УДК 535.2

ОПТИЧЕСКАЯ ДИНАМИКА СУПЕРКРИСТАЛЛА КВАНТОВЫХ ИЗЛУЧАТЕЛЕЙ V-ТИПА: ВЛИЯНИЕ ДЕФАЗИРОВКИ ЭЛЕКТРОННЫХ СОСТОЯНИЙ

© 2024 г. Д. Я. Байрамдурдыев¹, Р. Ф. Маликов^{1*}

¹ Федеральное государственное образовательное учреждение высшего образования «Башкирский государственный педагогический университет им. М. Акмуллы», Уфа, Россия

*e-mail: rfmalikov@mail.ru
Поступила в редакцию 15.12.2023
После доработки 29.01.2024
Принята к публикации 26.02.2024

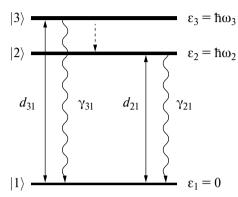
Проведено теоретическое исследование оптического отклика двумерного суперкристалла (монослоя) квантовых излучателей с дублетом в возбужденном состоянии на действие непрерывного внешнего поля с учетом дефазировки электронных состояний системы. Вторичное поле, действующее на V-излучатель со стороны других V-излучателей системы, формирует их нелинейность и обеспечивает внутреннюю положительную обратную связь, что приводит к бистабильности, периодическим и апериодическим автоколебаниям и в том числе хаотическому поведению. При наличии дефазировки мультистабильность оптического отклика сохраняется. Фазовая релаксация приводит к изменению сценария динамики системы от хаоса к периодическим осцилляциям амплитуды поля, т. е. к бифуркации «хаос — предельный цикл» и уменьшению отражательной способности монослоя в линейном и нелинейном режимах.

Ключевые слова: суперкристалл, метаматериал, трехуровневый квантовый излучатель, квантовая точка, монослой, оптическая бистабильность, нелинейная оптическая динамика, автоколебание, хаос, дефазировка

DOI: 10.31857/S0367676524060049, EDN: PHLAMH

ВВЕДЕНИЕ

После открытия графена [1, 2] были синтезированы двумерные (2D) метаматериалы с экстраординарными оптическими и транспортными свойствами, такие как дихалькогениды переходных металлов [3—6], гексагональный нитрид бора, черный фосфор и другие неорганические квази-двумерные системы [7—10], а также ван-дер-ваальсовские гетероструктуры смешанной размерности [11], искусственные 2D-суперкристаллы на основе полупроводниковых квантовых точек (ПКТ) [12—14], органические 2D-полимеры [15] и 2D-наноструктуры, составленные из молекул, в определенной последовательности (ДНК, пептиды и т. д.) [16]. Двумерные сверхрешетки на основе графена и периодические решетки ПКТ, представляют особый интерес с точки зрения электронных и оптических приложений[17, 18], поскольку они могут генерировать уединенные электромагнитные волны и поглощать свет в широком диапозоне длин волн, от инфракрасного до ультрафиолетового. Современные методы нанотехнологий позволяют создавать такие метаматериалы [19].


Одним из ключевых компонентов плотных двумерных оптических систем является дальнодействующее взаимодействие между излучателями; это приводит ко многим многообещающим эффектам [20—22].

В данной работе мы исследуем нелинейный оптический отклик двумерного суперкристалла, состоящего из трехуровневых квантовых излучателей с дублетом в возбужденном состоянии при наличии дефазировки электронных состояний и это важно для выяснения условий экспериментального наблюдения исследуемого явления. Моделирование влияния фазовой релаксации для явлений сверхизлучения и фемтосекундного и некогерентного фотонного эхо проводилось в работах [23, 24].

Примером модели квантового излучателя V-типа могут быть полупроводниковые квантовые точки с вырожденной валентной зоной в магнитном поле [25], а также асимметричные полупроводниковые квантовые точки, в которых анизотропное обменное взаимодействие электрона и дырки являются причиной дублетного расщепления одноэкситонного состояния (см., например, [26]). В силу высокой плотности квантовых излучателей (КИ) и больших сил осциллятора оптических переходов, диполь-дипольное взаимодействие КИ является определяющим в формировании оптического отклика суперкристалла, обеспечивая положительную обратную связь. В совокупности с нелинейностью КИ это приводит к мультистабильности, автоколебаниям и динамическому хаосу в оптическом отклике этих нанообъектов [20—22].

