УЛК 539.142

МАГНИТНЫЕ ХАРАКТЕРИСТИКИ ${ m BO3БУЖДЕННЫХ}$ СОСТОЯНИЙ ЯДРА ${ m ^{156}Gd}$

© 2023 г. П. Н. Усманов^{1, *}, А. И. Вдовин², Э. К. Юсупов¹, Ш. Р. Неъматжонов¹

 1 Наманганский инженерно-технологический институт, Наманган, Узбекистан

²Международная межправительственная организация "Объединенный институт ядерных исследований", Лаборатория теоретической физики имени Н.Н. Боголюбова, Дубна, Россия

> *E-mail: usmanov 1956.56@mail.ru Поступила в редакцию 28.02.2023 г. После доработки 24.03.2023 г. Принята к публикации 28.04.2023 г.

Для ядра $^{156}{
m Gd}$ были проведены теоретические расчеты в рамках феноменологической модели с учетом кориолисова смешивания состояний низколежащих ротационных полос положительной четности. Кориолисово взаимодействие позволяет объяснить наблюдающиеся в свойствах возбужденных состояний эффекты неадиабатичности. Рассчитаны приведенные вероятности M1-перехо-

дов B(M1) и коэффициенты смеси мультиполей $\delta\Big(\frac{E2}{M1}\Big)$ для переходов из вибрационных состояний. Изучены закономерности изменения вероятностей M1-переходов из состояний смешивающихся полос в зависимости от полного углового момента. Получено удовлетворительное согласие теоретических результатов с экспериментальными данными.

DOI: 10.31857/S0367676523702058, EDN: ZCEDUW

ВВЕДЕНИЕ

Экспериментальные данные о низколежащей части спектра возбуждений ядра 156 Gd с энергией $E_x < 2$ МэВ, полученные в реакциях $(\alpha, 2n)$, (n, γ) и $(n, n' \gamma)$ на ядре 156 Gd достаточно многочисленны [1]. Известны пять вращательных полос, построенных на основаниях с $K^{\pi} = 0^+$, две полосы с основаниями $K^{\pi} = 2^+$ и пятнадцать дипольных уровней 1^+ . Определены энергии 1^+ уровней, а для одиннадцати из них — вероятности $B(M1)^{\uparrow}$ возбуждения [2]. Эти данные очень важны для систематики и поиска соответствующих уровней в соседних ядрах.

Экспериментально определены приведенные вероятности E2- и M1-переходов из состояний $K^{\pi}=0^+_2,\,0^+_3$ - и $K^{\pi}=2^+_1$ -полос на уровни основной полосы, а также отношения вероятностей E2-переходов и коэффициенты смеси мультиполей $\delta(E2/M1)$ и магнитные моменты [1-11].

Интересные экспериментальные данные о свойствах ножничного 1^+ уровня с энергией $E_x = 3070$ кэВ были получены в работе [12]. В частности, впервые был обнаружен ротационный 2^+ уровень, построенный над ножничным

состоянием и определена его энергия $E_{1^+}(2^+) = 3089(1)$ кэВ, т.е. это ротационное состояние расположено на 19 кэВ выше основания полосы. Кроме того, впервые было определено экспериментальное значение вероятности E2-перехода с ножничного состояния 1^+ на первый возбужденный 2^+ уровень основной полосы ядра 156 Gd.

Как известно, в первом приближении вращение аксиально-симметричного ядра может рассматриваться, по крайней мере при малых угловых моментах, как независимая мода ядерных возбуждений, слабо связанная с другими степенями свободы (например, одночастичными). Такое приближение называют адиабатическим. Оно работает и для вращательного движения, построенного на нижайших возбужденных состояниях ядра иной природы, например, колебательных. Основным указанием на адиабатический характер ядерного вращения считается тот факт, что вращательные уровни образуют полосы, в которых энергии уровней с хорошей точностью следуют закономерности характерной для твердого ротатора — I(I+1), где I — спин уровня в полосе. В адиабатическом приближении ротационные полосы не смешиваются и отношения вероятностей электромагнитных переходов из состояний одной из полос $|I_iK_i\rangle$ на разные уровни другой полосы

 $|I_fK_f\rangle$ (например, основной, т.е. построенной на основном состоянии ядра) равны квадратам отношений соответствующих коэффициентов Клебша—Гордана. Эти геометрические соотношения называют правилами ветвления или правилом Алаги [13—15].

