РЕКОНСТРУКЦИЯ ПЕРИОДОВ С ВЫСОКИМИ ВЕСЕННИМИ ПОЛОВОДЬЯМИ РЕКИ ТУРЫ ПО ГОДИЧНЫМ КОЛЬЦАМ POPULUS NIGRA L.

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Годичные кольца тополя – важный источник данных для исследований динамики расходов воды и половодий на реке Тура. Построена древесно-кольцевая хронология по ширине годичного кольца тополя черного длительностью около 150 лет. Корреляционный анализ между хронологией по ширине годичных колец, расходами воды р. Туры (по гидропосту Туринск) и погодно-климатическими переменными (температура воздуха, атмосферные осадки) выявил значимые положительные связи с расходами воды, соответствующие периоду весеннего половодья, и температурой воздуха мая. Не выявлено связей между хронологией по ширине годичных колец и атмосферными осадками отдельных месяцев. На основе древесно-кольцевой хронологии тополя выполнена реконструкция расходов воды мая за 1875—2022 гг. Обсуждаются годы высоких и низких весенних половодий и их влияние на радиальный прирост тополя.

Об авторах

М. А. Гурская

Институт экологии растений и животных УрО РАН

Email: mgurskaya@yandex.ru
Екатеринбург, Россия

Л. И. Агафонов

Институт экологии растений и животных УрО РАН

Автор, ответственный за переписку.
Email: mgurskaya@yandex.ru
Екатеринбург, Россия

