UNCOVERING THE ROLE OF CERIUM-CONTAINING COMPOUNDS IN PLASMA SYNTHESIS OF LUMINESCENT MATERIALS
- Authors: Akhmadullina N.S.1, Kozak A.K.2, Petrov A.E.2, Pozdnyakov D.O.2, Vafin I.Y.2, Sokolov A.S.2, Shishilov O.N.2,3
-
Affiliations:
- Institute of Metallurgy and Materials Science named after. A.A. Baikov Russian Academy of Sciences
- Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences
- MIREA - Russian Technological University
- Issue: Vol 51, No 9 (2025)
- Pages: 970-982
- Section: PLASMA DYNAMICS
- URL: https://medbiosci.ru/0367-2921/article/view/382345
- DOI: https://doi.org/10.31857/S0367292125090031
- ID: 382345
Cite item
Full Text
Abstract
About the authors
N. S. Akhmadullina
Institute of Metallurgy and Materials Science named after. A.A. Baikov Russian Academy of Sciences
Email: nakhmadullina@mail.ru
Moscow, Russia
A. K. Kozak
Institute of General Physics named after A.M. Prokhorov Russian Academy of SciencesMoscow, Russia
A. E. Petrov
Institute of General Physics named after A.M. Prokhorov Russian Academy of SciencesMoscow, Russia
D. O. Pozdnyakov
Institute of General Physics named after A.M. Prokhorov Russian Academy of SciencesMoscow, Russia
I. Yu. Vafin
Institute of General Physics named after A.M. Prokhorov Russian Academy of SciencesMoscow, Russia
A. S. Sokolov
Institute of General Physics named after A.M. Prokhorov Russian Academy of SciencesMoscow, Russia
O. N. Shishilov
Institute of General Physics named after A.M. Prokhorov Russian Academy of Sciences; MIREA - Russian Technological University
Email: oshishilov@gmail.com
Moscow, Russia; Moscow, Russia
References
- Shinde K.N., Dhoble S.J., Swart H.C., and Park K. Phosphate Phosphors for Solid-State Lighting. London: Springer, London, 2012. https://doi.org/10.1007/978-3-642-34312-4
- Sheoran S., Singh V., Singh S., Kadyan S., Singh J., and Singh D. // Prog. Nat. Sci. Mater. Int. 2019. V. 29. P. 457. https://doi.org/10.1016/j.pnsc.2019.07.003
- Nidhankar A.D., Goudappagouda, Wakchaure V.C., and Babu S.S. // Chem. Sci. 2023. V. 12. P. 4216. https://doi.org/10.1039/D1SC00446H
- Deka L.R., Dubey V. // Inorg. Chem. Comm. 2025. V. 180. P. 115058. https://doi.org/10.1016/j.inoche.2025.115058
- Birkel A., Denault K.A., George N.C., Doll C.E., Héry B., Mikhailovsky A.A., Birkel C.S., Hong B.C., and Seshadri R. // Chem. Mater. 2012. V. 24. P. 1198. https://doi.org/10.1021/cm3000238
- Vishwakarma A.K., Jha K., Jayasimhadri M., Rao A.S., Jang K., Sivaiah B., and Haranath D. // J. Alloys Compd. 2015. V. 622. P. 97 (2015). https://doi.org/10.1016/j.jallcom.2014.10.016
- Lin Y.C., Karlsson M., and Bettinelli M. // Top. Curr. Chem. 2016. V. 374. P. 21. https://doi.org/10.1007/s41061-016-0023-5
- George N.C., Denault K.A., and Seshadri R. // Annu. Rev. Mater. Res. 2013. V. 43. P. 481. https://doi.org/10.1146/annurev-matsci-073012-125702
- Hirosaki N., Takeda T., Funahashi S., and Xie R.J. // Chem. Mater. 2014. V. 26. P. 4280. https://doi.org/10.1021/cm501866x
- Yanagida T., Koshimizu M. Phosphors for Radiation Detectors. John Wiley & Sons Ltd., 2022. https://doi.org/10.1002/9781119583363
- Gupta I., Singh S., Bhagwan S., and Singh D. // Ceram. Int. 2021. V. 47. P. 19282. https://doi.org/10.1016/j.ceramint.2021.03.308
- Shi H., Zhang X.Y., Wang N.L., Dong W.L., and Mi X.Y. // Func. Mater. Lett. 2015. V. 8. P. 1550006. https://doi.org/10.1142/S179360471550006X
- Zhang X., Chen R., Wang P., Gan Z., Zhang Y., Jin H., Jian J., and Xu J. // Opt. Express. 2019. V. 27. P. 2783. https://doi.org/10.1364/OE.27.002783