МОДЕЛЬ И ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ

Рассмотрим монослой квантовых излучателей в виде 2D-решетки, с периодом *а*. Будем считать, что излучатели, составляющие монослой, имеют энергетическую структуру уровней в виде дублета в возбужденном и основном состояниях. Схема энергетических уровней и переходов изолированных квантовых излучателей V-типа представлена на рис. 1.

Рис. 1. Схема энергетических уровней и переходов квантового V-излучателя.

Оптические переходы разрешены только между верхними состояниями дублета |3 у и |2 у и нижним состоянием |1 \ (V-схема оптических переходов). Эти переходы (сплошные стрелки) характеризуются векторами дипольных моментов переходов d_{31} и d_{21} , которые параллельны друг другу, а значения их вещественны, так что $d_{31} = \mu d_{21} = \mu d$. Верхние дублетные состояния $|3\rangle$ и $|2\rangle$ спонтанно затухают (волнистые стрелки) в основное состояние $|1\rangle$ со скоростями γ_{31} и γ_{21} соответственно, которые подчиняются соотношению $\gamma_{21} = \mu^2 \gamma_{31}$. Предполагается, что частота дублетного расщепления ω_{32} мала по сравнению с частотами оптического перехода $\omega_{31} = \omega_3 - \omega_1$ и $\omega_{21} = \omega_2 - \omega_1$. На монослой падает нормально поляризованная вдоль дипольных моментов переходов плоская волна с частотой ω_0 , квазирезонансная оптическим переходам в V-квантовых излучателях. Безызлучательная релаксация в дублете задана константой γ_{32} и на графике показана пунктирной стрелкой.

Оптическая динамика суперкристалла квантовых V — излучателей с учетом дефазировки электронных состояний описывается системой уравнений для элементов матрицы плотности и поля:

$$\begin{split} \dot{\rho}_{33} &= - \left(\gamma_{32} + \gamma_{31} \right) \rho_{33} - \Omega \, \rho_{31}^* - \Omega^* \rho_{31}, \\ \dot{\rho}_{22} &= \gamma_{32} \rho_{33} - \gamma_{21} \rho_{22} - \mu \left(\Omega \, \rho_{21}^* + \Omega^* \rho_{21} \right), \\ \dot{\rho}_{11} &= \gamma_{31} \rho_{33} + \gamma_{21} \rho_{22} + \Omega \, \rho_{31}^* + \Omega^* \rho_{31} + \\ &\quad + \mu \left(\Omega \, \rho_{21}^* + \Omega^* \rho_{21} \right), \\ \dot{\rho}_{32} &= - \left[i \Delta_{32} + \frac{1}{2} \left(\gamma_{31} + \gamma_{32} + \gamma_{21} \right) + 2\Gamma \right] \rho_{32} - \\ &\quad - \Omega \, \rho_{21}^* - \mu \Omega^* \rho_{31}, \end{split}$$
(1)

$$\begin{split} \dot{\rho}_{31} &= - \bigg[i \Delta_{31} + \frac{1}{2} \big(\gamma_{31} + \gamma_{32} \big) + \Gamma \bigg] \rho_{31} + \\ &+ \Omega \big(\rho_{33} - \rho_{11} \big) + \mu \Omega \, \rho_{32}, \\ \dot{\rho}_{21} &= - \bigg[i \Delta_{21} + \frac{1}{2} \gamma_{21} + \quad \bigg] \rho_{21} + \mu \Omega \big(\rho_{22} - \rho_{11} \big) + \Omega \, \rho_{32}^*, \\ \Omega &= \Omega_0 + (\gamma_R - i \Delta_L) \big(\rho_{31} + \mu \rho_{21} \big). \end{split}$$

