УЛК 543.427.4:581.192:58.02

РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ АНАЛИЗ С ИСПОЛЬЗОВАНИЕМ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ДЛЯ ИССЛЕДОВАНИЯ СИБИРСКИХ КУСТАРНИКОВ УРБОЭКОСИСТЕМЫ

© 2023 г. Е. М. Лях^{1, *}, Е. П. Храмова¹, А. Ю. Луговская^{1, 2}, Я. В. Ракшун³, Д. С. Сороколетов³

¹Федеральное государственное бюджетное учреждение науки "Центральный сибирский ботанический сад Сибирского отделения Российской академии наук", Новосибирск, Россия ²Федеральное государственное бюджетное образовательное учреждение высшего образования

"Сибирский государственный университет геосистем и технологий", Новосибирск, Россия ³Федеральное государственное бюджетное учреждение науки

"Институт ядерной физики имени Г.И. Будкера Сибирского отделения Российской академии наук", Новосибирск, Россия

> *E-mail: llyakh@rambler.ru Поступила в редакцию 28.11.2022 г. После доработки 15.12.2022 г. Принята к публикации 25.01.2023 г.

Исследован элементный состав трех кустарников двух родов *Spiraea* и *Myricaria*, растущих в урбоэкосистеме г. Новосибирска и фоновых условиях методом рентгенофлуоресцентного анализа с использованием синхротронного излучения. Установлено не менее 20 элементов. Наиболее сильное загрязнение тяжелыми металлами в городских условиях отмечено у растений *Myricaria bracteata*. Более толерантная к загрязнению в городских условиях *Spiraea chamaedryfolia* может быть рекомендована для использования в качестве стандарта, а *M. bracteata* рекомендуется в качестве растения бионидикатора загрязнения окружающей среды. Данные, полученные по элементному составу образцов растений и почв, могут быть включены в базы данных.

DOI: 10.31857/S0367676522701198, EDN: AADOAY

ВВЕДЕНИЕ

Рентгенофлуоресцентная (РФА) спектроскопия является хорошо зарекомендовавшим себя аналитическим методом для качественной и количественной оценки химических элементов. Это многоэлементный, одновременный, недеструктивный метод, который в полной мере подходит для анализа объектов окружающей среды и растений в том числе [1]. Кроме того, использование синхротронного излучения (СИ) существенно улучшает возможности метода: высокая яркость источников СИ позволяет значительно сократить время набора экспериментального спектра, повышая экспрессность метода и чувствительность. Возможность перестройки энергии возбуждения в диапазоне рабочих энергий станции [2] открывает дополнительные перспективы при анализе концентраций тех химических элементов, которые могут служить маркерами различных видов растений и загрязнений. Возможность одновременного определения многих элементов с достаточно высокой чувствительностью, хорошей точностью [3, 4] в соединении с относительной простотой обработки экспериментальных спектров позволяют достаточно оперативно получать данные о составе образцов. Однако сравнительно редкое использование метода РФА для анализа растительного материала связано, главным образом, с недостаточным количеством паспортизированных образцов, которые могут служить образцами сравнения при анализе методом "внешнего стандарта" [5]. В связи с чем, расширение базы данных по химическому составу растений и поиск оптимальных образцов сравнения (стандартов) может послужить решению проблемы применения метода РФА СИ в ботанических и экологических исследованиях. Кроме того, метод РФА СИ требует небольшой навески материала для анализа, что особенно актуально при изучении химического элементного состава растительных и почвенных образцов, а также позволяет определить весь комплекс химических элементов в одной пробе материала, давая этим возможность провести адекватный сравнительный анализ. Кроме того, данный метод дает возможность определять содержание элементов в широком диапазоне и не требует химической подготовки проб, что исключает погрешности за счет привноса или удаления элементов вместе с реактивами.

