УЛК 539.172.17

ПЕРВЫЙ ЭКСПЕРИМЕНТ НА ФАБРИКЕ СВЕРХТЯЖЕЛЫХ ЭЛЕМЕНТОВ: НОВЫЕ ДАННЫЕ В РЕАКЦИИ ²⁴³Am + ⁴⁸Ca

© 2023 г. Н. Д. Коврижных^{1, *}, Ю. Ц. Оганесян¹, В. К. Утенков¹, Ф. Ш. Абдуллин¹, С. Н. Дмитриев¹, А. А. Джиоев¹, Д. Ибадуллаев^{1, 2, 3}, М. Г. Иткис¹, А. В. Карпов¹, Д. А. Кузнецов¹, О. В. Петрушкин¹, А. В. Подшибякин¹, А. Н. Поляков¹, А. Г. Попеко¹, И. С. Рогов¹, Р. Н. Сагайдак¹, Л. Шлаттауэр⁴, В. Д. Шубин¹, М. В. Шумейко¹, Д. И. Соловьев¹, Ю. С. Цыганов¹, А. А. Воинов¹, В. Г. Субботин¹, А. Ю. Бодров^{1, 5}, А. В. Сабельников¹, А. В. Халкин¹

¹Международная межправительственная организация "Объединенный институт ядерных исследований", Дубна, Россия ²Институт ядерной физики, Алматы, Казахстан ³Евразийский национальный университет имени Л.Н. Гумилева, Астана, Казахстан ⁴Университет Палацкого, Оломоуц, Чехия

⁵Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", химический факультет, Москва, Россия *E-mail: kovrizhnyx@jinr.ru

Поступила в редакцию 28.02.2023 г. После доработки 24.03.2023 г. Принята к публикации 28.04.2023 г.

Обсуждаются результаты серии экспериментов по синтезу изотопов Мс в реакции 243 Am + 48 Ca, проведенных на новом сепараторе DGFRS-2 и циклотроне DC280 на Фабрике Сверхтяжелых Элементов в ЛЯР ОИЯИ. Зарегистрированы 110 новых цепочек распада 288 Mc, 10 цепочек 289 Mc и 4 цепочки 287 Mc. Альфа-распад 268 Db с энергией 7.6—8.0 МэВ, периодом полураспада 16 4 ч и α -ветвью 51 12% зарегистрирован впервые вместе с новым спонтанно делящимся изотопом 264 Lr с периодом полураспада $^{4.8}$ 2.3 ч. Измеренное сечение реакции 243 Am(48 Ca, 3 n) 288 Mc составило $^{17.1}$ 146.3 пб, что является самым большим для известных сверхтяжелых ядер. Был синтезирован новый изотоп 286 Mc с периодом полураспада 299 8 мс и энергией 279 Rg впервые наблюдалось в одной из четырех новых цепочек распада 287 Mc. Функция возбуждения реакции была измерена при шести энергиях 48 Ca в диапазоне 239 —259 МэВ, что привело к первому наблюдению 5n канала с сечением $^{0.5}$ 1,3 пб. С более высокой точностью определены свойства распада 20 ранее известных изотопов.

DOI: 10.31857/S0367676523701946, EDN: ZAXALX

ВВЕДЕНИЕ

Изотопы элемента 115, 288 Mc и 287 Mc, были впервые синтезированы в 2003 году в реакции 243 Am + 48 Ca на сепараторе DGFRS [1]. В 2010—2012 гг. была проведена другая серия экспериментов в диапазоне энергий 48 Ca 240—254 МэВ [2]. В результате этих экспериментов мы отнесли четыре цепочки, состоящие из двух α -распадов и спонтанного деления (SF), наблюдавшиеся в течение минуты, к активности 289 Mc. Другие длинные цепочки (пять последовательных α -распадов и SF) были отнесены к 288 Mc (31 цепочка) и к 287 Mc (2 це

почки). Кроме того, изотопы 289 Mc and 290 Mc наблюдались как дочерние ядра изотопов $^{293, 294}$ Ts, продуктов реакции 249 Bk + 48 Ca, в двух экспериментах, проведенных в 2009-2010 и 2012 гг. (суммарно 20 цепочек распада [3]). Известно, что сложный спектр α -частиц нечетных ядер затрудняет их идентификацию. Однако, основываясь на комбинированном анализе их радиоактивных свойств, результатов экспериментов при разных энергиях 48 Ca и в реакциях с разными мишенями (243 Am и 249 Bk), мы отнесли наблюдавшиеся в этих реакциях цепочки к ядрам 287 Mc, 288 Mc и 289 Mc.