Данные экспериментов указывают на отклонения от правил адиабатического приближения (см. [1, 6, 14-16] и ссылки в этих работах). Эти отклонения усиливаются с ростом энергии возбужденных состояний ядра. Они видны и в экспериментальных энергиях уровней ротационных полос с высокими спинами, и в отклонениях вероятностей электромагнитных переходов из состояний полос от правил Алаги. Такие отклонения характеризуют как проявления неадиабатичности ядерного вращения. Причиной этих отклонений – в широком смысле слова – является связь вращательных и внутренних возбуждений ядра — колебательных или одночастичных. Одно из важных проявлений этой связи — взаимодействие Кориолиса.

В работах [17, 18] в рамках феноменологической модели [16], учитывающей кориолисово взаимодействие, были рассчитаны некоторые характеристики состояний ядра ¹⁵⁶Gd — энергии, волновые функции, вероятности электрических переходов и их отношения, оценена роль неадиабатических эффектов.

В настоящей работе мы продолжаем изучение свойств ротационных состояний ядра ¹⁵⁶Gd. Используя волновые функции, полученные в [17], мы рассчитали приведенные вероятности *М*1-переходов и другие магнитные характеристики состояний ротационных полос. Изучено влияние вращения на магнитные характеристики возбужденных состояний.

Используемая феноменологическая модель в деталях изложена в обзоре [16]. Ранее эта модель была нами успешно применена для изучения кориолисова смешивания полос состояний в изотопах 156,158,160 Gd [18—22] и 170,172,174 Yb [23, 24].

ВЕРОЯТНОСТИ M1-ПЕРЕХОДОВ И КОЭФФИЦИЕНТЫ СМЕСИ МУЛЬТИПОЛЕЙ $\delta(E2/M1)$

В рамках модели [16] выражение для приведенной вероятности B(M1) перехода из состояния I_iK_i на уровень I_f0_1 основной полосы имеет следующий вид:

$$B(M1; I_i K_i \to I_f 0_1) =$$

$$= \frac{1}{2I_i + 1} |\langle I_f 0_1 || \hat{m}(M1) || I_i K_i \rangle|^2,$$
(1)

где $\hat{m}(M1)$ — магнитный дипольный оператор; I_i и I_f — полные угловые моменты (спины) начального и конечного состояний ядра.

Приведем выражение для приведенного матричного элемента M1-перехода из формулы (1):

$$\langle I' 0_{1} \| \hat{m}(M1) \| IK \rangle = \sqrt{\frac{3(2I+1)}{4\pi}} \times \left(\sum_{K_{1}=1}^{2} (g_{K_{1}} - g_{R}) K_{1} \psi_{K_{1},K}^{I} \psi_{K_{1},0_{1}}^{I'} C_{IK_{1};10}^{I' K_{1}} + \frac{\sqrt{6}}{10} \sum_{V} m'_{l_{V}} \left(\psi_{0_{1}0_{1}}^{I'} \psi_{l_{V},K}^{I} - \psi_{l_{V},0_{1}}^{I'} \psi_{0_{1},K}^{I} \right) C_{II;1-1}^{I' 0} \right),$$
(2)

где $m_{l_v}^{'} = \left\langle 0_l^+ \middle| \hat{m}(M1) \middle| 1_v^+ \right\rangle$ — матричные элементы между внутренними волновыми функциями основной и 1_v^+ -полос; $C_{I_iK_i;l(K_i+K_f)}^{I_fK_f}$ — коэффициенты Клебша—Гордана; $\psi_{K,K'}^I$ — амплитуды смешивания базисных состояний; g_K — внутренний g-фактор полосы с $K \neq 0$, $g_R = Z/A$ — гиромагнитный фактор, связанный с вращением.