- Qian B., Zou H., Meng D., Zhou X., Song Y., Zheng K., Miao C., and Sheng Y. // CrystEngComm. 2018. V. 20. P. 7322. https://doi.org/10.1039/C8CE01441H
- Singh S., Tanwar V., Simantilleke A.P., and Singh D. // Nano-Struct. Nano-Objects. 2020. V. 21. P. 100427. https://doi.org/10.1016/j.nanoso.2020.100427
- Singh D., Tanwar V., Simantilleke A.P., Bhagwan S., Mari B., Kadyan P.S., Singh K.C., and Singh I. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 5303. https://doi.org/10.1007/s10854-016-4428-2
- Singh D., Tanwar V., Simantilleke A.P., Mari B., Kadyan P.S., and Singh I. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 2260. https://doi.org/10.1007/s10854-015-4020-1
- Kadyan S., Singh S., Simantilleke A.P., and Singh D. // Optik. 2020. V. 212. P. 164671. https://doi.org/10.1016/j.ijleo.2020.164671
- Pradal N., Chadeyron G., Thérias S., Potdevin A., Santilli C.V., and Mahiou R. // Dalton Trans. 2014. V. 43. P. 1072. https://doi.org/10.1039/C3DT51915E
- Singh S., Singh D. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 5165. https://doi.org/10.1007/s10854-020-03076-5
- Jia D., Jia W., and Jia Y. // J. Appl. Phys. 2007. V. 101. P. 023520. https://doi.org/10.1063/1.2409767
- Kim Y., Park S. // Mater. Res. Bull. 2014. V. 49. P. 469. https://doi.org/10.1016/j.materresbull.2013.09.035
- Ningombam G.S., David T.S., and Singh N.R. // ACS Omega. 2019. V. 4. P. 13762. https://doi.org/10.1021/acsomega.9b01265
- Zhang S., Liang H., and Liu C. // J. Phys. Chem. C. 2013. V. 117. P. 2216. https://doi.org/10.1021/jp3120258
- Qin C., Huang Y., Shi L., Chen G., Qiao X., and Seo H.J. // J. Phys. D Appl. Phys. 2009. V. 42. P. 185105. https://doi.org/10.1088/0022-3727/42/18/185105
- Yim D.K., Cho I.S., Lee C.W., Noh J.H., Roh H.S., and Hong K.S. // Opt. Mater. 2011. V. 33. P. 1036. https://doi.org/10.1016/j.optmat.2011.02.031
- Shinde K.N., Dhoble S.J., and Kumar A. // Bull. Mater. Sci. 2011. V. 34. P. 937. https://doi.org/10.1007/s12034-011-0218-x
- Reddy L. // J. Fluoresc. 2025. V. 35. P. 1205. https://doi.org/10.1007/s10895-023-03561-0
- Kimura N., Sakuma K., Hirafune S., Asano K., Hirosaki N., and Xie R.J. // Appl. Phys. Lett. 2007. V. 90. P. 1. https://doi.org/10.1063/1.2437090
- Xie R.J., Hirosaki N., Li Y., and Takeda T. // Materials. 2010. V. 3. P. 3777. https://doi.org/10.3390/ma3063777
- Kargin Yu.F., Akhmadullina N.S., and Solntsev K.A. // Inorg. Mater. 2014. V. 50. P. 1325. https://doi.org/10.1134/S0020168514130032
- Li S., Xie R.-J., Takeda T., and Hirosaki N. // ECS J. Solid State Sci. Technol. 2017. V. 7. P. R3064. https://doi.org/10.1149/2.0051801jss
- Akhmadullina N.S., Shishilov O.N., and Kargin Yu.F. // Russ. Chem. Bull. 2020. V. 69. P. 825. https://doi.org/10.1007/s11172-020-2841-4
- Misra S.K., Andronenko S.I. // Appl. Magn. Reson. 2007. V. 32. P. 377. https://doi.org/10.1007/s00723-007-0020-5
- Lee J.H., Kim Y.J. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2008. V. 146. P. 99. https://doi.org/10.1016/j.mseb.2007.07.052
- Park B.K., Lee S.S., Kang J.K., and Byeon S.H. // Bull. Kor. Chem. Soc. 2007. V. 28. P. 1467. https://doi.org/10.5012/bkcs.2007.28.9.1467
- Li Y., You B., Zhang W., and Yin M. // J. Rare Earths. 2008. V. 26. P. 455. https://doi.org/10.1016/S1002-0721(08)60117-9
- Célérier S., Laberty C., Ansart F., Lenormand P., and Stevens P. // Ceram. Int. 2006. V. 32. P. 271. https://doi.org/10.1016/j.ceramint.2005.03.001
- Sheoran S., Singh S., Mann A., Samantilleke A., Mani B., and Singh D. // J. Mater. Nanosci. 2019. V. 6. P. 73.