Таблица 1. Толщины мишени из 243 Am, энергии 48 Ca в середине слоя, результирующие интервалы энергии возбуждения, суммарные дозы пучка, числа наблюдаемых цепочек распада 288 Mc (3n) и 289 Mc (2n) и сечения их образования

Толщина мишени, $M\Gamma/cM^2$	E_{lab} , МэВ	<i>E</i> *, МэВ	Доза пучка $\times 10^{18}$	Число цепочек 3n/2 n	σ _{3<i>n</i>} , пб	σ _{2n} , пб
0.36	243.9	35.5-37.8	8.0	30/5	$9.8^{+2.6}_{-2.1}$	$1.6^{+1.2}_{-0.7}$
0.38	240.9	33.1–35.2	2.2	16/1	$17.1^{+6.3}_{-4.7}$	$1.1^{+2.5}_{-0.9}$
0.38	239.1	31.5-33.6	2.3	9/0	$9.9^{+5.1}_{-3.4}$	<2.1

Результаты экспериментов, проведенных в 2013 и 2015 гг. на сепараторах TASCA (GSI) и BGS (LBNL). были представлены в [4] и [5]. Продукты реакции 243 Am + 48 Ca были исследованы методами α -. X- и у-совпадений. Двадцать две цепочки распада были отнесены к 288 Мс и одна к 287 Мс в [4]. В работе [6] не исключалось, что семь коротких цепочек распада могут так же быть отнесены к разным ветвям распада ²⁸⁸Мс. В работе [5] все 46 синтезированных цепочек, включая три коротких, были отнесены к ²⁸⁸Мс. В этих работах, благодаря регистрации α-γ-совпадений, были измерены энергии α-распада нескольких членов цепочки и были предложены схемы уровней $^{276}{
m Mt}$ и $^{272}{
m Bh}$. Короткие и длинные цепочки (две цепочки ²⁹³Ts и две ²⁹⁴Ts) были также зарегистрированы в реакции 249 Bk + 48 Ca в [7]. В обеих коротких цепочках 293 Ts, также как в двух из 16 в [3], после α -распада 281 Rg с энергией $E_{\alpha} = 9.3 \text{ MэB}$, было зарегистрировано спонтанное деление с периодом полураспада 5 мс. Наконец, в 2018 г. были опубликованы результаты экспериментов по измерению массового числа продуктов реакции ²⁴³Am + ⁴⁸Ca на установке FIONA [8]. Массы первых ядер в двух цепочках оказались около 288 и 284 (после распада ²⁸⁸Мс), что подтверждает правильность нашей идентификации ядра ²⁸⁸Мс. В дополнение к физическим экспериментам, был проведен эксперимент по исследованию химических свойств ²⁸⁸Мс и/или его дочерних ядер [9]. Пять зарегистрированных цепочек распада отнесены к ²⁸⁸Мс.

Несмотря на то, что цепочки распада Мс составляют примерно половину всех цепочек сверхтяжелых ядер, зарегистрированных в реакциях ⁴⁸Са с актинидными мишенями, несколько важных вопросов остаются открытыми, среди которых: масса материнского ядра в коротких цепочках, возможное существование двух времен распада ²⁷⁶Мt, вероятность электронного захвата у ядер в цепочке распада Мс, сечение реакции слияния с испарением протона, вероятность α-распада ²⁶⁸Db.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Новый экспериментальный комплекс, Фабрика Сверхтяжелых Элементов (SHE Factory) с новым циклотроном DC280, введен в строй в конце 2019 г. Интенсивность пучка ионов ⁴⁸Са в DC280 может достигать 10 мкА частиц [10]. Для изучения продуктов реакций слияния, имеющих низкие сечения, новый газонаполненный сепаратор DG-FRS-2 был установлен и протестирован в калибровочных экспериментах [11]. Его отличают от DGFRS высокая трансмиссия тяжелых ионов и низкий фон в фокальной плоскости.

Кроме научных задач первого эксперимента, проведенного в период с ноября 2020 г. по февраль 2021 г. [12] (см. табл. 1), были тесты DGFRS-2 в условиях длительной работы, измерение распределения ядер на фокальной плоскости и сравнение результатов с расчетами трансмиссии [13, 14], а также изучение фоновых условий.