В нечетных состояниях полос с $K^{\pi} \neq 0^+$ компонента волновой функции $\psi_{0_1,K}^I = 0$, т.к. в основной полосе отсутствуют состояния с нечетными спинами. Поэтому приведенный матричный элемент (2) для переходов из I-нечетных уровней полос с $K^{\pi} \neq 0^+$ в состояния $I' = (I \pm 1)$ имеет следующий вид:

$$\langle I' \, 0_1 \, \| \hat{m}(M1) \| \, IK \rangle = \sqrt{\frac{3(2I+1)}{4\pi}} \times \left(\sum_{K_1=1}^2 (g_{K_1} - g_R) K_1 \psi_{K_1,K}^I \psi_{K_1,0}^{I'} C_{IK_1;10}^{I' \, K_1} + \frac{\sqrt{6}}{10} \sum_{V} m_{l_V}^I \psi_{0_1 0_1}^I \psi_{1_V,K}^I C_{II;1-1}^{I' \, 0} \right).$$
(3)

Из формул (2)—(3) ясно видно, что M1-переходы между основной полосой и полосой с $K^{\pi}=2^+$ возможны лишь благодаря примесям в их волновых функциях компонент $\psi_{1_v,K}^I$, связанных с уровнями 1^+ . Последние же появляются в результате взаимодействия Кориолиса, смешивающего полосы с $\Delta K=1$. В адиабатическом приближении такие M1-переходы запрещены.

В адиабатическом приближении приведенная вероятность M1 перехода из состояний полос с $K^{\pi} = 1^{+}_{\nu}$ на уровни основной полосы имеет следующий вил:

$$B^{A}(M1; I1_{\nu} \to I'0_{1}) = \left(\frac{3}{4\pi}\right) \cdot 0.06 \cdot \left(m'_{1_{\nu}} C_{I1;1-1}^{I'0}\right)^{2}.$$
 (4)

Адиабатическая формула для M1-переходов внутри полос с $K^{\pi} \neq 0^+$ имеет следующий вид:

$$B^{A}(M1; IK \to (I+1)K) =$$

$$= \left(\frac{3}{4\pi}\right) \left[(g_{K} - g_{R}) K \cdot C_{IK;10}^{(I+1)K} \right]^{2}.$$
(5)

Наряду с приведенными вероятностями M1-переходов важную информацию содержат коэффициенты смеси мультиполей $\delta(E2/M1)$, которые вычисляются по формуле:

$$\delta(IK \to I' 0_1) =$$

$$= 0.834 E_{\gamma} (\text{M} \ni \text{B}) \frac{\langle IK \| \hat{m}(E2) \| I' 0_1 \rangle}{\langle IK \| \hat{m}(M1) \| I' 0_1 \rangle} \left(\frac{e \cdot 6}{\mu_N} \right), \quad (6)$$

где $\hat{m}(E2)$ — электрический квадрупольный оператор. Здесь E_{γ} — энергия γ -перехода в единицах МэВ; $\langle IK \| \hat{m}(E2) \| I' 0_1 \rangle$ и $\langle IK \| \hat{m}(M1) \| I' 0_1 \rangle$ — приведенные матричные элементы между внутренними волновыми функциями основной и 1_{ν}^+ — полос в единицах барн (б) и ядерный магнетон (μ_N).

В адиабатическом приближении формула (6) для переходов из $\left|I_{v}^{+}\right\rangle$ состояний на состояния $\left|(I\pm1)0_{v}\right\rangle$ основной полосы имеет вид:

$$\delta^{A}(I1_{v} \to (I+1)0_{1}) = -9.855E_{\gamma} \left(\frac{m_{1_{v}}}{m_{1_{v}}}\right) \sqrt{\frac{I+2}{I}}$$
 (7)

И

$$\delta^{A}(I1_{v} \to (I-1)0_{1}) = 9.855E_{\gamma} \left(\frac{m_{1_{v}}}{m'_{1_{v}}}\right) \sqrt{\frac{I-1}{I+1}},$$
 (8)

где $m_{1_v} = \langle gr | \hat{m}(E2) | 1_v \rangle$ — матричные элементы между внутренними волновыми функциями основной полосы $K^{\pi} = 0_1^+$ и полос с $K^{\pi} = 1_v^+$.