Анализ микроэлементов является фундаментальной задачей в экологических науках. Оценка качества и безопасности экосистем и уровня антропогенного загрязнения проводится по содержанию микроэлементов, превышающих ПДК в окружающей среде [6]. Многими авторами для исследования урбанизированной среды в качестве биоиндикаторов используются древесные растения или их части [7]. В зависимости от вида растения проявляют разную устойчивость к загрязнению тяжелыми металлами, в связи с чем важной задачей является поиск видов различных растений как толерантных к избытку загрязнителей, так и чувствительных к техногенному стрессу для выявления влияния антропогенного фактора на растительные объекты.

Виды рода *Spiraea* L. и *Myricaria* Desv. экологически пластичны, газоустойчивы, декоративны, хорошо растут и цветут в условиях городской среды, широко используются в зеленом строительстве [8]. Отмечены их биоиндикаторные свойства загрязнения окружающей среды [9]. При этом сведения по содержанию химических элементов растений родов *Spiraea* и *Myricaria*, в литературных источниках, на наш взгляд, носят разрозненный характер и не дают объективного представления о разных таксонах.

Цель работы — определение состава и содержания элементов кустарников родов *Spiraea* и *Myricaria* в урбоэкосистеме г. Новосибирска и фоновых условиях методом РФА СИ, выявление наиболее устойчивых видов к антропогенному загрязнению и определение возможности использования растительных образцов в качестве стандартов.

МАТЕРИАЛЫ И МЕТОДЫ

Материалом исследования служили образцы двух видов спиреи – Spiraea chamaedryfolia L. (спирея дубравколистная) и S. media Schmidt (спирея средняя) из сем. Rosaceae и Myricaria bracteata Royle (мирикария прицветниковая) из семейства Tamaricaceae. Для исследования выбраны растения, высаженные в сквере "Мемориал Славы" в Ленинском районе г. Новосибирска, одном из наиболее неблагоприятных районов с экологической точки зрения (городские условия). Ленинский район является одним из лидирующих по выбросам оксида углерода, диоксида серы, оксидов азота, твердых загрязняющих веществ в атмосферу воздуха. В целом, уровень загрязнения атмосферы города Новосибирска оценивается как "повышенный" [10]. В качестве контрольных растений были взяты особи того же возраста, произрастающие среди лесного массива

на территории ЦСБС СО РАН, расположенного в относительно благоприятном по экологической обстановке Советском районе (Академгородок).

Отбор растительных образцов проводился 27.06.2019 г. в генеративную фазу равномерно по периметру кроны и одновременно на обоих участках. С каждого растения отбирали по 10 годичных побегов и формировали среднюю пробу. Анализировали листья и стебли растений, а также образцы почв из их местообитаний. Средний образец составляли из 5—10 особей [11]. Образцы почвы были взяты из корнеобитаемого слоя (10—15 см) общеизвестным методом "конверта".

Навеску воздушно-сухого растительного сырья и почв (1 г) измельчали в агатовой ступке. Затем образцы прессовали в форме таблетки диаметром ~ 1 см, весом -30 мг (с поверхностной плотностью 0.04 г/см²). Определение элементов проводили методом РФА СИ на станции элементного анализа (накопитель ВЭПП-3) Сибирского Центра Синхротронного и Терагерцового Излучения ИЯФ СО РАН. Измерения образцов проводились при энергии возбуждающего излучения 23 кэВ, время каждого измерения составляло от 300 до 500 с для растительных и почвенных навесок. Монохроматизация синхротронного излучения осуществлялась при помощи монохроматора на основе кремниевого кристалла типа "бабочка" с рабочими плоскостями (111). Регистрация флуоресцентного излучения проводилась при помощи детектора PentaFET (Oxford Instruments) с энергетическим разрешением ~135 эВ (на $K\alpha$ линии Fe - 5.9 кэB). Основные характеристики экспериментальной станции и методические аспекты работы описаны в [3, 4].

