypertension-dependent Arterial remodeling. Cell. Rep. 13, 1161–1171. https://doi.org/10.1016/j.celrep.2015.09.072
- Chen J., Rodriguez M., Miao J., Liao J., Jain P.P., Zhao M., Zhao T., Babicheva A., Wang Z., Parmisano S., Powers R., Matti M., Paquin C., Soroureddin Z., Shyy J.Y.J., Thistlethwaite P.A., Makino A., Wang J., Yuan J.X.J. 2022. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. – Lung Cell. Mol. Physiol. 322, L737–L760. https://doi.org/10.1152/ajplung.00447.2021
- Liao J., Lu W., Chen Y., Duan X., Zhang C., Luo X., Lin Z., Chen J., Liu S., Yan H., Chen Y., Feng H., Zhou D., Chen X., Zhang Z., Yang Q., Liu X., Tang H., Li J., Makino A., Yuan J.X.J., Zhong N., Yang K., Wang J. 2021. Upregulation of Piezo1 (Piezo type mechanosensitive ion channel component 1) enhances the intracellular free calcium in pulmonary arterial smooth muscle cells from idiopathic pulmonary arterial hypertension patients. Hypertension. 77, 1974–1989. https://doi.org/10.1161/HYPERTENSIONAHA.120.16629
- Wang Z., Chen J., Babicheva A., Jain P.P., Rodriguez M., Ayon R.J., Ravellette K.S., Wu L., Balistrieri F., Tang H., Wu X., Zhao T., Black S.M., Desai A.A., Garcia J.G.N., Sun X., Shyy J.Y.J., Valdez-Jasso D., Thistlethwaite P.A., Makino A., Wang J., Yuan J.X.J. 2021. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am. J. Physiol. – Cell. Physiol. 321, C1010–C1027. https://doi.org/10.1152/ajpcell.00147.2021
- Szabo L., Balogh N., Tóth A., Angyal Á., Gönczi M., Csiki D.M., Tóth C., Balatoni I., Jeney V., Csernoch L., Dienes B. 2022. The mechanosensitive Piezo1 channels contribute to the arterial medial calcification. Front. Physiol. 13, 1–17. https://doi.org/10.3389/fphys.2022.1037230
- Zhang F.R., Tang J., Lai Y., Mo S.Q., Lin Z.M., Lei Q.Q., Han C.C., Zhou A.D., Lv X.F., Wang C., Ou J.S., Zhou J.G., Pang R.P. 2025. Smooth muscle cell Piezo1 is essential for phenotypic switch and neointimal hyperplasia. Br. J. Pharmacol. 182, 2031–2048. https://doi.org/10.1111/bph.17436
- Fei L., Xu M., Wang H., Zhong C., Jiang S., Lichtenberger F.B., Erdogan C., Wang H., Bonk J.S., Lai E.Y., Persson P.B., Kovács R., Zheng Z., Patzak A., Khedkar P.H. 2023. Piezo1 mediates vasodilation induced by acute hyperglycemia in mouse renal arteries and microvessels. Hypertension. 80, 1598–1610. https://doi.org/10.1161/HYPERTENSIONAHA.122.20767
- Lhomme A., Gilbert G., Pele T., Deweirot J., Henrion D., Baudrimont I., Campagnac M., Marthan R., Guibert C., Ducret T., Savineau J.P., Quignard J.F. 2019. Stretch-activated piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am. J. Respir. Cell. Mol. Biol. 60, 650–658. https://doi.org/10.1165/rcmb.2018-01970C
- Tykocki N.R., Boerman E.M., Jackson W.F. 2017. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr. Physiol. 16, 485–581. https://doi.org/10.1002/cphy.c160011
- Dossabhoy S., Arya S. 2021. Epidemiology of atherosclerotic carotid artery disease. Semin. Vasc. Surg. 34, 3–9. https://doi.org/10.1053/J.SEMVASCSURG.2021.02.013
- Holmgren M., Henze A., Wahlin A., Eklund A., Fox A.J., Johansson E. 2024. Phase-contrast magnetic resonance imaging of intracranial and extracranial blood flow in carotid near-occlusion. Neuroradiology. 66, 589–599. https://doi.org/10.1007/s00234-024-03309-y
- Mansour A., Niizuma K., Rashad S., Sumiyoshi A., Ryoke R., Endo H., Endo T., Sato K., Kawashima R., Tominaga T. 2019. A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J. Neurosurg. 131, 892–902. https://doi.org/10.3171/2018.3.JNS172274
- Jing Z., Shi C., Zhu L., Xiang Y., Chen P., Xiong Z., Li W., Ruan Y., Huang L. 2015. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J. Cereb. Blood. Flow. Metab. 35, 1249–1259. https://doi.org/10.1038/jcbfm.2015.55