ЧИСЛЕННЫЕ РАСЧЕТЫ

Параметры g_K и m'_{l_v} необходимые для описания магнитных характеристик состояний определялись следующим образом. Значение параметра g_R — определяли по общепринятой формуле $g_R = \frac{Z}{A}$ для деформированных ядер, поскольку для ядра 156 Gd отсутствуют экспериментальные данные для M1-переходов внутри $K^\pi = 2^+_{l,2}$ полос. Из систематики гиромагнитных отношений для деформированных ядер редкоземельной и трансурановой областей следует $g_R \approx 0.4 \pm 0.1$.

Для параметра g_K были использованы значения, определенные ранее для ядра ¹⁵⁸Gd [19]. Вли-

яние указанных параметров на рассчитанные значения магнитных моментов состояний $K^{\pi} = 0_2^+, K^{\pi} = 2_1^+, K^{\pi} = 1^+$ полос и вероятности внутриполосных переходов заметно. Однако на вероятности переходов между состояниями разных ротационных полос они влияют слабо. В межполосных переходах в формуле (2) важную роль играет часть формулы, где присутствуют параметры m'_{loc} . Их значения определялись по формуле

$$m'_{l_v} = \sqrt{\frac{B(M1; 0gr \to 11_v^+)}{0.014325}},$$
 (9)

где для $B\left(M1;\,0gr \to 1\,1_{\scriptscriptstyle V}^{\scriptscriptstyle +}\right)$ использовались экспериментальные данные [1]. Значения m'_{l_u} , определенные по формуле (9) для 1_{ν}^{+} уровней с номерами у 2 и 7-15 и соответствующие экспериментальные значения $B(M1; 0gr \rightarrow 11_v^+)$ приведены в табл. 1. Для уровней с номерами v = 1,3,4 коэффициенты $m_{l_{1}}$ определялись по экспериментальным данным о коэффициентах смеси мультиполей (см. (7) и табл. 3). Входящие в формулы (7) и (8) параметры $m_{l_{\perp}}$ взяты из работы [16], где исследовались электрические свойства состояний положительной четности ядра 156 Gd. Поскольку для 1_v^+ состояний с $E_x = 2301$ кэВ (v = 5) и $E_x = 2361$ кэВ (v = 6) экспериментальные данные по вероятностям M1-переходов отсутствуют, для этих уровней расчеты B(M1) — факторов и коэффициентов смешивания мультиполей $\delta\left(\frac{E2}{M1}\right)$ не проводились.

Рассчитанные нами значения B(M1) для M1-переходов из оснований полос $K^{\pi} = 1^{+}_{\nu}$ на состояния со спинами I=0 и I=2 основной полосы и соответствующие экспериментальные данные представлены в табл. 1. Результаты расчетов получились несколько противоречивыми. Теоретические значения $B(M1)_{\text{теор}}$ для состояний 1_{v}^{+} , v в интервале 7-15 неплохо согласуются с экспериментальными как для переходов на уровень 0_{gr}^+ , так и на уровень 2_1^+ основной полосы. В то же время теоретические значения $B(M1; 0gr, 2_1^+ \to 11_2^+)$ для уровня 1_2^+ получились намного больше экспериментальных величин. Также представляются слишком большими значения $B(M1)_{\text{теор}}$ и для уровня 1. Правда, для этого состояния экспериментальные значения B(M1) не известны. В то же время модель правильно передает резкое возрас-

 $^{^{1}}$ Исключением является $\mathit{B}(\mathit{M1};\,0\mathit{gr}\to 1^{+})$ для уровня $1_{10}^{+}.$

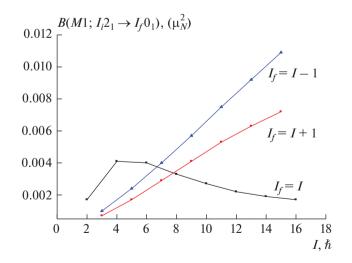
Таблица 1. Приведенные вероятности B(M1) для M1-переходов из 1_{ν}^{+} состояний на состояния 2_{1}^{+} и 0_{gr}^{+} основной полосы ядра 156 Gd. $E_{1_{\nu}^{+}}$ – энергии 1_{ν}^{+} уровней, E_{γ} энергии γ -переходов на указанные уровни