Сепаратор состоит из 5 магнитов в конфигурации $Q_v D_h Q_h Q_v D$, где D обозначает дипольный магнит и Q – квадрупольный магнит, а индексы h и у обозначают горизонтальное и вертикальное фокусирование соответственно [11]. Сепаратор был заполнен водородом при давлении 1.15 мбар, который постоянно прокачивался через сепаратор в направлении от детекторной камеры до мишенного блока. Детекторная камера была отделена от объема DGFRS-2 майларовой фольгой толщиной 0.7 мкм и заполнена пентаном при давлении 1.60 мбар. В течение первой серии экспериментов, объем сепаратора, заполненного водородом, был отделен от ионопровода вращающимся титановым окном толщиной 0.62 мг/см². В последующих экспериментах мы использовали систему дифференциальной откачки [11]. Мишени из изотопа 243 Am (обогащение 99.5%) были изготовлены путем электроосаждения на подложку из Ті толщиной 0.62 мг/см². Шесть мишенных секторов были установлены на диск с диаметром 15 см и вращались со скоростью 1500 об./мин. Интенсивность пучка постепенно повышалась до 1.2-1.3 мкА частиц. Фокальный детектор размером 48 мм по вертикали и 220 мм по горизонтали состоял из двух двухсторонних стриповых детекторов (DSSD) плошалью $48 \times 128 \text{ мм}^2 \text{ с шириной}$ стрипа 1 мм, установленных таким образом, что передний детектор закрывает часть заднего детектора. Фокальный детектор окружен восемью 60×120 -мм² боковыми летекторами, кажлый с 8 стрипами, формируя параллелепипед с пятью гранями и глубиной 120 мм. Перед детекторами установлены две многопроволочные пропорциональные камеры (МППК) для регистрации прилетающих из сепаратора ядер [11]. Система набора данных позволяла в онлайн режиме регистрировать пространственные, энергетические и временные корреляции между сигналами от имплантации ядер в детекторы и α-распадами изотопов Мс или их дочерних ядер. После этого пучок автоматически отключался для наблюдения распадов дочерних ядер при низком фоне. Энергии и времена распада ядер в цепочках ²⁸⁸Мс и ²⁸⁹Мс привелены в [12].

Основываясь на результатах работы [7], где был зарегистрирован α -распад 270 Db (N=165) с периодом полураспада 1 ч, и ожидаемом сходстве свойств распада изотопов с N=163 и 165, после онлайн регистрации десяти цепочек распада 288 Mc - 272 Bh мы продлили отключение пучка до $^{3-4}$ ч. В течение этих остановок мы не наблюдали α -частицы с $E_{\alpha}=7-9$ МэВ в тех же самых стрипах фокального детектора, где наблюдались распады 288 Mc.

Мы также искали α -распады 268 Db, после которых наблюдалось бы деление 264 Lr с относительно коротким периодом полураспада. Мы выбрали цепочки 288 Mc, в которых α -подобные события с $E_{\alpha}=7{-}10$ МэВ наблюдались между распадами 272 Bh и спонтанным делением. Энергетическое распределение α -подобных событий в зависимости от времени их регистрации относительно времени регистрации SF в цепочках (время SF взято как точка отсчета) показано на рис. 1a.

Как видно, во временном интервале от $-10\, \mathrm{дo}\, 0\, \mathrm{q}$ и $E_{\alpha}=7.6-8.0\, \mathrm{MpB}$ наблюдается повышенная концентрация событий, что говорит об их неслучайном происхождении. На рис. 16 показано временное распределение событий с $E_{\alpha}=7.6-8.0\, \mathrm{MpB}$, из которого мы определили период полураспада спонтанно делящегося ядра $T_{1/2}=4.9^{+2.1}_{-1.3}\, \mathrm{q}$, которое следует за α -распадом $^{272}\mathrm{Bh}$ и другого ядра с $E_{\alpha}=7.6-8.0\, \mathrm{MpB}$. Энергетическое распределение событий, зарегистрированных за $10\, \mathrm{q}$ перед SF, показано на рис. $16.\, \mathrm{B}$ Виден пик в диапазоне $E_{\alpha}=7.6-8.0\, \mathrm{MpB}$. Рисунок $1(\mathrm{д})$ представляет спектр α -подобных событий, зарегистрированных за все время эксперимента, который показывает пики ядер, оставшиеся после калибровочных экспериментов, например, $^{211}\mathrm{Po}$ ($E_{\alpha}=7.45\, \mathrm{MpB}$). Не-