Обработка полученных спектров проводилась в программе AXIL. Концентрацию элементов определяли с использованием метода "внешнего стандарта". В качестве образцов сравнения использовали российские стандарты траво-злаковой смеси ГСО СОРМ1 и байкальского ила БИЛ-1 [12]. Величина ошибки — воспроизводимость результатов анализа получена путем измерения 10 параллельных измерений стандартного образца СОРМ1 и 5 – образца БИЛ-1 в 3 повторностях одинаковых образцов. Пределы обнаружения и относительное стандартное отклонение (Sr) рассчитывалось путем измерения 10 параллельных измерений стандартного образца СОРМ1 и 5 – образца БИЛ-1 в 3 повторностях одинаковых образцов (табл. 1). Как видно из табл. 1, значения C_{min} варьируются в зависимости от элемента и используемого стандартного образца. В целом, заметно снижение пределов обнаружения при переходе от легких элементов (K) к более тяжелым (Pb).

Накопление и рассеяние элементов для растений, произрастающих в городских условиях, по сравнению с фоновыми оценивалось путем рас-

Таблица 1. Пределы обнаружения (C_{min}) при энергии возбуждения 23 кэВ для российских стандартов ГСО СОРМ 1 и БИЛ-1, ppm

2	COI	PM 1	БИЛ-1		
Элементы	C_{min}	$S_r, \%^1$	C_{min}	S _r , %	
K	27	10	206	6	
Ca	13	11	106	8	
Ti	3	26	31	5	
V	0.1	19	8	8	
Cr	1.9	64	6	6	
Mn	0.9	9	8	4	
Fe	0.6	8	5	4	
Co	0.03	36	0.3	9	
Ni	0.3	39	3	4	
Cu	0.15	14	2	5	
Zn	0.2	12	1	5	
As	н.а. ²	_	1	3	
Br	0.05	11	0.4	8	
Rb	0.07	11	0.3	9	
Sr	0.1	12	0.3	7	
Y	0.6	29	0.4	12	
Zr	0.5	58	0.3	16	
Nb	1.4	40	0.3	9	
Mo	0.07	10	0.1	14	
Pb	0.05	35	0.5	14	

 $^{^{1}-}S_{r}-$ относительное стандартное отклонение;

чета коэффициентов концентрации (K_c) и рассеяния (K_p): $K_c = C_a/C_{\phi}$ и $K_p = C_{\phi}/C_a$, где C_{ϕ} , C_a — концентрации элемента в фоновых и городских образцах соответственно. Для выявления изменений в химическом составе растений под воздействием пылегазовых эмиссий в городских условиях использовался комплексный показатель — коэффициент биогеохимической трансформации Zv [13], который рассчитывался по формуле:

$$Zv = \sum_{1}^{n_1} K_c + \sum_{1}^{n_2} K_p - (n_1 + n_2 - 1), \tag{1}$$

где n_1 , n_2 — количество элементов с $K_c > 1.5$ и с $K_p > 1.5$ соответственно.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сравнительный анализ почвы из точек отбора растительных образцов показал, что различия в концентрациях элементов несущественны (табл. 2). Отмечено незначительное превышение по содержанию Ca, As, Br, Sr, Mo и снижение Mn

в городских почвах по сравнению с контролем. В целом, можно отметить, что содержание химических элементов в исследуемых почвенных образцах практически не превышает "фоновый" уровень в почвах Новосибирска и Новосибирской области, представленный в работах [14-17]. Исключение составляет Br, концентрация которого в точке отбора в городе выше в 6 раз по сравнению с "фоновыми" показателями, а также на 30% возрастает концентрация Sr, что, скорее всего, связано с расположением точки отбора образцов вблизи от предприятий теплоэнергетики и автомагистралей. В целом, следует отметить, что загрязнение тяжелыми металлами в точке отбора в городских условиях оценивается как незначительное, что, скорее всего, связано с расположением участка в сквере, удаленном от автомагистралей.

Исследование содержания макро- и микроэлементов в надземных органах растений показало, что концентрация макроэлементов К и Са выше в листьях, чем в стеблях вне зависимости от

² – н.а. – концентрация химического элемента не аттестована.