При выводе уравнений использовано пространственно-однородное приближение, когда элементы матрицы плотности излучателей и поля не зависят от положения излучателя в суперкристалле. Здесь точка над $\dot{\rho}_{ii}$ означает производную по времени, Δ_{31} и Δ_{21} — величины отстройки частоты внешнего поля от частот резонансных переходов, Γ — параметр, отвечающий за дефазировку энергетических состояний квантовых излучателей, зависющую от температуры термостата, Ω — амплитуда Раби действующего поля, которое представляет собой сумму внешнего поля Ω_0 и поля всех остальных квантовых излучателей в месте расположения данного (второе слагаемое) [22]. Таким образом, учитывается полное (запаздывающее) диполь-дипольное КИ-КИ взаимодействие. В силу того, что дипольный момент КИ зависит от степени возбуждения последнего, КИ-КИ взаимодействие также оказывается функцией текущего состояния КИ. Ближнезонная часть КИ-КИ взаимодействия приводит к динамическому сдвигу частот переходов $|1\rangle \leftrightarrow |3\rangle$ и $|1\rangle \leftrightarrow |2\rangle$, зависящему от разности населенностей уровней. Дальнезонная же его часть обуславливает коллективную радиационную релаксацию КИ, также зависящую от разности населенностей. Эти два эффекта описываются константами Δ_L (сдвиг) и γ_R (релаксация), причем для монослоя $\Delta_L \gg \gamma_R$. Выражения для констант γ_R и Δ_L зависят от соотношения между размером решетки $N \cdot a$ (N латеральное число узлов, a — постоянная решетки) и длиной волны излучения $\lambda = 2\pi c / \omega_0$, c — скорость света. Для простой квадратной решетки с размером $N\cdot a\ll\lambda$ (точечная система) величины γ_R и Δ_L даются формулами [20]

$$\gamma_R = \frac{3}{8} \gamma_{31} N^2 \,, \tag{2}$$

$$\Delta_L \approx -3.35\gamma_{31} \left(\frac{\lambda}{a}\right)^3,$$
(3)

где $\lambda = \lambda / 2\pi$. В противоположном случае $N \cdot a \gg \lambda$ (протяженная система) [20]

$$\gamma_R \simeq 4.51 \gamma_{31} \left(\frac{\lambda}{a}\right)^2,$$
 (4)

$$\Delta_L \approx 3.35 \gamma_{31} \left(\frac{\lambda}{a}\right)^3,$$
(5)

Как следует из уравнений (2) и (4), константа γ_R для точечной системы зависит от полного числа

V-КИ в решетке, N^2 , в то время как в случае протяженной системы величина γ_R пропорциональна числу V-КИ внутри площади размером λ^2 . Здесь γ_R — сверхизлучательная константа Дике [27—29], отвечающая за коллективную релаксацию V-КИ в монослое.

Параметр Δ_L не зависит от размера системы, в [20] он описывает диполь-дипольное взаимодействие излучателя со всеми остальными в ближней зоне. Последнее взаимодействие вводит в систему сильную обратную связь, для реалистичных систем $\Delta_L \geq 1000\gamma_{31}$ что приводит к дополнительной сильной нелинейности. Также, как и для точечной системы, для плотной протяженной системы ($N\cdot a\gg \lambda$) выполняется условие: $\Delta_L\gg \gamma_R$.

СТАЦИОНАРНЫЙ РЕЖИМ И ДИНАМИКА

Очень важное значение имеет исследование стационарных режимов динамических систем. Анализ стационарного режима представленного в виде графика зависимости полного поля $|\Omega(t)|$ от падающего поля $|\Omega_0|$ позволяет оценить проявление мультистабильности, соответственно оптического гистерезиса, устойчивость и неустойчивость и возможные сценарии поведения динамической системы. Стационарные уравнения можно получить из системы уравнений (1), полагая в них нулю производные по времени. Отметим, что стационарность решения не означает его устойчивость, стационарное решение может быть как устойчивым, так и неустойчивым. Стационарные решения рассматриваемой задачи $(\rho_{\alpha\beta}^{\cdot} = 0, \alpha, \beta = 1, 2, 3)$ с учетом фазовой релаксации Г находятся из следующей системы нелинейных алгебраических уравнений:

$$\begin{split} &Z_{31}\left(\gamma_{32}-\gamma_{21}\right)+Z_{32}\left(\gamma_{32}+2\gamma_{21}\right)+3\mu\rho_{32}\Omega^{*}+\\ &+3\mu\rho_{32}^{*}\Omega=-\gamma_{32}+\gamma_{21},\\ &Z_{31}\left(\gamma_{31}+\gamma_{21}\right)+Z_{32}\left(\gamma_{31}-2\gamma_{21}\right)+3\rho_{31}\Omega^{*}+\\ &+3\rho_{31}^{*}\Omega=-\gamma_{31}-\gamma_{21}\Omega Z_{31}-\\ &-\left[i\Delta_{31}+0.5\left(\gamma_{31}+\gamma_{32}\right)+\Gamma+\frac{\mu^{2}\left|\Omega\right|^{2}}{i\Delta_{21}+0.5\gamma_{21}}\right]\rho_{31}-\\ &-\frac{\mu\Omega^{2}}{i\Delta_{21}+0.5\gamma_{21}}\rho_{32}^{*}=0,\\ &\mu\cdot\Omega Z_{32}-\left[\frac{i\Delta_{32}+0.5\left(\gamma_{31}+\gamma_{32}+\gamma_{21}\right)+}{0.5\gamma_{21}-i\Delta_{21}}\right]\rho_{32}-\\ &-\frac{\mu\Omega^{2}}{0.5\gamma_{21}-i\Delta_{21}}\rho_{31}^{*}=0. \end{split} \tag{6}$$

$$\Omega^* Z_{31} - \frac{\mu \cdot \Omega^{*2}}{0.5\gamma_{21} - i\Delta_{21}} \rho_{32} - \frac{\left(-i\Delta_{31} + 0.5(\gamma_{31} + \gamma_{32}) + \frac{\mu^2 |\Omega|^2}{0.5\gamma_{21} - i\Delta_{21}}\right)}{\left(-\frac{\mu^2 |\Omega|^2}{0.5\gamma_{21} - i\Delta_{21}}\right)} \rho_{31}^* = 0,$$

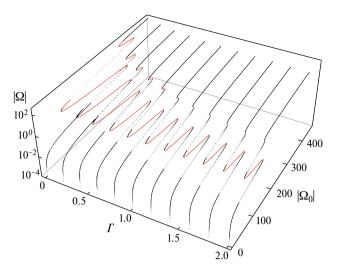
$$\mu \Omega^* Z_{32} - \frac{\mu \Omega^{*2}}{0.5\gamma_{21} + i\Delta_{21}} \rho_{31} - \frac{\left(-i\Delta_{32} + 0.5(\gamma_{31} + \gamma_{32} + \gamma_{21}) + \frac{|\Omega|^2}{0.5\gamma_{21} + i\Delta_{21}}\right)}{\left(-\frac{|\Omega|^2}{0.5\gamma_{21} + i\Delta_{21}}\right)} \rho_{32}^* = 0,$$

$$\Omega = \Omega_0 + (\gamma_R - i\Delta_L)(\rho_{31} + \mu \rho_{21}). \tag{7}$$

Для получения системы уравнений (6) были использованы обозначения $Z_{21}=\rho_{22}-\rho_{11}$, $Z_{31}=\rho_{33}-\rho_{11}$ и подстановки $\rho_{22}=\frac{1}{3}(1-Z_{31}+2Z_{21})$, $\rho_{33}=\frac{1}{3}(1+Z_{31}-Z_{21})$, $\rho_{32}=-\frac{\Omega\rho_{21}^*+\mu\cdot\Omega^*\rho_{31}}{i\Delta_{32}+0.5\left(\gamma_{31}+\gamma_{21}+\gamma_{32}\right)+2\Gamma}$.

Систему (6) относительно неизвестных $(Z_{31}, Z_{32}, \rho_{31}, \rho_{21}, \rho_{31}, \rho_{21})$ можно представить в матрично-векторной форме

$$M\vec{R} = \vec{R}_0, \tag{8}$$


где $\vec{R}=\left(Z_{31},Z_{32},\rho_{31},\rho_{21},\rho_{31}^*,\rho_{21}^*\right)$ и $\vec{R}_0=\left(-\gamma_{31}-\gamma_{21},-\gamma_{32}+\gamma_{21},0,0,0,0\right),$ М — матрица может быть получена из уравнений (6).

Находя обратную матрицу, можем найти решение этого уравнения

$$\vec{R} = M^{-1} \vec{R}_0 \,. \tag{9}$$

В численных расчетах использовалось следующий набор параметров [18]: $\gamma_{31}\approx 3\cdot 10^9~{\rm c}^{-1}$, отношение $\mu=d_{32}/d_{31}=(\gamma_{32}/\gamma_{31})^{1/2}$ для простоты принимается равным единице. Величины γ_R и Δ_L зависят от отношения λ/a . Принимая $\lambda\approx 100-200$ нм и $a\approx 10-20$ нм, получаем следующие оценки: $\gamma_R\approx 10^{12}~{\rm c}^{-1}$ и $\Delta_L\approx 10^{13}~{\rm c}^{-1}$.