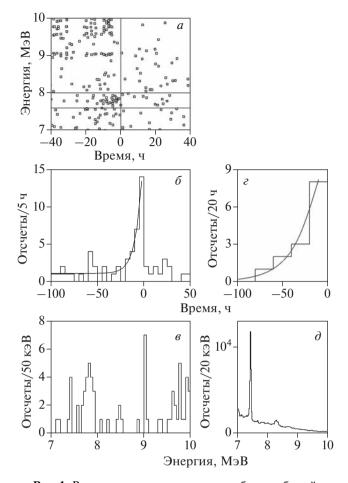


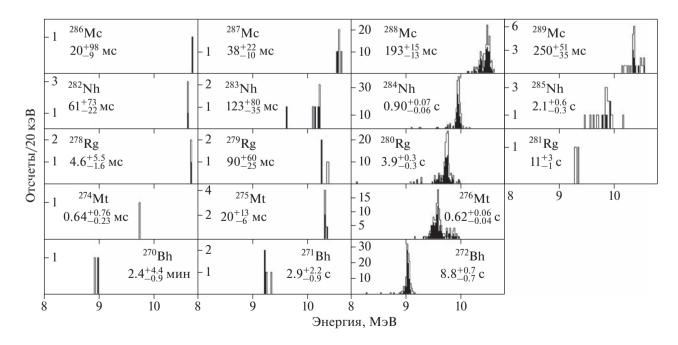
Рис. 1. Распределение энергии α-подобных событий в зависимости от времени их обнаружения по отношению к времени регистрации SF (a), распределение событий по времени с $E_{\alpha}=7.6-8.0~{\rm Mpg}$ (σ) и распределение энергии событий, зарегистрированных за $10~{\rm q}$ до SF (σ). Большая часть событий с $E_{\alpha} \ge 9~{\rm Mpg}$ возникает в результате α-распадов $^{272}{\rm Bh} - ^{284}{\rm Nh}$. Кривая распада $^{268}{\rm Db}$ (σ); см. текст. Спектр σ -подобных событий, зарегистрированных во время всех трех опытов (σ).

случайная природа пика 7.6—8.0 MeV также следует из рис. 16. Например, вероятность наблюдения 14 событий в пике при уровне фона около единицы меньше 10^{-11} . Энергетический диапазон 7.6—8.0 МэВ хорошо согласуется с величиной, ожидаемой для 268 Db из таблиц масс [15—17], а также энергией 7.9 МэВ, отнесенной к 270 Db в [7]. Основываясь на этом, мы относим α -распад с $E_{\alpha} = 7.6$ —8.0 МэВ к 268 Db. В этом случае спонтанное деление с периодом полураспада 4.9 ч принадлежит новому изотопу 264 Lг.

Из временных интервалов между α -распадами 272 Bh и событиями с $E_{\alpha}=7.6-8.0$ МэB, за которыми следовало спонтанное деление в течение 5 ч, мы вычислили период полураспада 268 Db 16_{-4}^{+6} ч.

Таблица 2. Энергии пучка в середине мишенного слоя, соответствующие диапазоны энергий возбуждения, дозы пучка, количество наблюдаемых цепочек распада 289 Mc(289 Mc(

E _{lab} , МэВ	<i>Е</i> *, МэВ	Доза пучка $\times 10^{18}$	Число цепочек 2n/3n/4n/5n	σ_{2n} , пб	σ_{3n} , пб	σ _{4<i>n</i>} , пб	σ _{5n} , пб
242.2	34.0-36.3	9.2	4/52/2/0	$1.2^{+1.0}_{-0.6}$	15+5	$0.6^{+0.7}_{-0.4}$	
250.8	41.3-43.5	2.0	0/3/1/0		$4.1_{-2.3}^{+4.2}$	$1.4^{+3.2}_{-1.2}$	
259.1	48.2-50.4	5.0	0/0/1/1			$0.5^{+1.3}_{-0.4}$	$0.5^{+1.3}_{-0.4}$


Кривая распада 268 Db показана на рис. 1*г*. Ветвь α -распада составила $55^{+20}_{-15}\%$. Так как во всех предыдущих экспериментах период полураспада 268 Db был рассчитан из временных интервалов между распадами 272 Bh и спонтанным делением, которое может происходить с одинаковой вероятностью от 268 Db и 264 Lr, мы приходим к выводу, что период полураспада 268 Db был также определен впервые с использованием его ветви α -распада.

Измеренное сечение реакции 243 Am(48 Ca, $_{3n}$) 288 Mc составило $_{17.1}^{+6.3}_{-4.7}$ пб, что почти вдвое превышает значение, измеренное ранее при энергии возбуждения $_{34-38}$ MэB [2], и является самым большим из всех известных реакций слияния $_{48}$ Ca с актинидными ядрами, приводящими к образованию сверхтяжелых ядер.

Вторая серия экспериментов по синтезу изотопов Мс прошла в ноябре—декабре 2021 г. и в феврале 2022 г. [18]. Экспериментальные условия и некоторые результаты показаны в табл. 2.

Энергетический спектр α -частиц ядер ²⁸⁶Mc, ²⁸⁷Mc, ²⁸⁸Mc, ²⁸⁹Mc и продуктов их распада, наблюдаемых в [1–8, 19], а также и в наших недавних экспериментах [12, 18], показаны на рис. 2. Для спектра α -частиц, были выбраны события с энергетическим разрешением \leq 40 кэВ. Периоды полураспада, показанные на рисунках, определены из всех известных данных.

При максимальной энергии ⁴⁸Ca (см. рис. 3) мы зарегистрировали α -распад нового изотопа ²⁸⁶Mc с $E_{\alpha}=10.71\pm0.02$ МэВ и $T_{1/2}=20^{+98}_{-9}$ с [18]. Энергии α -частиц ²⁸²Nh, ²⁷⁸Rg и ²⁷⁰Bh совпадают с теми значениями, что были измерены в реакции ²³⁷Np(⁴⁸Ca, 3*n*)²⁸²Nh [19]. Времена распада от

Рис. 2. Спектр α -частиц $^{286-289}$ Мс и дочерних ядер. События, зарегистрированные в обеих сериях экспериментов [12, 18], показаны закрытыми гистограммами, а их совокупность с ранее известными данными — открытыми гистограммами.