Таблица 2. Содержание элементов в почвах из точек отбора растений в городских и фоновых условиях (ppm на воздушно-сухую массу)

Элемент	Город	Контроль	Фоновое содержание элементов в почвах по лит. источникам [13–16]	
K	12685 ± 767^{1}	14769 ± 893	_ 2	
Ca	44343 ± 3400	15565 ± 1193	_	
Ti	2691 ± 133	3482 ± 172	41004	
V	55 ± 5	69 ± 6	60^{3}	
Cr	36 ± 2	41 ± 2	80 ³	
Mn	659 ± 26	795 ± 31	750 ³	
Fe	22123 ± 988	22836 ± 1020	38000^{6}	
Co	11 ± 1	9 ± 1	12 ³	
Ni	32 ± 1	34 ± 2	35^{3}	
Cu	27 ± 1	18 ± 1	30^{3}	
Zn	59 ± 3	46 ± 2	70^{3}	
As	15 ± 1	4 ± 0	15 ³	
Br	22 ± 2	3 ± 0.2	1.2–3.6 ⁵	
Rb	46 ± 4	47 ± 4	_	
Sr	223 ± 16	142 ± 10	170 ³	
Y	17 ± 2	17 ± 2	_	
Zr	177 ± 29	128 ± 21	250^{3}	
Nb	7 ± 1	7 ± 1	15 ³	
Mo	0.7 ± 0.1	0.3 ± 04 3^3		
Pb	15 ± 2	16 ± 2	15 ³	

¹ — Среднее значение \pm стандартное отклонение.

таксона и места произрастания (табл. 3). В городских условиях среднее содержание К в растениях ниже в 1.5 раза, чем в фоновых условиях, а содержание Са в листьях городских растений, напротив, возрастает в 1.7 раз. Суммарное содержание микроэлементов растений на загрязненном участке выше, чем на фоновом участке. Наиболее существенные различия установлены в образцах листьев *М. bracteata* (1258 ррт). Так, суммарное содержание микроэлементов в листьях *М. bracteata* из городского участка увеличилось в 2.1 раза по сравнению с фоновым. По уровню накопле-

ния элементов виды располагаются в убывающий ряд: $M.\ bracteata > S.\ media > S.\ chamaedryfolia.$ В стеблях растений изменения в суммарном содержании элементов при росте антропогенной нагрузки менее значительны.

Обнаружено, что в растениях под антропогенным воздействием повышалось содержание Са, Ті, V, Fe, Co, Br, Sr, Y, Zr, Nb, Pb и снижалось K, Zn и Мо по сравнению с фоном. Наиболее сильное загрязнение тяжелыми металлами в городских условиях отмечено у растений *M. bracteata*.

 $^{^{2}}$ — Прочерк означает, что нет данных.

³ — Фоновое содержание тяжелых металлов в почвах юга Западной Сибири [14].

 $^{^4}$ — Фоновое содержание тяжелых металлов в почвах юга Западной Сибири [15].

^{5 —} Фоновое содержание галогенов в почвах Западной Сибири [13].

⁶ – Фоновое содержание элементов в почвах Новосибирской области [16].

730 ЛЯХ и др.

Таблица 3. Содержание элементов в надземных органах растений родов *Spiraea* и *Myricaria*, произрастающих в городских и фоновых условиях в г. Новосибирске (ppm на воздушно-сухую массу)