Соответственно, положим $\gamma_R = 100\gamma_{31}$ и $\Delta_L = 1000$ γ_{31} . В дальнейшем скорость спонтанного излучения γ_{31} будем использовать в качестве единицы измерения всех величин, имеющих размерность частоты, в то время как γ_{31}^{-1} используется в качестве единицы измерения времени. Оставшиеся два параметра — это расщепление дублета Δ_{32} и скорость релаксации γ_{32} в канале дублета $3 \rightarrow 2$. Оптический отклик системы очень чувствителен к этим двум параметрам, которые могут быть настроены в эксперименте, например, с помощью магнитного поля или температуры, по этой причине они считаются переменными величинами. Канал релаксации $3 \rightarrow 2$ обеспечивает дополнительную настраиваемую степень свободы, которая может

Рис. 2. Стационарные решения при учете фазовой релаксации.

использоваться для настройки оптического отклика монослоя V-излучателей.

На рис. 2 приведены стационарные решения при изменении фазовой релаксации. Следует отметить, что кроме нестабильных ветвей с отрицательным наклоном, существуют нестабильностые участки на ветвях с положительным наклоном, которые исчезают при наличии фазовой релаксации.

Далее исследовали влияние фазовой релаксации на динамику и спектр оптического отклика суперкристалла. На рис. 3 показаны графики величины поля от значений входного поля для следующих параметрах монослоя и поля $\gamma_R=100\gamma_{31}$, $\Delta_L=1000\gamma_{31}$, $\gamma_{32}=0.05\gamma_{31}$ при различных значениях константы фазовой релаксации Γ .

Величина расщепления равна Δ_{32} = 40 γ_{31} , Возбуждение излучателей проводится в центр дублета электронного перехода Δ_{31} = $\Delta_{32}/$ 2. Значение поля ${\rm Re}\,\Omega_0=40\gamma_{31}$.

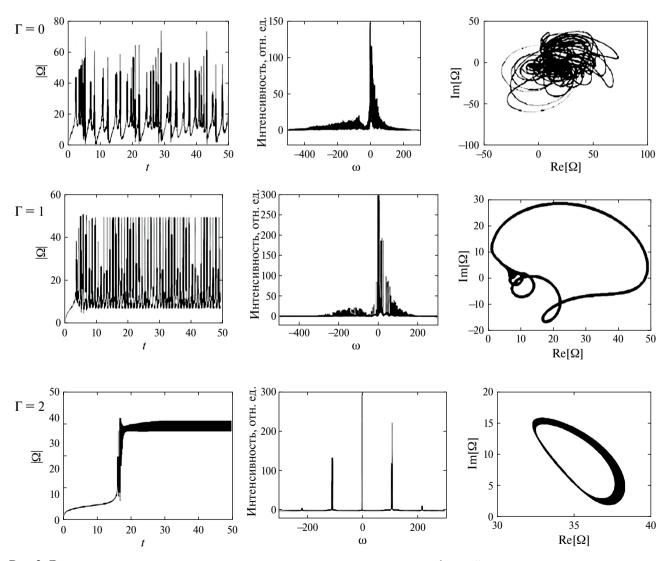


Рис. 3. Динамика и спектр оптического отклика суперкристалла при наличии фазовой релаксации.

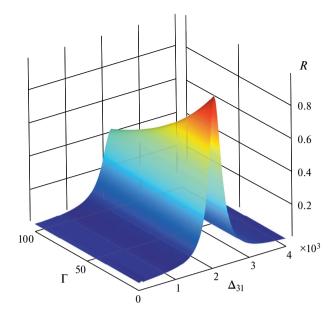
При таком возбуждении мы наблюдаем оптические отклики суперкристалла, представленного на рис. 3: слева — динамика абсолютной величины $|\Omega|$ амплитуды Раби поля в монослое, в центре спектр излучения, справа фазовая диаграмма $(\text{Re}\,\Omega,\text{Im}\,\Omega)$ при различных значениях фазовой релаксации Γ .