 $^{282}{
m Nh}$ до $^{270}{
m Bh}$ не противоречат временам, измеренным ранее. Период полураспада $^{266}{
m Db}$ составил 11^{+21}_{-4} мин.

Сечение реакции 243 Am(48 Ca, 5n) 286 Mc было измерено впервые для реакций 48 Ca с нечетными по Z ядрами мишени и составило $0.5^{+1.3}_{-0.4}$ пб при $E^*=49$ МэВ (рис. 3). Это значение близко к измеренным в реакциях 244 Pu(48 Ca, 5n) 287 Fl ($1.1^{+2.6}_{-0.9}$ пб при $E^*=53$ МэВ) [20] и 242 Pu(48 Ca, 5n) 285 Fl ($0.6^{+0.9}_{-0.5}$ пб при $E^*=50$ МэВ) [21].

В эксперименте мы зарегистрировали четыре цепочки распада 287 Мс. Удвоение числа цепочек 287 Мс по сравнению с известными данными сделало возможным более точно определить свойства распада изотопов от 287 Мс до 267 Db. По сравнению с данными работ [2, 4, 22] периоды полураспада 287 Мс, 279 Rg, 275 Мt и 267 Db ($T_{\rm SF}=1.4^{+1.0}_{-0.4}$ ч) практически совпадают с известными ранее данными. Периоды полураспада 283 Nh and 271 Bh оказались несколько больше, но разница не превышает экспериментальных неопределенностей.

В одной из цепочек распада 287 Мс, мы впервые зарегистрировали спонтанное деление 279 Rg, третьего из 26 нечетных по Z известных ядер с Z>105 и N>162. Это позволило оценить ветвь α -распада 279 Rg $b_{\alpha}=87_{-19}^{+0.5}\%$; парциальные периоды полураспада $T_{\alpha}=0.10_{-0.03}^{+0.08}$ с и $T_{SF}=0.7_{-0.5}^{+0.7}$ с.

В этих экспериментах продукты 4n-испарительного канала наблюдались в диапазоне энергий возбуждения от 35 до 49 МэВ. Максимальное сечение в $1.4^{+3.2}_{-1.2}$ пб измерено при $E^* = 42$ МэВ.

При энергии возбуждения около 35 МэВ мы зарегистрировали 52 новых цепочки распада 288 Мс. Как и в первой серии экспериментов, была зарегистрирована α -активность с $E_{\alpha}=7.6-8.0$ МэВ между α -распадами 272 Вh и событиями спонтанного деления, которые мы отнесли к изотопу 264 Lr. Новые результаты позволили более точно измерить период полураспада 264 Lr ($4.8^{+2.2}_{-1.3}$ ч) и ветвь α -распада для 268 Db (51^{+14}_{-12} %).

Всего в этих экспериментах мы зарегистрировали 110 новых цепочек распада 288 Мс. Вместе с результатами работ [1, 2, 4, 5, 8, 12, 18] число цепочек распада этого ядра достигло примерно 210. Однако в этом и предыдущих экспериментах цепочка распада $ER-^{288}$ Мс ($SF/\beta+$, $T_{1/2}=0.2$ с) $-^{288}$ Fl ($E_{\alpha}=9.9$ МэВ, $T_{1/2}=0.7$ с) $-^{284}$ Cn (SF, $T_{1/2}=0.1$ с), а именно, продукт электронного захвата или $\beta+$ распада ($EC/\beta+$) 288 Мс или p2n-канала реакции 243 Am $+^{48}$ Ca не наблюдался. Из этого следует, что вероятность ЕС не превышает примерно 0.5% для 288 Мс. В то же время,

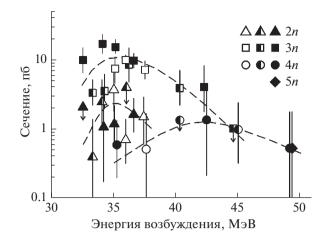


Рис. 3. Сечения 2*n*-, 3*n*-, 4*n*- и 5*n*-испарительных каналов реакции ²⁴³Am + ⁴⁸Ca. Ошибки в величине сечения соответствуют полным неопределенностям. Символы со стрелками показывают верхние пределы сечений. Данные, показанные открытыми, полузакрытыми, и закрытыми символами взяты из работ [4, 5], [2] и [12, 18] соответственно. Пунктирные линии нарисованы через данные для упрощения визуального восприятия.