Элемент	Орган	Город			Контроль (ЦСБС СО РАН)		
	растения	1	2	3	1	2	3
K	Л	19296 ± 1167^4		13094 ± 792	27678 ± 1674	17576 ± 1063	28509 ± 1724
	ст	7960 ± 481	7089 ± 429	7455 ± 451	13941 ± 843	7107 ± 430	11456 ± 693
Ca	Л	17517 ± 1343	15195 ± 1165	32896 ± 2522	17142 ± 1314	8726 ± 669	16828 ± 1290
	ст	7849 ± 602	15004 ± 1150	4111 ± 315	13351 ± 1024	25509 ± 1956	3929 ± 301
Ti	Л	14 ± 1	11 ± 1	32 ± 2	13 ± 1	8 ± 0	5 ± 0
	ст	14 ± 1	8 ± 0	4 ± 0	27 ± 1	14 ± 1	8 ± 0
V	Л	0.5 ± 0.0	0.4 ± 0.0	0.4 ± 0.0	0.8 ± 0.1	0.5 ± 0.0	0.2 ± 0.0
	ст	0.4 ± 0.0	0.3 ± 0.0	0.2 ± 0.0	1.2 ± 0.1	0.8 ± 0.1	0.3 ± 0.0
Cr	Л	н.д. ⁵	1.7 ± 0.1	3.1 ± 0.2	н.д.	0.1 ± 0.0	4.0 ± 0.2
	ст	н.д.	0.8 ± 0.05	1.8 ± 0.1	н.д.	н.д.	1.7 ± 0.1
Mn	л	63 ± 2	92 ± 4	94 ± 4	103 ± 4.0	65 ± 3	158 ± 6
	ст	38 ± 2	104 ± 4	18 ± 1	72 ± 2.8	108 ± 4.3	34 ± 1.3
Fe	Л	268 ± 12	222 ± 10	739 ± 33	129 ± 5.7	87 ± 4	192 ± 9
	ст	200 ± 9	112 ± 5	83 ± 4	125 ± 5.6	68 ± 3.0	52 ± 2.3
Co	Л	0.1 ± 0.0	0.1 ± 0.0	0.3 ± 0.0	н.о. ⁶	н.о.	0.1 ± 0
	ст	0.1 ± 0.0	н.о.	0.1 ± 0.0	н.о.	н.о.	н.о.
Ni	л	1.3 ± 0.1	1.3 ± 0.1	1.2 ± 0.1	1.9 ± 0.1	1.2 ± 0.1	1.1 ± 0.1
	ст	0.9 ± 0.0	1.1 ± 0.1	2.5 ± 0.1	1.5 ± 0.1	0.9 ± 0.0	2.2 ± 0.1
Cu	Л	4.8 ± 0.3	5.5 ± 0.3	5.2 ± 0.3	6.0 ± 0.3	4.5 ± 0.2	4.8 ± 0
	ст	4.1 ± 0.2	4.6 ± 0.2	6.2 ± 0.3	10.5 ± 0.5	6.3 ± 0.3	5.2 ± 0.3
Zn	Л	13 ± 1	24 ± 1	36 ± 2	16 ± 1	39 ± 2	63 ± 3
	ст	67 ± 3	45 ± 2	23 ± 1	73 ± 4	121 ± 6	34 ± 2
As	Л	0.1 ± 0.0	1.0 ± 0.0	н.д.	0.5 ± 0.0	0.4 ± 0	н.д.
	ст	0.7 ± 0.0	0.4 ± 0.0	1.4 ± 0.04	0.9 ± 0.0	1.0 ± 0.0	0.2 ± 0.0
Br	Л	2.1 ± 0.2	0.9 ± 0.1	37.8 ± 2.9	6.0 ± 0.5	1.5 ± 0.1	20.8 ± 1.6
	ст	0.4 ± 0.0	0.5 ± 0.0	35.1 ± 2.7	2.0 ± 0.2	0.4 ± 0.0	12.3 ± 0.9
Rb	Л	5 ± 0	3 ± 0	9 ± 1	5 ± 0	2 ± 0	8 ± 1
	СТ	3 ± 0	2 ± 0	3 ± 0	3 ± 0	1 ± 0	2 ± 0
Sr	Л	141 ± 10	93 ± 7	274 ± 20	104 ± 7.5	43 ± 3	121 ± 9
	СТ	100 ± 7	149 ± 11	64 ± 5	116 ± 8	144 ± 10	46 ± 3
Y	Л	0.1 ± 0.0	0.6 ± 0.1	10.1 ± 1.2	0.1 ± 0.0	н.д.	2.2 ± 0.3
	СТ	0.9 ± 0.1	0.9 ± 0.1	0.2 ± 0.0	н.д.	0.3 ± 0.0	0.3 ± 0.0
Zr	Л	0.8 ± 0.1	0.6 ± 0.1	9.1 ± 1.5	0.5 ± 0.1	0.3 ± 0.0	0.9 ± 0.2
	СТ	0.9 ± 0.1	0.6 ± 0.1	0.4 ± 0.1	0.6 ± 0.1	0.5 ± 0.1	0.4 ± 0.1
Nb	Л	0.6 ± 0.1	0.3 ± 0.0	2.3 ± 0.2	0.3 ± 0.0	0.9 ± 0	0.1 ± 0.0
	СТ	1.9 ± 0.2	0.1 ± 0.0	1.9 ± 0.2	1.0 ± 0.1	н.д.	1.2 ± 0.1
Mo	Л	0.7 ± 0.1	0.3 ± 0.0	1.9 ± 0.3	2.0 ± 0.3	4.3 ± 0.6	3.6 ± 0.5
ъ.	СТ	0.3 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.8 ± 0.1	1.6 ± 0.2	0.4 ± 0.1
Pb	Л	1.0 ± 0.1	1.7 ± 0.2	2.9 ± 0.4	1.1 ± 0.2	0.9 ± 0.1	1.5 ± 0.2
		1.8 ± 0.2	1.0 ± 0.0	2.0 ± 0.3	1.4 ± 0.2	1.3 ± 0.2	0.8 ± 0.1