Список литературы

  1. Эдельгериев Р. С. Х., Иванов А. Л., Донник И. М. и др. Глобальный климат и почвенный покров России: проявления засухи, меры предупреждения, борьбы, ликвидация последствий и адаптивные меры (сельское и лесное хозяйство): Национальный доклад. Т. 3 / Ред. Эдельгериев Р. С. Х. М.: Издательство МБА, 2021. 700 с.
  2. Бокк Э. Н. Влияние половодий на динамику радиального прироста ветлы в Обской пойме // Лесоведение. 1985. № 6. С. 30−36.
  3. Kozlowski T. Physiological-ecological impacts of flooding on riparian forest ecosystems // Wetlands. 2002. V. 22. № 3. P. 550−561. https://doi.org/10.1672/0277-5212(2002)022[0550:PEIOFO]2.0.CO;2
  4. Agafonov L. I., Gurskaya M. A. The influence of the lower Ob River runoff on radial growth of trees // Contemporary Problems of Ecology. 2013. V. 6. № 7. P. 779–787. https://doi.org/10.1134/S1995425513070159
  5. Pederson N., Jacoby G. C., D’Arrigo R. D. et al. Hydrometeorological reconstructions for northeastern Mongolia derived from tree rings: 1651–1995 // Journal of Climate. 2001. V. 14. № 5. P. 872−881. https://doi.org/10.1175/1520-0442(2001)014<0872:HRFNMD>2.0.CO;2
  6. Woodhouse C. A., Gray S. T., Meko D. M. Updated streamflow reconstructions for the Upper Colorado River Basin // Water Resour. Res. 2006. V. 42. № 5. Art. W05415. https://doi.org/10.1029/2005WR004455
  7. Gou X., Chen F., Cook E. et al. Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings // Water Resources Research. 2007. V. 43. Art. W06434. https://doi.org/10.1029/2006WR005705
  8. Güner H. T., Kose N., Harly G. T. A 200-year reconstruction of Kocasu River (Sakarya River Basin, Turkey) streamflow derived from a tree-ring network // Int. J. Biometeorol. 2017. V. 61. P. 427–437. https://doi.org/10.1007/s00484-016-1223-y
  9. Karanitsch-Ackerl S., Mayer K., Gauster T. et al. A 400-year reconstruction of spring–summer precipitation and summer low flow from regional tree-ring chronologies in North-Eastern Austria // J. of Hydrology. 2019. V. 577. Art. 123986.
  10. Gao Z., Zhang H., Chen F. et al. Tree-ring based streamflow reconstruction of the Chu River in Kyrgyzstan over the past 407 years // Quaternary Sciences. 2022. V. 42. № 1. P. 288‒301. https://doi.org/10.11928/j.issn.1001-7410.2022.01.23
  11. Bakhtiyorov Z., Opała-Owczarek M., Chen F. et al. Streamflow reconstruction in the Kafirnigan River, Tajikistan since 1568 CE reveals a linkage between southern Central Asian hydrological variation and ENSO // International J. of Climatology. 2023. V. 43. № 7. P. 3312−3323. https://doi.org/10.1002/joc.8031
  12. Bakhtiyorov Z., Chen F., Chen Y. et al. Historical drivers and future streamflow variations of the Kura River in the Western Transcaucasia region of Georgia: Analysis of tree-ring chronologies from 1720 to 2021 CE // Palaeogeography, Palaeoclimatology, Palaeoecology. 2024. V. 655. Art. 112529. https://doi.org/10.1016/j.palaeo.2024.112529
  13. MacDonald G. M., Kremenetski K. V., Smith L. C., Hidalgo H. G. Recent Eurasian river discharge to the Arctic Ocean in the context of longer-term dendrohydrological records // J. Geophys. Res: Biogeosciences. 2007. V. 112. Art. G04S50. https://doi.org/10.1029/2006JG000333
  14. Agafonov L. I., Meko D. M., Panyushkina I. P. Reconstruction of Ob River, Russia, discharge from ring widths of floodplain trees // J. of Hydrology. 2016. V. 543. P. 198–207. https://doi.org/10.1016/j.jhydrol.2016.09.031
  15. Meko D. M., Panyushkina I. P., Agafonov L. I., Edwards J. A. Impact of high flows of an Arctic river on ring widths of floodplain trees // The Holocene. 2020. V. 30. № 6. P. 789–798. https://doi.org/10.1177/0959683620902217
  16. Малые реки России: Использование, регулирование, охрана, методы водохозяйственных расчетов / Под ред. Черняева А. М. Свердловск: СреднеУрал. кн. изд-во, 1988. 316 с.
  17. Колесников Б. П., Зубарева Р. С., Смолоногов Е. П. Лесорастительные условия и типы лесов Свердловской области. Свердловск: Уральский научный центр АН СССР, 1973. 176 с.
  18. https://mghydro.com
  19. https://www.naturalearthdata.com
  20. Dudek D. M., McClenahen J. R., Mitsch W. J. Tree growth responses of Populus deltoides and Juglans nigra to streamflow and climate in a bottomland hardwood forest in central Ohio // The American Midland Naturalist. 1998. V. 140. № 2. P. 233–244. https://doi.org/10.1674/0003-0031(1998)140[0233:TGROPD]2.0.CO;2
  21. Malik I., Dłużewski M., Rotnicka J. et al. Simultaneous growth releases and reductions among Populus alba as an indicator for floods in dry mountains (Morocco) // Ecological Indicators. 2021. V. 129. Art. 107874. https://doi.org/10.1016/j.ecolind.2021.107874
  22. Молганова Н. А., Овеснов С. А. Виды рода тополь (Populus L., Salicaceae) в г. Перми // Вестник Пермского ун-та. Серия: Биология. 2016. № 1. С. 12−21.
  23. Rinn F. TSAP Time Series Analysis and Presentation. Version 3.0. Reference Manual. Heidelberg, 1996. 262 p.
  24. Holmes R. L. Computer-assisted quality control in tree-ring dating and measurement // Tree-Ring Bulletin. 1983. V. 43. № 3. P. 69–78.
  25. Cook E. R., Krusic P. J. A tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics (ARSTAN). URL: http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html. 2008.
  26. Wigley T. M. L., Briffa K. R., Jones P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology // J. of Applied Meteorology and Climatology. 1984. V. 23. № 2. P. 201–213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