1_{v}^{+}	$E_{ m l_v^+}$, кэВ	$E_{\gamma}(11_{ m v} o 20_1) \ E_{\gamma}(11_{ m v} o 00_1),$ кэВ	$m_{\mathrm{l}_{\mathrm{v}}}^{'}\left(\mu_{N} ight)$	$B(M1)(\mu_N^2)$	
				эксперимент [1, 2]	теория
11+	1965	1877 1965	11.25	_	0.303 0.604
12+	2027	1938 2027	-7.82	$0.025_{-9}^{+6} \\ 0.066(20)$	0.145 0.292
13+	2187	2098 2187	-3.88	_	0.036 0.072
14+	2270	2181 2270	-7.34	-	0.128 0.257
15+	2301	2212 2301	_	_	_
16+	2361	2272 2361	_	_	-
1 ₇ +	2402	2314 2403	-4.8	$0.064^{+20}_{-25} \\ 0.109^{+22}_{-34}$	0.055 0.110
1*	2785	2696 2785	-4.09	$0.048_{-16}^{+14} \\ 0.079_{-22}^{+18}$	0.040 0.080
1,+	2974	2885 2974	-4.87	0.064(11) 0.113(39)	0.056 0.113
1+10	3010	2921 3010	-0.79	0.018 ⁺⁹ ₋₁₁ 0.030(7)	0.0015 0.030
1+1	3050	2961 3050	-2.77	0.014 ⁺⁷ 0.036 (11)	0.018 0.037
1+12	3070	2981 3070	-9.23	$0.254_{-34}^{+30} \\ 0.406(30)$	0.203 0.407
1+13	3122	3033 3122	-2.64	0.018(2) 0.032(7)	0.021 0.029
1+14	3158	_ 3158	-4.87	- 0.113(16)	0.056 0.113
115	3218	3129 3218	-4.80	0.052 ⁺¹⁴ ₋₁₆ 0.109 (13)	0.055 0.110

тание обоих B(M1) факторов для уровня 1_{12}^+ по сравнению с их значениями для соседних уровней 1_{11}^+ и 1_{13}^+ . Изменения B(M1) факторов от одного 1^+ уровня к другому коррелируют с изменениями феноменологических параметров m'_{1v} , симулиру-

ющих значения матричных элементов M1-оператора между основаниями полос. Резкий рост вероятностей M1-переходов с уровней $1_1^+, 1_2^+, 1_4^+$ и 1_{12}^+ на основную полосу соответствует резкому увеличению абсолютных значений соответствующих параметров $m_{1_y}^{'}$.

Отдельно обсудим описание экспериментальных данных о ножничном состоянии 1_{12}^+ . Используя параметры, определенные в работах [17, 18], мы рассчитали энергию вращательного уровня 2^+ , построенного на состоянии 1_{12}^+ $(IK^{\pi} = 21_{12}^{+})$. Получено значение $E_{x}(21_{12}^{+}) =$ = 3111 кэВ, хорошо согласующееся с экспериментальным (см. Введение). Кроме того, была рассчитана приведенная вероятность Е2-перехода на 2_1^+ уровень основной полосы. Получено значение $B(E2; 11_{12}^+ \rightarrow 20_1^+) = 198e^2$ Фм⁴, что на два порядка больше экспериментального значения $B(E2; 11_{12}^+ \rightarrow 20_1^+) = 1.9(13)e^2$ Фм⁴. Вероятность M1-перехода $B(M1; 11_{12}^+ \rightarrow 20_1^+)$ наши расчеты воспроизводят неплохо (см. таблицу 1). Однако из-за сильно завышенного теоретического значения вероятности B(E2) рассчитанное значение коэффициента смешивания мультиполей $\delta(E2/M1; 11_{12}^+ \rightarrow 20_1^+) = -0.78$, на порядок превосходит экспериментальную оценку $\delta = -0.07(1)$ для данного перехода.


В табл. 2 мы привели значения $B(M1)_{\text{теор}}$ для переходов из состояний полос $K^{\pi}=0_3^+$ и $K^{\pi}=2_1^+$ на уровни основной полосы. Имеющиеся экспериментальные данные об этих переходах немногочисленны. Для γ -полосы теоретические значения получились заметно больше экспериментальных, для единственного известного перехода на 0_3^+ -полосу значение $B(M1)_{\text{теор}}$ много меньше экспериментального.