из 24 коротких цепочек, наблюдаемых в реакции 243 Am + 48 Ca в [2, 6] и в данных экспериментах [12, 18], 9 цепочек могут напоминать α -распад 288 Mc, за которым следует EC^{284} Nh и спонтанное деление 284 Cn. К сожалению, предсказания периодов полураспада относительно EC скудны, и точность теоретическихоценок может варьироваться в пределах двух порядков в зависимости от параметров моделей, см., например, [23, 24]. Однако оба ядра 288 Mc и 284 Nh расположены в области изотопов этих элементов, для которых прогнозируемые времена жизни относительно EC превышают 100 с [25].

Мы также оценили периоды полураспада относительно ЕС в рамках независимого квазичастичного приближения на основе функционалов плотности энергии Скирма SLy4 и SkO. Периоды составили $1.1 \cdot 10^3$ с (SLy4), $1.0 \cdot 10^2$ с (SkO) для 288 Mc и $9.9 \cdot 10^2$ с (SLy4), $2.0 \cdot 10^2$ с (SkO) для 288 Nh [18].

Из этих оценок следует, что ветвь b_{EC} для ²⁸⁴Nh может быть такой же, как и для ²⁸⁸Mc, или в два раза выше, т.е. \leq 1%. Исходя из этого, кажется маловероятным, что 9 цепочек обусловлены EC ²⁸⁴Nh и делением ²⁸⁴Cn.

Совокупность нескольких факторов указывает на то, что короткие цепочки принадлежат 289 Мс. Спектры α -частиц и периоды полураспада ядер, показанные на рис. 2, также включают события, зарегистрированные после распада 293 Ts [3, 7]. Энергетические распределения 289 Мс отличаются

от спектров α -частиц соседних легких изотопов. Например, спектр 288 Мс имеет пик с максимумом при $E_{\alpha} \approx 10.5$ МэВ, а спектр 289 Мс представляет собой распределение, состоящее из двух пиков с $E_{\alpha} \approx 10.35$ и 10.5 МэВ. Спектры дочерних ядер также различаются. Большинство событий, отнесенных к 284 Nh, имеют более узкое распределение, а спектр 285 Nh шире.

Времена распада материнского и дочернего ядер в длинной и короткой цепочках близки друг к другу, но периоды полураспада определенно различаются (рис. 2). Следует также иметь в виду, что вероятность деления ядер с нечетным числом нейтронов (288 Mc и 284 Nh) должна быть меньше по сравнению с ядрами с четным N (289 Mc и 285 Nh). Наконец, характер цепочки распада 293 Ts, продукта реакции 249 Bk(48 Ca, 4n), хорошо совпадает с характером распада короткой цепочки, наблюдаемой в реакции 243 Am + 48 Ca. Поэтому мы считаем, что присвоение короткой цепочки 289 Mc кажется более реалистичным.

В экспериментах по синтезу элемента Тѕ в реакции ²⁴⁹Bk + ⁴⁸Ca на DGFRS α-распад ²⁸⁵Nh не наблюдался в двух из 16 цепочек 293 Ts [3], но он был зарегистрирован в обеих цепочках, полученных на TASCA [7]. В реакции ²⁴³Am + ⁴⁸Ca α-распад ²⁸⁵Nh был обнаружен во всех четырех цепочках на DGFRS [2], но в 2 из 7 цепочек, полученных на TASCA, и в 2 из 3 цепочек на BGS [5, 6] 285 Nh не наблюдался. Из анализа результатов [2, 5, 6] был сделан вывод, что существует 29%-ная ветвь SF у изотопа 285 Nh [6]. В этой работе мы также не наблюдали α -распад ²⁸⁵Nh в половине из 10 цепочек. Таким образом, α-распад ²⁸⁵Nh не был зарегистрирован в 11 из 42 цепочек. Из всех полученных данных следует, что ²⁸⁵Nh имеет ветвь на SF $18^{+10}_{-9}\%$, что не противоречит результату [6]. Мы оценили парциальные периоды полураспада $T_{\alpha}=2.6^{+0.7}_{-0.5}$ с и $T_{\rm SF}=12^{+12}_{-5}$ с для $^{285}{\rm Nh}.$ Мы также оценили ветвь α -распада для дочернего ядра 281 Rg в $14^{+10}_{-4}\%$ и парциальные периоды полураспада $T_{\alpha} = 79^{+42}_{-34}$ с и $T_{\rm SF} = 13^{+4}_{-2}$ с.

ЗАКЛЮЧЕНИЕ

Нановомгазонаполненномсепараторе DGFRS-2 Фабрики Сверхтяжелых Элементов ЛЯР ОИЯИ были проведены две серии экспериментов по синтезу продуктов реакции 243 Am + 48 Ca при шести энергиях 48 Ca для изучения свойств распада Мс и его дочерних ядер, а также определения возможностей дальнейших исследований сверхтяжелых ядер.