Примечание: ¹ — Spiraea chamaedryfolia; ² — Spiraea media; ³ — Myricaria bracteata;

 $^{^4}$ — среднее значение \pm стандартное отклонение;

 $^{^{5}}$ — н.д. означает, что нет данных;

 $^{^{6}}$ — н.о. означает — ниже предела обнаружения (0.01 ppm).

Таблица 4. Оценка экологического состояния растений родов *Spiraea* и *Myricaria*, произрастающих в г. Новосибирске

Виды	Zv
Spiraea chamaedryfolia	15.3
Spiraea media	38.4
Myricaria bracteata	65.7

Рассчитан коэффициент биогеохимической трансформации (Zv), отражающий нарушение нормальных соотношений элементов в органах растений в результате усиления антропогенной нагрузки. Наиболее существенные изменения элементного состава растений под антропогенным воздействием отмечены у растений вида M. bracteata, Zv листьев которого равно 65.7, что в 1.7-4.3 раза выше, чем у растений рода Spiraea. Наиболее устойчивы к антропогенному загрязнению растения S. chamaedryfolia (Zv = 15.3) (табл. 4). Поскольку более толерантной к загрязнению в городских условиях выделена S. chamaedryfolia, то может быть рекомендована для использования в качестве стандарта.

ЗАКЛЮЧЕНИЕ

В результате проведенного исследования представлены данные по содержанию 20 элементов в урбанизированных и фоновых почвах г. Новосибирска. Отмечено превышение по содержанию Ca, Br, Sr, Cu, Zn, Zr и Мо в урбанизированных почвах по сравнению с фоном.

Установлено не менее 20 элементов в листьях и стеблях двух видов растений рода Spiraea - S. chamaedryfolia и S. media и Myricaria bracteata, произрастающих в условиях урбоэкосистемы и фоновых. В растениях под техногенной нагрузкой повышалась концентрация Са, Ті, V, Fe, Co, Br, Sr, Y, Zr, Nb, Pb и снижалось содержание K, Zn и Mo по сравнению с фоном. Наиболее сильное загрязнение тяжелыми металлами в городских условиях отмечено у растений *M. bracteata*. Более высокие величины коэффициента биогеохимической трансформации (Zv) зафиксированы для листьев M. bracteata, что свидетельствует о более существенных изменениях в микроэлементном составе, чем для Spiraea. Наиболее толерантной к загрязнению в городских условиях выделена S. chamaedryfolia, которая может быть рекомендована для использования в качестве стандарта, а также использования в зеленом строительстве. Вид M. bracteata рекомендуется в качестве растения биоиндикатора загрязнения окружающей среды.

