Колебания потенциала плазмы в отражательном разряде с термокатодом

Обложка

Цитировать

Полный текст

Аннотация

Одним из перспективных применений низкотемпературной плазмы в скрещенных электрическом и магнитном полях является плазменная сепарация. Для ее реализации необходимо создать замагниченную плазму с заданным пространственным распределением электрического потенциала. Распределение потенциала плазмы определяет траектории частиц в процессе сепарации. Одной из трудностей, стоящих на пути создания эффективного плазменного сепаратора, являются колебания потенциала, возникающие в результате развития различного рода неустойчивостей. В настоящей работе исследуются флуктуации потенциала плазмы в отражательном разряде с термоэмиссионным катодом. Представлен анализ частот колебаний потенциала плазмы для магнитных полей в диапазоне 1–1.4 кГс. Приведены измерения радиальных профилей среднеквадратичного отклонения потенциала плазмы.

Об авторах

М. А. Валинуров

Объединенный институт высоких температур РАН (ОИВТ РАН); Московский физико-технический институт (национальный исследовательский университет)

Email: valinurov.ma@phystech.edu
Россия, Москва; Россия, Москва

А. В. Гавриков

Объединенный институт высоких температур РАН

Email: glizyakin@gmail.com
Россия, Москва

Г. Д. Лизякин

Объединенный институт высоких температур РАН

Email: glizyakin@gmail.com
Россия, Москва

А. П. Ойлер

Объединенный институт высоких температур РАН; Московский физико-технический институт (национальный исследовательский университет)

Email: glizyakin@gmail.com
Россия, Москва; Россия, Долгопрудный

Р. А. Тимирханов

Объединенный институт высоких температур РАН

Автор, ответственный за переписку.
Email: glizyakin@gmail.com
Россия, Москва

Список литературы

  1. Kaganovich I.D., Smolyakov A., Raitses Y., Ahedo E., Mikellides I.G., Jorns B., Taccogna F., Gueroult R., Tsikata S., Bourdon A. et al. // Phys. Plasma. 2020. V. 27. P. 120601. https://doi.org/10.1063/5.0010135
  2. Gueroult R., Zweben S.J., Fisch N.J., Rax J.-M. // Phys. Plasmas. 2019. V. 26. P. 43511. https://doi.org/10.1063/1.5083229
  3. Choueiri E.Y. // Phys. Plasmas. 2001. V. 8. P. 1411.https://doi.org/10.1063/1.1354644
  4. Simon A. // Phys. Fluids. 1963. V. 6. P. 382. https://doi.org/10.1063/1.1706743
  5. Hoh F. C. // Phys. Fluids. 1963. V. 6. P. 1184.https://doi.org/10.1063/1.1706878
  6. Marusov N.A., Sorokina E.A., Ilgisonis V.I., Lakhin V.P. // Phys. Plasmas. 2019. V. 26. P. 90701. https://doi.org/10.1063/1.5111948
  7. Smolyakov A.I., Chapurin O., Frias W., Koshkarov O., Romadanov I., Tang T., Umansky M., Raitses Y., Kaganovich I.D., Lakhin V.P. // Plasma Phys. Control. Fusion. 2016. V. 59. P. 14041.
  8. Liziakin G., Antonov N., Smirnov V.S., Timirkhanov R., Oiler A., Usmanov R., Melnikov A., Vorona N., Kislen-ko S., Gavrikov A., Smirnov V.P. // J. Phys. D. Appl. Phys. 2021. V. 54. P. 414005.
  9. Смирнов В.П., Самохин В.П., Ворна Н.А., Гаври-ков А.В. // Физика плазмы. 2013. Т. 39. С. = Smir-nov V.P., Samokhin A.A., Vorona N.A., Gavrikov A.V. // Plasma Phys. Rep. 2013. V. 39. P. 456.https://doi.org/10.1134/S1063780X13050103
  10. Liziakin G., Antonov N., Usmanov R., Melnikov A., Timirkhanov R., Vorona N., Smirnov V.S., Oiler A., Kislenko S., Gavrikov A., Smirnov V.P. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 032002.
  11. Hooper Jr. E.B. Advances in Electronics and Electron Physics. V. 27 / Ed. L. Marton, M. Claire. Academic Press. 1970. P. 295. https://doi.org/10.1017/S0022377821000829.
  12. Carlsson J., Kaganovich I., Powis A., Raitses Y., Romadanov I., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 61201. https://doi.org/10.1063/1.5017467
  13. Powis A.T., Carlsson J.A., Kaganovich I.D., Raitses Y., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 72110.https://doi.org/10.1063/1.5038733
  14. Kim J.Y., Jang J.Y., Choi J., Wang J., Jeong W.I., Elgar-hy M.A.I., Go G., Chung K.-J., Hwang Y.S. // Plasma Sources Sci. Technol. 2021. V. 30. P. 25011.
  15. Kemp R.F., Sellen Jr.J.M. // Rev. Sci. Instruments. 1966. V. 37. P. 455. https://doi.org/10.1063/1.1720213
  16. Murzaev Y., Liziakin G., Gavrikov A., Timirkhanov R., Smirnov V. // Plasma Sci. Technol. 2019. V. 21. P. 045401.https://doi.org/10.1088/2058-6272/aaf250

Дополнительные файлы


© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».