Измерена функция возбуждения реакции $^{243}\mathrm{Am} + ^{48}\mathrm{Ca}$ в широком диапазоне энергии $^{48}\mathrm{Ca}$

239—259 МэВ. Сечение реакции 243 Am(48 Ca, $_{3n}$) 288 Mc составило $_{17.1^{+6.3}_{-4.7}}$ пб, что является самым большим для известных сверхтяжелых ядер вблизи Острова Стабильности.

Вэкспериментахбыло зарегистрировано 110 распадов 288 Мс. В них впервые обнаружен α -распад 268 Db с энергией 7.6—8.0 МэВ, периодом полураспада 16^{+6}_{-4} ч и α -ветвью $51^{+14}_{-12}\%$. Был также впервые синтезирован новый спонтанно делящийся изотоп 264 Lr с периодом полураспада $4.8^{+2.2}_{-1.3}$ ч.

Зарегистрировано 10 коротких цепочек ER- α -(α)-SF. Наблюдение этих ядер в реакциях с разными мишенными изотопами ²⁴³Am и ²⁴⁹Bk, а также отличие радиоактивных свойств ядер в цепочках от свойств ядер в цепочке распада ²⁸⁸Mc указывает на то, что их следует отнести к ²⁸⁹Mc. Из совокупности имеющихся данных мы оценили ветвь на SF $18_{-9}^{+10}\%$ для ²⁸⁵Nh, а также его парциальные периоды полураспада $T_{\alpha}=2.6_{-0.5}^{+0.7}$ с и $T_{\rm SF}=12_{-5}^{+12}$ с. Мы также оценили ветвь α -распада для дочернего ядра ²⁸¹Rg в $14_{-4}^{+10}\%$ и парциальные периоды полураспада $T_{\alpha}=79_{-34}^{+42}$ с и $T_{\rm SF}=13_{-2}^{+4}$ с.

Зарегистрированы четыре новые цепочки распада 287 Mc. Впервые наблюдалось спонтанное деление 279 Rg. Были установлены его парциальные периоды полураспада $T_{\alpha}=0.10^{+0.08}_{-0.03}$ и $T_{\rm SF}=0.7^{+0.7}_{-0.5}$.

При максимальной энергии 48 Са впервые был синтезирован новый легчайший изотоп 286 Мс с энергией α -частиц 10.71 ± 0.02 МэВ и периодом полураспада 20_{-9}^{+98} мс. Сечение 5n канала составляло $0.5_{-0.4}^{+1.3}$ пб. Это значение близко к тем, которые были измерены в реакциях 244 Pu(48 Ca, 5n) 287 Fl и 242 Pu(48 Ca, 5n) 285 Fl, где было получено по одному ядру в каждой из реакций.

Свойства распада всех изотопов хорошо согласуются с данными, полученными в 2003—2018 гг. Новые данные позволили нам определить свойства распада 20 изотопов с более высокой точностью. Совокупность полученных результатов демонстрирует, что новая Фабрика Сверхтяжелых Элементов является отличной лабораторией для продолжения исследований сверхтяжелых ядер.

Исследования поддержаны Министерством науки и высшего образования Российской Федерации (проект № 075-10-2020-117), грантом дирекции ОИЯИ, а также грантом XDB34010000 Китайской академии наук.

СПИСОК ЛИТЕРАТУРЫ

1. Oganessian Yu. Ts., Utyonkov V.K., Lobanov Yu. V. et al. // Phys. Rev. C. 2004. V. 69. Art. No. 021601(R).

- Oganessian Yu. Ts., Abdullin F.Sh., Dmitriev S.N. et al. // Phys. Rev. C. 2013. V. 87. Art. No. 014302.
- 3. *Oganessian Yu.Ts.*, *Abdullin F.Sh.*, *Alexander C. et al.* // Phys. Rev. C. 2013. V. 87. Art. No. 054621.
- 4. Rudolph D., Forsberg U., Golubev P. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 112502.
- 5. Gates J.M., Gregorich K.E., Gothe O.R. et al. // Phys. Rev. C. 2015. V. 92. Art. No. 021301(R).
- Forsberg U., Rudolph D., Andersson L.-L. et al. // Nucl. Phys. A. 2016. V. 953. P. 117.
- 7. Khuyagbaatar J., Yakushev A., Düllmann Ch.E. et al. // Phys. Rev. C. 2019. V. 99. Art. No. 054306.
- 8. Gates J.M., Pang G.K., Pore J.L. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 222501.
- 9. Dmitriev S.N., Aksenov N.V., Albin Yu.V. et al. // Mendeleev Commun. 2014. V. 24. P. 253.
- 10. *Gulbekian G.G.*, *Dmitriev S.N.*, *Itkis M.G. et al.* // Phys. Part. Nucl. Lett. 2019. V. 16. P. 866.
- Oganessian Yu. Ts., Utyonkov V.K., Popeko A.G. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2022. V. 1033. Art. No. 166640.
- 12. Oganessian Yu.Ts., Utyonkov V.K., Kovrizhnykh N.D. et al. // Phys Rev. C. 2022. V. 106. Art. No. L031301.
- Popeko A.G. // Nucl. Instrum. Meth. Phys. Res. B. 2016. V. 376. P. 144.