В табл. 3 рассчитанные нами коэффициенты смеси мультиполей $\delta\!\left(\frac{E2}{M1}\right)$ (см. (6)) для переходов из состояний полос $K^{\pi}=0_2^+,~K^{\pi}=0_3^+,~K^{\pi}=2_1^+$ и $K^{\pi} = 1_{v}^{+}$ на состояния основной полосы сравниваются с экспериментальными данными. Здесь же приведены значения приведенных матричных элементов E2- и M1-переходов, использованные при вычислении коэффициентов смеси мультиполей $\delta(E2/M1)$. Процедура расчета матричных элементов переходов в рамках данной модели описана в нашей работе [18]. Имея в виду умеренную точность экспериментальных данных, из табл. 3 можно заключить, что в целом модель удовлетворительно воспроизводит как абсолютные значения, так и знаки коэффициентов $\delta\left(\frac{E2}{M1}\right)$. Лучше других описываются коэффициенты смеси мультиполей для переходов с 1_{ν}^{+} уровней.

Таблица 2. B(M1) величины для переходов из состояний полос с основаниями $K^{\pi} = 0_3^+$ и 2_1^+ на основную полосу ядра 156 Gd. E_{γ} – энергии γ -переходов

IK _i	$I_f K_f$	E_{γ}	$B(M1)(\mu_N^2)$			
			· /			
			эксперимент [1]	теория		
$2^{+}2_{1}$	$2^{+}0_{1}$	1065.2	$1.07 \cdot 10^{-4} (72)$	$1.7 \cdot 10^{-3}$		
3 ⁺ 2 ₁	4+01	959.8	$1.07 \cdot 10^{-4} (72)$	$6.76 \cdot 10^{-4}$		
	2+01	1159	$2.51 \cdot 10^{-4} (54)$	$9.80 \cdot 10^{-4}$		
4+21	4 ⁺ 0 ₁	1067.2	$2.51 \cdot 10^{-3} (+1.25, -1.43)$	$4.10 \cdot 10^{-3}$		
2+03	2+01	1169.1	$1.40 \cdot 10^{-2} (+16, -13)$	$2.9 \cdot 10^{-3}$		

Рассмотрим поведение вероятностей $B(M1; I_i 2_1 \rightarrow I_f 0_1)$ переходов с состояний I_i полосы $K^{\pi} = 2_1^+$ на уровни I_f основной полосы в зависимости от спина начального состояния. Эта зависимость изображена на рис. 1. Силы Кориолиса смешивают состояния из разных полос имеющие одинаковые спины. В основной полосе все состояния имеют четные спины. Поэтому M1-переходы из полосы $K^{\pi}=2_1^+$ с $\Delta I=1$ идут из состояний с нечетными спинами I_i , а переходы с $\Delta I = 0$ только из состояний с четными I_i . Как видно из рисунка, вероятности переходов с $\Delta I = 1$ монотонно растут с ростом I, в то время как вероятности переходов с $\Delta I = 0$ при небольших спинах $(I \le 6)$ увеличиваются, а при дальнейшем росте I

Рис. 1. Вероятности M1-переходов из состояний $K^{\pi} = 2_1^+$ полосы на состояния основной полосы в зависимости от спина начального состояния I_i .

Таблица 3. Экспериментальные и теоретические коэффициенты смеси мультиполей $\delta\left(\frac{E2}{M1}\right)$ для переходов из состояний γ и β -полос, а также 1_{ν}^{+} уровней на состояния основной полосы в 156 Gd. $\langle E2 \rangle_{if}$ и $\langle M1 \rangle_{if}$ — приведенные матричные элементы E2- и M1-переходов, соответственно; E_{γ} — энергия γ -перехода