Авторы выражают благодарность Ольге Васильевне Чанкиной за выполнение анализов. Работа выполнена в рамках государственного задания ЦСБС СО РАН по проектам АААА-А21-121011290027-6 и АААА-А21-121011290025-2 с использованием УНУ коллекции живых растений ЦСБС СО РАН (CSBG SB RAS USU 440534) в ЦКП СЦСТИ на базе УНУ "Новосибирский ЛСЭ", "Комплекс VEPP-4 -VEPP-2000" Института ядерной физики им. Г.И. Будкера СО РАН, поддержанное проектом RFMEFI62119X0022.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rodrigues E.S., Gomes M.H.F., Duran N.M. et al. // Front. Plant Sci. 2018. V. 9. Art. No. 1588.
- 2. Trunova V.A., Sidorina A.V., Zolotarev K.V. // X-ray Spectrum. 2015. V. 44. No. 4. P. 226.
- 3. Piminov P.A., Baranov G.N., Bogomyagkov A.V. et al. // Phys. Procedia. 2016. V. 84. P. 19.
- 4. *Дарьин А.В., Ракшун Я.В.* // Науч. вестн. Новосиб. гос. техн. ун-та. 2013. № 2(51). С. 112.
- Васильева И.Е., Шабанова Е.В. // ЖАХ. 2021. Т. 76.
 № 2. С. 99; Vasil'eva I.E., Shabanova E.V. // J. Analyt. Chem. 2021. V. 76. No. 2. P. 137.
- 6. Terzano R., Denecke M.A., Falkenberg G. et al. // Pure Appl. Chem. 2019. V. 91. No. 6. P. 1029.
- 7. Terekhina N.V., Ufimtseva M.D. // Geogr. Environ. Sustain. 2020. V. 13. No. 1. P. 224.
- 8. Чиндяева Л.Н., Томошевич М.А., Беланова А.П., Банаев Е.В. Древесные растения в озеленении сибирских городов. Новосибирск: Изд-во "Гео", 2018. 457 с.
- 9. Луговская А.Ю., Храмова Е.П., Лях Е.М., Карпова Е.А. // Вест. СГУГиТ. 2020. Т. 25. № 1. С.173.
- 10. Обзор состояния окружающей среды в городе Новосибирске за 2019 год. Новосибирск, 2020. 100 с.
- Khramova E., Lyakh E., Chankina O. et al. // AIP Conf. Proc. 2020. V. 2299. Art. No. 070005.
- Арнаутов Н.А. Стандартные образцы химического состава природных минеральных веществ. Методические рекомендации. Новосибирск, 1990. 220 с.
- 13. *Касимов Н.С., Власов Д.В., Кошелева Н.Е., Никифорова Е.М.* Геохимия ландшафтов Восточной Москвы. М.: АПР, 2016. 276 с.
- 14. *Конарбаева Г.А.* // Мат. всерос. научн. конф. с международ. участием "Почвы в биосфере" (Томск, 2018). С. 269.
- Ильин В.Б., Сысо А.И. Микроэлементы и тяжелые металлы в почвах и растениях Новосибирской области. Новосибирск: Изд-во СО РАН, 2001. 231 с.
- 16. *Ильин В.Б., Сысо А.И., Байдина Н.Л. и др.* // Почвоведение. 2003. № 5. С. 550.
- 17. Семендяева Н.В., Галеева Л.П., Мармулев А.Н. Почвы Новосибирской области и их сельскохозяйственное использование: учеб. пособие. Новосибирск: НГАУ, 2010. 187 с.

SR-XRFA in research of Siberian shrubs of the urban ecosystem

E. M. Lyakh^{a, *}, E. P. Khramova^a, A. Yu. Lugovskaya^{a, b}, Ia. V. Rakshun^c, D. S. Sorokoletov^c

^a Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia ^b Siberian State University of Geosystems and Technologies, Novosibirsk, 630090 Russia

A study has been first made of the element composition of the plants of three species of two genus *Spiraea* and *Myricaria*, growing in the Novosibirsk Urban Ecosystem and the soil samples from their habitat by method of Xray fluorescence analysis using synchrotron radiation (SR-XRFA). The most severe heavy metal pollution in urban conditions was noted in *Myricaria bracteata* plants. The species *Spiraea chamaedryfolia*, the most tolerant to pollution in urban conditions may be recommended as a standard and *M. bracteata* is recommended as a bioindicator plant for environmental pollution. The data obtained on the elemental composition of plant samples and soils may be included in the databases.

^c Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia *e-mail: llyakh@rambler.ru