- Solovyev D.I., Kovrizhnykh N.D. // J. Instrum. 2022.
 V. 17. Art. No. P07033.
- Wang M., Audi G., Kondev F.G. et al. // Phys. C. 2017.
 V. 41. Art. No. 030003.
- 16. Muntian I., Hofmann S., Patyk Z., Sobiczewski A. // Acta Phys. Polon. B. 2003. V. 34. P. 2073.
- Wang N., Liu M., Wu X., Meng J. // Phys. Lett. B. 2014.
 V. 734. P. 215.
- 18. Oganessian Yu. Ts., Utyonkov V.K., Kovrizhnykh N.D. et al. // Phys. Rev. C. 2022. V. 106. Art. No. 064306.
- 19. Oganessian Yu. Ts., Utyonkov V.K., Lobanov Yu. V. et al. // Phys. Rev. C. 2007. V. 76. Art. No. 011601(R).
- 20. *Oganessian Yu.Ts.*, *Utyonkov V.K.*, *Lobanov Yu.V. et al.* // Phys. Rev. C. 2004. V. 69. Art. No. 054607.
- Ellison P.A., Gregorich K.E., Berryman J.S. et al. // Phys. Rev. Lett. 2010. V. 105. Art. No. 182701.
- Oganessian Yu.Ts., Utyonkov V.K. // Nucl. Phys. A. 2015. V. 944. P. 62.
- 23. Karpov A.V., Zagrebaev V.I., Martinez Palenzuela Y. et al. // Int. J. Mod. Phys. E. 2012. V. 21. Art. No. 1250013.
- 24. Sarriguren P. // Phys. Rev. C. 2019. V. 100. Art. No. 014309.
- Möller P., Nix J.R., Kratz K.-L. // Atom. Data Nucl. Data Tables. 1997. V. 66. P. 131.

First experiment at the Super Heavy Element Factory: new data from the ²⁴³Am + ⁴⁸Ca reaction

N. D. Kovrizhnykh^{a, *}, Yu. Ts. Oganessian^a, V. K. Utyonkov^a, F. Sh. Abdullin^a, S. N. Dmitriev^a, A. A. Dzhioev^a, D. Ibadullayev^{a, b, c}, M. G. Itkis^a, A. V. Karpov^a, D. A. Kuznetsov^a, O. V. Petrushkin ^a, A. V. Podshibiakin^a, A. N. Polyakov^a, A. G. Popeko^a, I. S. Rogov^a, R. N. Sagaidak^a, L. Schlattauer^a, V. D. Shubin^a, M. V. Shumeiko^a, D. I. Solovyev^a, Yu. S. Tsyganov^a, A. A. Voinov^a, V. G. Subbotin^a, A. Yu. Bodrov^{a, e}, A. V. Sabel'nikov^a, and A. V. Khalkin^a

^a Joint Institute for Nuclear Research, Dubna, 141980 Russia ^b Institute of Nuclear Physics, Almaty, 050032 Kazakhstan

^c Gumilyov Eurasian National University, Nur-Sultan, 010000 Kazakhstan

^d Palacky University Olomouc, Department of Experimental Physics, Faculty of Science, Olomouc, 771 46 Czech Republic

^e Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991 Russia

*e-mail: kovrizhnyx@jinr.ru

We presented the results of the series of experiments on the synthesis of Mc isotopes in the 243 Am + 48 Ca reaction performed at the new separator DGFRS-2 and cyclotron DC280 of the SHE Factory at FLNR JINR. There were registered 110 new 288 Mc decay chains, 10^{289} Mc chains, and 4^{287} Mc chains. Alpha decay of 268 Db with an energy of 7.6–8.0 MeV, half-life 16^{+6}_{-4} h and α -branch 51^{+14}_{-12} % was registered for the first time together with a new spontaneously fissioning isotope 264 Lr with a half-life of $4.8^{+2.2}_{-1.3}$ h. The measured cross section of the 243 Am(48 Ca, 3 n) 288 Mc reaction was $17.1^{+6.3}_{-4.7}$ pb, which is the largest for known superheavy nuclei. A new isotope 286 Mc was synthesized with a half-life of 20^{+98}_{-9} ms and an α -particle energy of 10.71 ± 0.02 MeV. Spontaneous fission of 279 Rg was first observed in one of the four new decay chains of 287 Mc. The reaction excitation function was measured at six 48 Ca energies in the range of 239-259 MeV, which led to the first observation of the 5n channel with a cross section of $0.5^{+1.3}_{-0.4}$ pb. The decay properties of 20 previously known isotopes have been determined with higher accuracy.