_		_	•	'	- · ·	
I_iK_i	$I_f K_f$	E_{γ} , МэВ	$\langle E2\rangle_{if}$ e Φ м ²	$\langle M1\rangle_{if} \mu_N$	δ _{эксп} [6]	$\delta_{ ext{reop}}$
221	201	1.0652	-18.81	0.0412	-16(5)	-4.1
321	201	1.159	19.46	-0.0313	-11.8(+6, -7)	-6.0
321	401	0.9598	-16.23	0.0260	-12(+13, -5)	-5.0
42 ₁	401	1.0672	-18.60	0.0639	+4.0(+9, -16)	-2.6
52 ₁	401	1.2187	-16.83	0.0488	$\delta > 7$	-3.5
52 ₁	601	0.922	19.21	-0.0417	_	-3.5
62 ₁	601	1.060	17.00	-0.063	δ < -0.8 или δ > 2.5	-2.4
72 ₁	601	1.2648	15.06	-0.0634	_	-2.5
821	801	1.0457	15.84	-0.0584	δ < -0.6 или δ > 1.6	-2.4
921	801	1.2843	-13.73	0.0758	$\delta < -0.8 \ 0.39(6)$	-1.9
20_{2}	201	1.0405	10.31	-0.1011	+5.9(+14, -28)	-0.9
402	401	1.0106	-12.75	0.2176	_	-0.49
11 ₁	201	1.876	14.66	0.5503	+0.41(+25, -14) +0.35(4)	0.41
112	201	1.938	14.61	-0.3812	-0.55(3)	-0.63
11 ₃	201	2.0977	14.49	-0.1888	-1.2(2) или $-1.08(+0.03, -0.22)$	-1.34
114	201	2.1807	14.44	-0.3579	-0.66(+0.06, -0.08)	-0.73
20_{3}	201	1.1691	-7.53	-0.0539	0.38(6)	1.4
40 ₃	401	1.1741	-8.65	-0.0934	_	0.91

уменьшаются. Приведенные матричные элементы M1-переходов из состояний $K^\pi=2^+$ полосы с четными спинами I_i вычислены по формуле (2), а с нечетными спинами I_i по формуле (3). В волновых функциях состояний с нечетными спинами полосы $K^\pi=2^+_1$ отсутствуют компоненты от смешивания с соседними полосами с $K^\pi=0^+$, которые увеличиваются с ростом спина I_i . Однако эти компоненты имеются в волновых функциях состояний этой полосы с четными спинами. Именно эти примеси объясняют немонотонную зависимость от I_i вероятностей M1-переходов с $\Delta I=0$ на рис. 1.

ЗАКЛЮЧЕНИЕ

В рамках феноменологической модели выполнены расчеты магнитных характеристик ротационных состояний ядра 156 Gd с учетом кориолисова смешивания низколежащих ротационных полос положительной четности $K^{\pi} = 0^+, 2^+, 1^+$.

Используемая модель [16] позволяет описать M1-переходы из состояний полос с $K^{\pi}=0^+,2^+,$ запрещенные в адиабатическом приближении из-за запрета по K.

Нами рассчитаны приведенные вероятности M1-переходов $B(M1)_{\text{теор}}$, а также коэффициенты смеси мультиполей $\delta\left(\frac{E2}{M1}\right)$ с уровней полос

 $K^{\pi}=0^{+}_{2,3},~K^{\pi}=2^{+}_{1}$ и 1^{+}_{v} уровней на состояния основной полосы. В целом согласие теории с экспериментальными данными можно признать удовлетворительным, хотя в ряде случаев наблюдаются значительные отклонения предсказаний модели от экспериментальных значений. Эти случаи детально обсуждены.

СПИСОК ЛИТЕРАТУРЫ

- 1. Reich C.W. // Nucl. Data Sheets. 2012. V. 113. P. 2537.
- Pitz H.H., Berg U.E.P., Heil R.D. et al. // Nucl. Phys. 1989. V. A 492. P. 411.
- 3. McGowan F.K., Milner W.T. // Phys. Rev. 1981. V. C 23. Art. No. 1926.