В отсутствие фазовой релаксации (верхний ряд) динамика отклика представляет нерегулярные осциляции поля, их спектры представляют собой непрерывный набор частот излучения, фазовая траектория в диаграмме хаотична. Мы наблюдаем хаотичный режим излучения. Фазовая релаксация регуляризует колебания поля (средний ряд), динамическая система переходит в аттрактор режима периодических осцилляций, с дискретным множеством эквидистантных наборов частоты излучения. При дальнейшем увеличении фазовой релаксации амплитуда периодических колебаний аттрактора и набор частот излучения убывает, а расстояние между частотами излучения (эквидистантность) увеличивается (нижний ряд). При увеличении дефазировки электронных состояний Г происходит изменение режима движения системы от хаотического к предельному циклу, т. е. система испытывает бифуркацию. «хаос — предельный цикл».

ОТРАЖЕНИЕ

Отраженное и прошедшее поля задаются выражениями:

$$\Omega_{refl} = \gamma_R \left(\rho_{31} + \mu \rho_{21} \right), \tag{10a}$$


$$\Omega_{tr} = \Omega_0 + \gamma_R \left(\rho_{31} + \mu \rho_{21} \right), \tag{106}$$

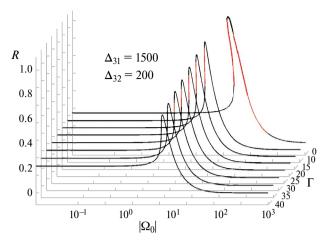
Коэффициент отражения R и пропускания T определяются следующим образом:

$$R = \left| \frac{\Omega_{refl}}{\Omega_0} \right|^2, \qquad T = \left| \frac{\Omega_{tr}}{\Omega_0} \right|^2.$$
 (11)

Рассмотрим линейный режим отражения ($|\Omega_0| \ll 1$, $\rho_{11} \approx 1$). С этой целью удержим в уравнениях для ρ_{31} и ρ_{21} лишь линейные по Ω_0 слагаемые. Подставляя в коэффициент отражения R светового потока линейное решение уравнений для ρ_{31} и ρ_{21} , получаем аналитическое выражение для коэффициента отражения R.

$$R = \frac{1}{\gamma_R \frac{\left[\frac{1}{i\Delta_{31} + \frac{1}{2}(\gamma_{31} + \gamma_{32}) + \Gamma} + \frac{1}{i\Delta_{21} + \frac{1}{2}\gamma_{21} + \Gamma}\right]^2}{1 + (\gamma_R - i\Delta_L)} \frac{1}{i\Delta_{31} + \frac{1}{2}(\gamma_{31} + \gamma_{32}) + \Gamma} + \frac{1}{i\Delta_{21} + \frac{1}{2}\gamma_{21} + \Gamma}} + \frac{1}{i\Delta_{21} + \frac{1}{2}\gamma_{21} + \Gamma}}$$

Рис. 4. Влияние дефазировки на линейный коэффициент отражения R, являющийся функцией отстройки от резонанса Δ_{31} . Значение дублетного расщепления $\Delta_{32} = 200$.


На рис. 4 приведен график зависимости коэфициента отражения с учетом дефазировки состояний (для слабого внешнего поля) как функция отстройки от резонанса Δ_{31} . Виден пик отражения ($R \approx 1$) в области $\Delta_{31} \approx 2\Delta_L$).

Здесь показана полевая зависимость коэффициента отражения R для набора значений отстройки от резонанса Δ_{31} . Как видно, поведение R существенно зависит от Δ_{31} .

 $\Omega_{refl} = \gamma_R(\rho_{31} + \mu \rho_{21})$ — Раби амплитуда отраженного поля, в области резонанса, перенормированного полем в ближней зоне, т. е. $\Delta_{31} = \Delta_L = 1000\gamma_{31}$.

Полное отражение монохроматического излучения от суперкристалла можно объяснить тем, что вторичное поле, создаваемое диполями монослоя противофазно падающему полю, поэтому проходящее поле гасится и мы имеем полное отражение. Это отражение является уникальным свойством для монослоя, в этом смысле оно сходно с отражением от металлического зеркала, где отражение идет на слое порядка длины. Отличие заключается в том, отражение от металлического зеркала не зависит от увеличения интенсивности падающего поля. Для монослоя бистабильное зеркало начинает пропускать илучение, если мощность внешнего излучения больше интенсивности вторичного поля.