  27. Cook E., Briffa K., Shiyatov S. et al. Data analysis // Methods of dendrochronology: applications in the environmental sciences / Ed. Cook E. R., Kairiukstis L. A. Dordrecht: Springer Netherlands, 1990. P. 97–162.
  28. Гидрологический ежегодник 1936–1954, ГУГМС. Л.: Гидрометеоиздат, 1937–1955. Т. 6. Вып. 0–9.
  29. Гидрологический ежегодник 1955–2017. Омск: ГУГМС, Обь-Ирт. УГМС, 1956–2018. Т. 1. Вып. 10–11.
  30. Potapov P., Hansen M. C., Pickens A. et al. The global 2000−2020 land cover and land use change dataset derived from the Landsat archive: first results // Frontiers in Remote Sensing. 2022. V. 3. Art. 856903. https://doi.org/10.3389/frsen.2022.856903
  31. http://climexp.knmi.nl
  32. Biondi F., Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies // Computers & Geosciences. 2004. Т. 30. № 3. P. 303–311. https://doi.org/10.1016/j.cageo.2003.11.004
  33. www.meteo.ru
  34. Ресурсы поверхностных вод СССР. Средний Урал и Приуралье / Под ред. Алюшинской Н. М. Л.: Гидрометеоиздат, 1973. Т. 11. 849 с.
  35. Разработка методов долгосрочных прогнозов весеннего половодья: максимальных уровней воды и сроков наступления ледовых явлений на реках бассейна Туры: Отчет о НИР плана НИОКР Росгидромета на 2009 г. / Рук. С. В. Борщ; ГУ Росгидромет Росс.
  36. Onuchin A., Burenina T., Pavlov I. Hydrological consequences of timber harvesting in landscape zones of Siberia // Environments. 2017. V. 4. Art. 51. https://doi.org/10.3390/environments4030051
  37. Wilmking M., Van Der Maaten-Theunissen M., Van Der Maaten E. et al. Global assessment of relationships between climate and tree growth // Global Change Biology. 2020. V. 26. № 6. P. 3212–3220. https://doi.org/10.1111/gcb.15057
  38. Эдельштейн К. К. Структурная гидрология суши. М.: ГЕОС, 2005. 316 с.
  39. Ткачев Б. П., Булатов В. И. Малые реки: современное состояние и экологические проблемы: аналитический обзор. Новосибирск: ГПНТБ СО РАН, 2002. 114 с. (Сер. Экология. Вып. 64)
  40. Руководство по гидрологическим прогнозам. Вып. 1. Долгосрочные прогнозы элементов водного режима рек и водохранилищ. Л.: Гидрометеоиздат, 1989. 356 с.
  41. Акилина В. А., Борщ С. В., Симонов Ю. А. и др. Долгосрочное прогнозирование характеристик весеннего стока рек бассейна Тобола // Гидрометеорологические исследования и прогнозы. 2022. № 4. С. 64−78. https://doi.org/10.37162/2618-9631-2022-4-64-78
  42. Мезенцева О. В., Волковская Н. П. Пространственно-временная изменчивость гидролого-климатических факторов формирования максимальных уровней воды на реке Ишим // Успехи современного естествознания. 2018. № 10. С. 166−171.
  43. Волковская Н. П. Оценка гидролого-климатических факторов стока и прогноз максимальных уровней весеннего половодья в речных бассейнах Западно-Сибирской равнины: Автореф. дис. ... канд. геогр. наук. Томск, 2020. 22 с.
  44. Бураков Д. А. Гидрологический анализ весеннего половодья в лесной зоне Западно-Сибирской равнины // Вопросы географии Сибири. Томск, 1978. Вып. 10. С. 69–89.
  45. https://verum.icu
  46. Kirdyanov A., Hughes M., Vaganov E. et al. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic // Trees. 2003. V. 17. № 1. P. 61–69. https://doi.org/10.1007/s00468-002-0209-z
  47. Ferguson C. W. Bristlecone Pine: Science and Esthetics: A 7100-year tree-ring chronology aids scientists; old trees draw visitors to California mountains // Science. 1968. V. 159. № 3817. P. 839–846.
  48. Шиятов С. Г. Дендрохронология верхней границы леса на Урале. М.: Наука, 1986. 136 с.
  49. Astrade L., Bégin Y. Tree-ring response of Populus tremula L. and Quercus robur L. to recent spring floods of the Saône River, France // Ecoscience. 1997. V. 4. № 2. P. 232–239. https://doi.org/10.1080/11956860.1997.11682400
  50. Liu P. X., Peng J. F., Chen F. H. Hydrological response of Populus euphratica Olve. radial growth in Ejinaa banner, Inner Mongolia // J. of Integrative Plant Biology. 2007. V. 49. № 2. P. 150–156. https://doi.org/10.1111/j.1744-7909.2007.00425.x
  51. Арефьев С. П. Фиксация потепления климата в древесно-кольцевых хронологиях кустарников на севере Ямала и Гыданского полуострова // Журнал Сибирского федер. ун-та. Биология. 2015. Т. 8. № 4. С. 377–393. https://doi.org/10.17516/1997-1389-2015-8-4-377-393
  52. Zhang R., Qin L., Yuan Y. et al. Radial growth response of Populus x jrtyschensis to environmental factors and a century-long reconstruction of summer streamflow for the Tuoshigan River, northwestern China // Ecological Indicators. 2016. V. 71. P. 191–197. https://doi.org/10.1016/j.ecolind.2016.06.035
  53. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Core Writing Team, R. K. Pachauri, L. A. Meyer (eds.). IPCC, Geneva, Switzerland, 2015. 151 p.
  54. Hantemirov R. M., Corona C., Guillet S. et al. Current Siberian heating is unprecedented during the past seven millennia // Nature Communications. 2022. V. 13. № 1. Art. 4968. https://doi.org/10.1038/s41467-022-32629-x
  55. Lambs L., Loubiat M., Girel J. et al. Survival and acclimatation of Populus nigra to drier conditions after damming of an alpine river, southeast France // Annals of Forest Science. 2006. V. 63. № 4. P. 377–385. https://doi.org/10.1051/forest:2006018
  56. Dams J., Nossent J., Senbeta T. B. et al. Multi-model approach to assess the impact of climate change on runoff // J. of Hydrology. 2015. V. 529. P. 1601–1616.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).