- Peternele W.S., Monge Fuentes V., Fascineli M.L., Rodrigues Da Silva J., Silva R.C., Lucci C.M., and Bentes De Azevedo R. // J. Nanomater. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/682985
- Bilecka I., Niederberger M. // Nanoscale. 2010. V. 2. P. 1358. https://doi.org/10.1039/b9nr00377k
- Kundu S., Wang K., and Liang H. // J. Phys. Chem. C. 2009. V. 113. P. 134. https://doi.org/10.1021/jp808292s
- Chen H.Y., Weng M.H., Chang S.J., and Yang R.Y. // Ceram. Int. 2012. V. 38. P. 125. https://doi.org/10.1016/j.ceramint.2011.06.044
- Peng G.H., Li N., Liang Z.H., Wang X., Wu J.L., and Wang X.F. // J. Alloys Compd. 599, 102 (2014). https://doi.org/10.1016/j.jallcom.2014.02.091
- Wang H., Qian C., Yi Z., Rao L., Liu H., and Zeng S. // Adv. Condens. Matter Phys. 2013. V. 2013. https://doi.org/10.1155/2013/347406
- Varma A., Mukasyan A.S., Rogachev A.S., and Manukyan K.V. // Chem. Rev. 2016. V. 116. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
- Nersisyan H.H., Lee J.H., Ding J.R., Kim K.S., Manukyan K.V., and Mukasyan A.S. // Prog. Energy Combust. Sci. 2017. V. 63. P. 79.
- Patil P.S. // Mater. Chem. Phys. 1999. V. 59. P. 185. https://doi.org/10.1016/S0254-0584(99)00049-8
- Tsai S.C., Song Y.L., Tsai C.S., Yang C.C., Chiu W.Y., and Lin H.M. // J. Mater. Sci. 2004. V. 39. P. 3647. https://doi.org/10.1023/B:JMSC.0000030718.76690.11
- Cho Y., Huh Y., Park C.R., and Do Y.R. // Electron. Mater. Lett. 2014. V. 10. P. 461. https://doi.org/10.1007/s13391-014-4024-7
- Al-Mamun S.A., Ishigaki T. // J. Am. Ceram. Soc. 2014. V. 97. P. 1083. https://doi.org/10.1111/jace.12856
- Deng H.W., Chen D.H. // Chalcogenide Lett. 2021. V. 18. P. 617. https://doi.org/10.15251/CL.2021.1810.617
- Lu C., Chen S., Hsu C. // Mater. Sci. Eng. B. 2007. V. 140. P. 218. https://doi.org/10.1016/j.mseb.2007.05.001
- Finley E., Paterson A.S., Cobb A., Willson R.C., and Brgoch J. // Opt. Mater. Express. 2007. V. 7. P. 2597. https://doi.org/10.1364/OME.7.002597
- Burianova S., Vejpravova J. P., Holec P., Plocek J., and Niznansky D. // J. Appl. Phys. 2011. V. 110. P. 073902. https://doi.org/10.1063/1.3642992
- Шишилов О.Н., Ахмадуллина Н.С., Скворцова Н.Н., Степахин В.Д., Борзосеков В.Д., Малахов Д.В., Гусейн-заде С.Н., Гусейн-заде Н.Г. // Патент RU2826861.