Из графика следует, что R имеет максимум при $\Delta_{31} = 2400\gamma_{31}$, причем, в этой точке R близок к единице, т. е. монослой практически полностью отражает падающее поле. Тот факт, что это происходит не при перенормированном ближним полем резонансе $\Delta_{31} = 1200\gamma_{31}$, как можно было ожидать,

Рис. 5. Нелинейный коэффициент отражения R суперкристалла от интенсивности при разных значениях Γ дефазировки энергетических состояний. Темные (красные) линии отвечают устойчивым (неустойчивым) участкам коэффициента отражения R.

имеет простое объяснение: система с V-конфигурацией оптических переходов представляет собой два осциллятора, связанных ближним полем, что и является причиной сдвига частоты, при которой R имеет максимум.

На рис. 5 представлены графики зависимости коэффициента нелинейного отражения R от величины входного поля при различных значениях дефазировки (фазовой релаксации) энергетических состояний вблизи истинного резонанса, которая учитывается величиной отстройки. Более того, в некотором диапазоне изменения Δ_{31} коэффициент отражения R является трехзначной функцией $|\Omega_0|$, что означает бистабильность.

Влияние дефазировки энергетических состояний Г приводит исчезновению бистабильности и к уменьшению отражательной способности суперкристалла.

Для анализа устойчивости мы использовали метод показателей Ляпунова. Другим свойством нашего монослоя, является его большая (почти стопроцентная) способность отражения в определенной полосе частот, т. е. в данной полосе частот монослой работает как идеальное нанометровое зеркало, причем отражение может резко меняться при небольшом изменении амплитуды поля (бистабильность).

ЗАКЛЮЧЕНИЕ

Таким образом, проведено теоретическое исследование оптического отклика суперкристалла квантовых точек V-типа с учетом дефазировки электронных состояний. Учтено дипольно-дипольное взаимодействие излучателей. Данное взаимодействие, в силу его зависимости от текущего квантового состояния излучателя, обеспечивает положительную обратную связь, которая вместе с нелинейностью самих излучателей приводит к мультистабильности, периодическим и апериодическим автоколебаниям и динамическому хаосу в оптическом отклике монослоя. Динамические системы суперкристаллов состоящие из ПКТ V-типа, могут быть проанализированы методами нелинейной динамики [30, 31, 33].

В определенной полосе частот монослой полностью отражает падающее поле, т. е. является идеальным зеркалом в нанометровом диапазоне, которое, кроме того, бистабильно.

Исследование влияния фазовой релаксации на оптическую динамику показывает, что мультистабильность оптического отклика сохраняется. Фазовая релаксация приводит к изменению сценария динамики системы от хаоса к периодическим осцилляциям амплитуды поля, т. е. к бифуркации «хаос — предельный цикл». Дефазировка также уменьшает отражательную способность монослоя в линейном и нелинейном режимах.

Суперкристаллы квантовых точек V-типа, являются перспективными объектами для применений в нанофотонике [10, 32]. В качестве реализации подобной системы может рассматриваться суперкристалл из ПКТ с вырожденной валентной зоной, в частности ПКТ CdSe и CdTe, помещенный в магнитное поле [25, 26].

Авторы выражают глубокую благодарность и признательность В. А. Малышеву за обсуждение работы и консультации.

СПИСОК ЛИТЕРАТУРЫ

- Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. P. 666.
- Neto A.H.C., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. P. 109.
- 3. *Manzeli S., Ovchinnikov D., Pasquier D. et al.* // Nat. Rev. Mater. 2017. V. 2. P. 17033.
- 4. Чернозатонский Л.А., Артюх А.А. // УФН 2018. T. 188. C. 3; Chernozatonskii L.A., Artyukh A.A. // Phys. Usp. 2018. V. 61. P. 2.
- Back P., Zeytinoglu S., Ijaz A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037401.
- Scuri G., Zhou Y., High A.A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037402.
- 7. Bonaccorso F., Lombardo A., Hasan T. et al. // Mater. Today. 2012. V. 15. P. 564.
- 8. *Bhimanapati G.R., Lin Z., Meunier V. et al.* // ACS Nano. 2015. V. 9. Art. No. 11509.
- 9. *Tan C., Cao X., Wu X.J. et al.* // Chem. Rev. 2017. V. 117. P. 6225.
- 10. Solntsev A.S., Agarwal G.S., Kivshar Y.S. // Nature Photon. 2021. V. 15. P. 327.
- 11. *Jariwala D., Marks T.J., Hersam M.C.* // Nature Mater. 2017. V. 16. P. 170.

