Author Details

Chagovets, Vitaliy V.

Issue Section Title File
No 10 (2023) Reviews Modern concepts on the etiology and pathogenesis of premature rupture of membranes
No 10 (2023) Original Articles Potential of first trimester plasma lipidome in high-risk pregnancy groups
No 8 (2023) Original Articles Clinical characteristics and analysis of changes in amino acid and organic acid profiles in the urine of patients at risk of preeclampsia
No 2 (2024) Original Articles The role of polyamines in noninvasive diagnosis of placenta-associated pregnancy complications
No 2 (2024) Original Articles Expression patterns of maternal and fetal tissue and exosomal microRNAs during pre-induction of labor (pilot study)
No 2 (2024) Original Articles Amino acid profile of blood plasma and follicular fluid in women with infertility and diminished ovarian reserve
No 12 (2024) Original Articles Differential diagnosis of early-stage ovarian cancer based on the bioinformatic analysis of the blood metabolome
No 1 (2025) Original Articles Personalised medicine in action: lipidomic markers for predicting premature rupture of membranes
No 2 (2025) Original Articles Lipid profile of fetal membrane tissue in premature rupture of membranes
No 2 (2025) Original Articles Using machine learning to analyze the lipid profile of culture medium and predict the efficacy of assisted reproductive technologies
No 3 (2025) Original Articles Criteria for assessing fetal neurogenesis dysfunction in early-onset growth restriction using extracellular vesicles
No 4 (2025) Original Articles The effect of myo-inositol on the follicular fluid metabolomic profile in women with predicted poor ovarian response undergoing in vitro fertilization: association with oocyte quality
No 10 (2025) Original Articles Omics data analysis using deep learning-based framework in differential diagnosis of ovarian cancer
No 12 (2025) Reviews Neonatal screening in the genomic era: expanding the capabilities of tandem mass spectrometry

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).