Author Details

Frankevich, Vladimir E.

Issue Section Title File
No 10 (2023) Reviews Modern concepts on the etiology and pathogenesis of premature rupture of membranes
No 10 (2023) Original Articles Potential of first trimester plasma lipidome in high-risk pregnancy groups
No 3 (2024) Original Articles Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies
No 6 (2024) Original Articles The role of pathological hemostasis in formation of perinatal complications of the novel coronavirus infection
No 5 (2023) Reviews Intrauterine malformation: metabolomics as a new approach to solving the old problem
No 8 (2023) Original Articles Clinical characteristics and analysis of changes in amino acid and organic acid profiles in the urine of patients at risk of preeclampsia
No 2 (2024) Original Articles Amino acid profile of blood plasma and follicular fluid in women with infertility and diminished ovarian reserve
No 4 (2024) Original Articles Comparative analysis of blood and follicular fluid lipid profiles in women undergoing infertility treatment withassisted reproductive technologies
No 12 (2024) Original Articles Lipid profiling of follicular fluid and blood plasma as a method of predicting pregnancy in women undergoing assisted reproductive treatment
No 12 (2024) Original Articles Differential diagnosis of early-stage ovarian cancer based on the bioinformatic analysis of the blood metabolome
No 2 (2025) Original Articles Lipid profile of fetal membrane tissue in premature rupture of membranes
No 9 (2025) Original Articles Clinical risk factors for fetal macrosomia
No 10 (2025) Original Articles Omics data analysis using deep learning-based framework in differential diagnosis of ovarian cancer
No 12 (2025) Reviews Neonatal screening in the genomic era: expanding the capabilities of tandem mass spectrometry
No 12 (2025) Original Articles Immune and regenerative mechanisms in the pathogenesis of vulvovaginal atrophy: proteomic analysis ofcervicovaginal fluid

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).