- Skvortsova N.N., Shishilov O.N., Akhmadullina N.S., Konchekov E.M., Letunov A.A., Malakhov D.V., Obraztsova E.A., and Stepakhin V.D. // Ceram. Int. 2021. V. 47. P. 3978. https://doi.org/10.1016/j.ceramint.2020.09.262
- Akhmadullina N.S., Skvortsova N.N., Obraztsova E.A., Stepakhin V.D., Konchekov E.M., Letunov A.A., Konovalov A.A., Kargin Yu.F., and Shishilov O.N. // Chem. Phys. 2019. V. 516. P. 63. https://doi.org/10.1016/j.chemphys.2018.08.023
- Skvortsova N.N., Obraztsova E.A., Stepakhin V.D., Konchekov E.M., Gayanova T.E., Vasilieva L.A., Lukianov D.A., Sybachin A.V., Skvortsov D.A., Gusein-Zade N.G., and Shishilov O.N. // Fusion Sci. Technol. 2023. V. 80. P. 882. https://doi.org/10.1080/15361055.2023.2255442
- Skvortsova N.N., Akhmadullina N.S., Vafin I.Yu., Obraztsova E.A., Hrytseniuk Ya.S., Nikandrova A.A., Lukianov D.A., Gayanova T.E., Voronova E.V., Shishilov O.N., and Stepakhin V.D. // Int. J. Mol. Sci. 2024. V. 25. P. 5326. https://doi.org/10.3390/ijms25105326
- Skvortsova N.N., Voronova E.V., Vafin I.Yu., Akhmadullina N.S., Gayanova T.E., Letunov A.A., Logvinenko V.P., Kolchanova A.Yu., Borzosekov V.D., Sokolov A.S., Stepakhin V.D., Obraztsova E.A., and Shishilov O.N. // Fusion Sci. Technol. 2025. V. 2025. P. 1. https://doi.org/10.1080/15361055.2025.2478656
- Соколов А.С., Борзосеков В.Д., Степахин В.Д., Артемьев К.В., Малахов Д.В., Нугаев И.Р., Харлачев Д.Е., Гаянова Т.Э., Поздняков Д.О., Козак А.К. // Патент RU228335.
- Batanov G.M., Borzosekov V.D., Golberg D., Iskhakova L.D., Kolik L.V., Konchekov E.M., Kharchev N.K., Letunov A.A., Malakhov D.V., Milovich F.O., Obraztsova E.A., Petrov A.E., Ryabikina I.G., Sarksian K.A., Stepakhin V.D., Skvortsova N.N. // J. Nanophoton. 2016. V. 10. P. 012520. https://doi.org/10.1117/1.JNP.10.012520
- Kharchev N.K., Batanov G.M., Kolik L.V., Malakhov D.V., Petrov A.Ye., Sarksyan K.A., Skvortsova N.N., Stepakhin V.D., Belousov V.I., Malygin S.A., and Tai Ye.M. // Rev. Sci. Instrum. 2013. V. 84. P. 013507. https://doi.org/10.1063/1.4773544
- Kharchev N.K., Batanov G.M., Berezhetskii M.S., Borzosekov V.D., Fedyanin O.I., Grebenshchikov S.E., Grishina I.A., Khol’nov Yu.V., Kolik L.V., Konchekov E.M., Kovrizhnykh L.M., Larionova N.F., Malakhov D.V., Meshcheryakov A.I., Petrov A.E., Pleshkov E.I., Sarksyan K.A., Shchepetov S.V., Skvortsova N.N., Stepakhin V.D., Vafin I.Yu., Vasilkov D.G., and Voronov G.S. // Plasma Fusion Res. 2011. V. 6. P. 2402142. https://doi.org/10.1585/pfr.6.2402142
- Ishchenko A.V., Akhmadullina N.S., Leonidov I.I., Sirotinkin V.P., Skvortsova L.G., Mandrygina D.A., Shishilov O.N., Zhidkov I.S., Kukharenko A.I., Weinstein I.A., and Kargin Yu.F. // Phys. B: Condens. Matter. 2024. V. 695. P. 416593. https://doi.org/10.1016/j.physb.2024.416593
- Scherer P.O.J., Fischer S.F. // Theoretical Molecular Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg, 2017. https://doi.org/10.1007/978-3-662-55671-9_6
- Kitagawa Yu., Ueda J., and Tanabe S. // Dalton Trans. 2024. V. 53. P. 8069. https://doi.org/10.1039/D4DT00191E
Supplementary files