- V. 13. P. 2317.
- 13. Baranov A.V., Ushakova E.V., Golubkov V.V. et al. // Langmuir, 2015, V. 31, P. 506.
- 14. Ushakova E.V., Cherevkov S.A., Litvin A.P. et al. // J. Phys. Chem. 2016. V. 120. P. 25061.
- 15. Liu W., Luo X., Bao Y. et al. // Nature Chem. 2017. V. 9. P. 563.
- 16. Mu P., Zhou G., Chen C.L. // Nano-Struct. Nano-Objects. 2018. V. 15. P. 153.
- 17. Бабина О.Ю., Глазов С.Ю., Федулов И.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 30; *Babina O. Yu.*, Glazov S. Yu., Fedulov I.N. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 22.
- 18. Самарцев В.В., Митрофанова Т.Г., Хасанов О.Х. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 302; Samartsev V.V., Mitrofanova T.G., Khasanov O.Kh. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 216.
- 19. Zheludev N.I. // Science. 2010. V. 328. P. 582.
- 20. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033820.
- 21. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // J. Optics. 2021. V. 23. Art. No. 115102.
- 22. Байрамдурдыев Д.Я., Маликов Р.Ф., Рыжов И.В., Малышев В.А. // ЖЭТФ. 2020. Т. 158. № 2(8). C. 269; Bairamdurdyev D.Ya., Malikov R.F., Ryzhov I.V., Malyshev V.A. // JETP. 2020. V. 131. No. 2. P. 244.

- 12. Evers W.H., Goris B., Bals S. et al. // Nano Lett. 2013. 23. Маликов Р.Ф. Математическое моделирование кооперативных когерентных эффектов в спектроскопии: монография. Уфа: Изд-во «Гилем». 2006.— 206 c.
 - 24. Федянин В.В., Каримуллин К.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 361.
 - 25. Efros Al.L., Rosen M., Kuno M. et al. // Phys. Rev. B. 1996. V. 54. No. 7. P. 4843.
 - 26. Stufler S., Machnikowski P., Ester P. et al. // Phys. Rev. B. 2006. V. 73. Art. No. 125304.
 - 27. Dicke R.H. // Phys. Rev. 1954. V. 93. P. 99.
 - 28. Маликов Р.Ф., Трифонов Е.Д., Зайцев А.И. // ЖЭТФ. 1979. Т. 76. С. 65; Malikov R.F., Trifonov E.D., Zaitsev A.I. // Sov. Phys. JETP. 1979. V. 49. P. 33.
 - 29. Benedict M.G., Ermolaev A.M., Malyshev V.A. et al. Super-radiance: multiatomic coherent emission. Bristol: IOP Publ., 1996.
 - 30. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of oscillators. New York: Pergamon Press, 1966.
 - 31. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Berlin: Springer, 1986.
 - 32. Ding F., Bozhevolnyi S.I. // Mater. Today. 2023. V. 71. P. 63.
 - 33. Тимощенко Е.В. Моделирование нелинейной динамики материального отклика плотных оптических слоев на резонансное излучение: монография. Могилев: МГУ им. А. А. Кулешова, 2023. 236 с.

Optical dynamics of a supercrystal of V-type quantum emitters: effects of the electronic states dephasing

D. Ya. Bayramdurdyev¹, R. F. Malikov^{1*}

¹Akmullah Bashkir State Pedagogical University, Ufa, 450008, Russia *e-mail: rfmalikov@mail.ru

A theoretical study of the optical response of a two-dimensional supercrystal (monolayer) of quantum emitters with a doublet in the excited state to the action of a continuous external field has been carried out, considering the dephasing of the electronic states of the system. The secondary field acting on the V-emitter from other V-emitters of the system forms their nonlinearity and provides internal positive feedback, which leads to bistability, periodic and aperiodic auto-oscillations and including chaotic behavior. In the presence of dephasing, the multistability of the optical response is preserved. Phase relaxation leads to a change in the scenario of the system dynamics from chaos to periodic oscillations of the field amplitude, i. e., to a "chaos — limit cycle" bifurcation, a decrease in the reflectivity of the monolayer in linear and nonlinear modes.

Keywords: supercrystal, metamaterial, three-level quantum emitter, quantum dot, monolayer, optical bistability, nonlinear optical dynamic, self-oscillation, chao, dephasing