- Backlin A., Hedin G., Fogelberg B. et al. // Nucl. Phys. 1982. V. A 380. P. 189.
- Aprahamian A., de Haan R.C., Lesher S.R. et al. // Phys. Rev. C. 2018. V. 98. Art. No. 034303.
- 6. Бегжанов Р.Б., Беленький В.М., Залюбовский И.И. Справочник по ядерной физике. Ташкент: Фан, 1989.
- Rud N., Ewan G.T., Christy A. et al. // Nucl. Phys. 1972.
 V. A191. P. 545.
- 8. Sie S.H., Ward D., Geiger J.S. et al. // Nucl. Phys. 1977. V. A291. P. 443.
- 9. Kearns F., Varley G., Dracoulis G.D. et al. // Nucl. Phys. 1977. V. A278. P. 109.
- 10. Konijn J., Be Boer F.W.N., Van Poelgeest A. et al. // Nucl. Phys. 1981. V. A352. P. 191.
- 11. Iwata Y. // J. Phy. Soc. Japan. 1980. V. 49. P. 2114.
- 12. Beck T., Beller J., Pietralla N. et al. // Phys. Rev. Lett. 2017. V. 118. Art. No. 212502.
- Alaga G., Alder K., Bohr A., Mottelson B.R. // K. Dan. Vidensk. Selesk. Mat. Fys. Medd. 1955. V. 29. No. 9. P. 1.
- 14. *Григорьев Е.П., Соловьев В.Г.* Структура четных деформированных ядер. М.: Наука, 1974.
- 15. Bohr A., Mottelson B.R. Nuclear Structure. V. II. N.Y., Amsterdam: W. A. Benjamin Inc., 1974.
- 16. Усманов П.Н., Михайлов И.Н. // ЭЧАЯ. 1997. Т. 28. № 4. С. 887; Usmanov P.N., Mikhailov I.N. // Phys. Part. Nucl. 1997. V. 28. No. 4. P. 348.

- 17. *Usmanov P.N., Yusupov E.K.* // IIUM Engin. J. 2021. V. 22. No. 1. P. 167.
- 18. Усманов П.Н., Вдовин А.И., Юсупов Э.К. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1423. Usmanov P.N., Vdovin A.I., Yusupov E.K. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1102.
- 19. Усманов П.Н., Вдовин А.И., Юсупов Э.К., Салихбаев У.С. // Письма в ЭЧАЯ. 2019. Т. 19. № 6. С. 509; Usmanov P.N., Vdovin A.I., Yusupov E.K., Salikhbaev U.S. // Phys. Part. Nucl. Lett. 2019. V. 19. No. 6. P. 706.
- 20. *Усманов П.Н., Вдовин А.И., Юсупов Э.К.* // Изв. РАН. Сер. физ. 2020. Т. 84. № 8. С. 1174. *Usmanov P.N., Vdovin A.I., Yusupov E.K.* // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. № 8. P. 968.
- 21. Усманов П.Н., Охунов А.А., Абу Х. Кассим и др. // Узб. физ. жүрн. 2018. Т. 20. № 6. С. 339.
- 22. *Usmanov P.N., Vdovin A.I., Yusupov E.K.* // Acta Phys. Polon. B. Proc. Suppl. 2021. V. 14. No. 4. P. 787.
- Abu El Sheikh M.K.M., Okhunov A.A., Usmanov P.N., Hassan T.H.J. // J. Phys. Conf. Ser. 2018. V. 949. Art. No. 012019.
- Okhunov A.A., Usmanov Ph.N., Hassan T.H.J., Abu El Sheikh M.K.M. // Mater. Today. Proc. 2019. V. 17. P. 424.

Magnetic properties of the excited states of ¹⁵⁶Gd

P. N. Usmanov^{a, *}, A. I. Vdovin^b, E. K. Yusupov^a, Sh. R. Nematjonov^a

^a Namangan Engineering and Technology Institute, Namangan, 160115 Uzbekistan
^b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, 141980 Russia
*e-mail: usmanov1956.56@mail.ru

Theoretical calculations within the framework of a phenomenological model with Coriolis mixing of states of low-lying positive-parity rotational bands were performed for 156 Gd. The Coriolis interaction allows to explain the observed non-adiabaticity effects in the properties of the excited states. Reduced probabilities of the M1 transitions B(M1) and multipole mixing coefficients $\delta(E2/M1)$ for transitions from vibrational states were calculated. The behavior of the probabilities of M1 transitions from the mixing states as a function of the total angular momentum was studied. The agreement of the theoretical results with experimental data is, in the whole, satisfactory.