- Bhatia P., Kaur G., Singh N. 2021. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascular Pharmacol. 137, 106827. https://doi.org/10.1016/J.VPH.2020.106827
- Mulvany M.J., Halpern W. 1977. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41, 19–26. https://doi.org/10.1161/01.res.41.1.19
- Spray S., Johansson S.E., Radziwon-Balicka A., Haanes K.A., Warfvinge K., Poulsen G.K., Kelly P.A.T., Edvinsson L. 2017. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat – new insights into the development of delayed cerebral hypoperfusion. Acta Physiol. 220, 417–431. https://doi.org/10.1111/apha.12834
- Fadyukova O.E., Storozhevykh T.P., Pinelis V.G., Koshelev V.B. 2004. Ischemic and hemorrhagic disturbances in cerebral circulation after contractile responses of the rat middle cerebral artery. Brain Res. 995, 145–149. https://doi.org/10.1016/j.brainres.2003.09.062
- Marquez-Martín A., Jiménez-Altayó F., Dantas A.P., Caracuel L., Planas A.M., Vila E. 2012. Middle cerebral artery alterations in a rat chronic hypoperfusion model. J. Appl. Physiol. 112, 511–518. https://doi.org/10.1152/japplphysiol.00998.2011
- Davis M.J., Earley S., Li Y-S., Chien S. 2023. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421. https://doi.org/10.1152/physrev.00053.2021
- Porto Ribeiro T., Barbeau S., Baudrimont I., Vacher P., Freund-Michel V., Cardouat G., Berger P., Guibert C., Ducret T., Quignard J.F. 2022. Piezo1 channel activation reverses pulmonary artery vasoconstriction in an early rat model of pulmonary hypertension: The role of Ca2+ influx and Akt-eNOS pathway. Cells. 11, 2349. https://doi.org/10.3390/cells11152349
- Evans E.L., Cuthbertson K., Endesh N., Rode B., Blythe N.M., Hyman A.J., Hall S.J., Gaunt H.J., Ludlow M.J., Foster R., Beech D.J. 2018. Yodal analogue (Dooku1) which antagonizes Yodal-evoked activation of Piezo1 and aortic relaxation. Br. J. Pharmacol. 175, 1744–1759. https://doi.org/10.1111/bph.14188
- Miron T.R., Flood E.D., Tykocki N.R., Thompson J.M., Watts S.W. 2022. Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function. Pharmacol. Res. 175, 105995. https://doi.org/10.1016/j.phrs.2021.105995
- Kinsella J.A., Debant M., Parsonage G., Morley L.C., Bajarwan M., Revill C., Foster R., Beech D.J. 2024. Pharmacology of PIEZO1 channels. Br. J. Pharmacol. 181, 4714–4732. https://doi.org/10.1111/bph.17351
- El-Rahman R.R., Harraz O.F., Brett S.E., Anfinogenova Y., Mufti R.E., Goldman D., Welsh D.G. 2013. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: Role in myogenic tone development. Am. J. Physiol. – Hear. Circ. Physiol. 304, 58–71. https://doi.org/10.1152/ajpheart.00476.2012
- Kuo I.Y., Ellis A., Seymour V.A.L., Sandow S.L., Hill C.E. 2010. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J. Cereb. Blood. Flow Metab. 30, 1226–1239. https://doi.org/10.1038/jcbfm.2010.11
- Kuo I.Y.T., Howitt L., Sandow S.L., McFarlane A., Hansen P.B., Hill C.E. 2014. Role of T-type channels in vasomotor function: Team player or chameleon? Pflugers Arch. Eur. J. Physiol. 466, 767–779. https://doi.org/10.1007/s00424-013-1430-x
- Qi M., Liu R., Zhang F., Yao Z., Zhou M. liang, Jiang X., Ling S. 2024. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology. 251, 109896. https://doi.org/10.1016/j.neuropharm.2024.109896
- Xu F., Xin Q., Ren M., Shi P., Wang B. 2024. Inhibition of piezo1 prevents chronic cerebral hypoperfusion-induced cognitive impairment and blood brain barrier disruption. Neurochem. Int. 175, 105702. https://doi.org/10.1016/j.neuint.2024.105702
Дополнительные файлы


