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Abstract. We theoretically and numerically investigate the optical implementation of
the second-order spatial differentiation operation using a layered metal-dielectric
structure at normal light beam incidence. Numerical simulation results confirm the
theoretical results and show the possibility of optical calculation of the Laplace
operator with high quality.
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INTRODUCTION

The possibility of optical computation of the Laplace operator is of great interest
for optical information processing tasks, especially analog optical computing and
image processing tasks [1-7]. The Laplace operator can be applied to detect changes in
brightness or contrast in images, as it allows to highlight object contours, line
intersection points and other important details, which, in particular, can improve the
accuracy of image classification [8].

The optical realization of the Laplace operator requires diffraction structures
possessing a second-order zero in spatial frequencies in the reflection or transmission
spectrum. This condition is easiest to fulfill in the normal incidence geometry, since in
this case, due to the symmetry of the diffraction problem, the reflection (transmission)
zeros will be second-order zeros [1]. In [1, 3, 9, 10], layered diffraction structures (in
reflection) [1, 9] and diffraction gratings with two-dimensional periodicity (in
transmission) [3, 5, 10] were successfully used for the optical realization of second-
order differentiation operators. Note that the previously considered layered dielectric
structures (Bragg gratings with period defect) for optical calculation of the Laplace
operator [1] are simpler in terms of their fabrication compared to diffraction gratings.
At the same time, they have a horizontal plane of symmetry, which creates difficulties
in their practical realization (because, in particular, the location of these structures on
the substrate breaks the symmetry and leads to the disappearance of the reflection zero).

According to the authors of the present work, metallodielectric layered

structures, in comparison with purely dielectric Bragg structures, have an advantage in



calculating the Laplace operator at normal incidence because they do not require the
presence of a horizontal plane of symmetry.

In the present work, a layered metal-dielectric-metal structure "metal-dielectric-
metal-dielectric" located on a metal substrate is investigated. It is shown that such a
structure allows to perform the optical calculation of the Laplace operator from the
incident optical beam profile with high accuracy. At the same time, the numerical

simulation results are in full agreement with the theoretical description.

OPTICAL BEAM TRANSFORMATION AT REFLECTION FROM THE
STRUCTURE
Let us first consider the transformation of the x-component of the electric field
of a three-dimensional linearly polarized optical beam occurring during its reflection
from some layered structure at normal incidence. Following [1], we can show that the
x-component of the electric field of the reflected beam, represented as a plane wave

expansion, will have the following form
Ens(%,9) = [[ G koo, H (ke e, exp ik x + ik, ) dk, d, (1)
where G, (k,,k,) 1s the spectrum of the x-component of the electric field of the incident

beam, representing the amplitudes of plane waves with tangential components of the

wave vectors (spatial frequencies) k;, k,, forming the incident beam, and H (%, ,k,) is

the transfer function (TF), which describes the transformation of the spectrum of the
incident beam (change in the amplitudes of plane waves occurring during reflection).

As shown in [1], this TF is expressed through the reflection coefficients of the structure



for TE- and TM-polarized plane waves and for a layered structure with zero reflection

at normal incidence has the following Taylor series expansion to quadratic terms in the
vicinity of zero:

H(k. k) =~c.,k+c, k. (2)

Thus, in the neighborhood of zero, the PF contains only quadratic terms. In this

case, as follows from formulas (1), (2), the structure realizes the following operation

of second-order differentiation of the transverse profile of the x-component of the

incident beam electric field:

aZE‘inc,x (X, y) —c,, aZEJinc,x (X, y)

Ox? g oy? ®)

Ereﬂ,x (x9 y) = _Cx,Z

Obviously, if the coefficients cy) (2)and cg) (2)in (2) are equal, the reflected beam
profile (3) will be proportional to the Laplace operator from the profile of the incident
beam. As noted above, this case is of most practical interest and will therefore be

discussed below.

GEOMETRY OF THE INVESTIGATED METAL-DIELECTRIC
LAYERED STRUCTURE AND OBTAINING ZERO REFLECTION
To calculate the second-order differential operator (3) at normal incidence, we
propose to use a four-layer metal-dielectric-metal-dielectric (MDMD) structure located
on a substrate (optically thick layer) made of metal. We will assume that above the
structure there is a medium with refractive index ng,p=1 (Fig. 1).
In [11, 12], a method for calculating three-layer metal-dielectric structures

consisting of two metal layers separated by a dielectric layer and having zero reflection
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was considered. We use an approach similar to these works to calculate the parameters
of the investigated four-layer MDMD structure having zero reflection. The formula for
calculating the thickness of the upper metal layer at the given thicknesses of the "lower"
pair of metal and dielectric layers to achieve zero reflection [11] is as follows:

r

2 2
r-—t

=|p|, 4

where 7, ¢ are the complex reflection and transmission coefficients of the upper metallic
layer considered as functions of its thickness 4;; p is the complex reflection coefficient
of the "lower" pair of layers consisting of metallic layer with thickness /3;and dielectric
layer with thickness /@) (Fig. 1). Note that in formula (4) the coefficients » and ¢ are
assumed to be calculated at fixed wavelength A and polarization of the incident wave.
After finding the thickness of the first (upper) metallic layer ;) the thickness of the
dielectric layer A o e upper" pair, providing zero reflection, can be found from the

formula [11]

1 r
h, = ar —argp+27j |, 5
) 2k0n[ g5 7 aep J} ()

where kois the wave number, n is the refractive index of the dielectric layer, j is an
integer providing a positive value of the thickness /5.

It should be noted that the structure whose parameters are calculated by formulas
(4) and (5) in the case of normal incidence will have zero second-order reflection at

spatial frequencies due to the symmetry of the diffraction problem.

NUMERICAL SIMULATION RESULTS



Let us now consider the possibility of using the investigated four-layer MDMD-
structure to calculate the Laplace operator from the profile of the x-component of the
electric field of the incident beam. According to (2), (3), for this purpose it is necessary
to fulfill the condition cu) (2) = cg) (2). The possibility of achieving the above condition
was investigated for MDMD-structures in the configuration "Cu-TiO,-Cu-TiOg)
(materials of layers - copper and titanium dioxide) on a substrate of chromium (Cr) at
a fixed wavelength A = 633 nm and TM- polarization. The optimization parameters
were the thicknesses of the lower "metal-dielectric pair" layers 4sand Ay (Fig. 1), and
the thicknesses of the upper two layers /;and s,were calculated using formulas (4) and
(5) from the condition of obtaining zero reflection. For the selected wavelength, the
following values of refractive indices for the above materials were used [13, 14]: nc,=
0.23+ 3.43i (Cu), nrioo=2.58 (TiOy), ne=3.14+ 3.31i (Cr).

As a result of calculations, a structure with the following layer thicknesses was
found: ;= 7.2 nm, h,= 51 nm, h;= 34.0 nm, hs= 79.1 nm. For this structure, the
condition ¢, >= ¢,,is satisfied with high accuracy c,» = 0.034 - ¢ 2% um®@,

Fig. 2a shows the PF modulus of the investigated structure calculated
numerically within the framework of the strict solution of Maxwell's equations by the
method [15]. The PF modulus in Fig. 2a turned out to be visually indistinguishable
from the modulus of the "model" transfer function (2) at the values of the coefficients
given above, so the latter is not shown for brevity. The deviation between the moduli
of the model function and the numerically calculated PF is small: the RMS normalized
to the maximum of the PF modulus is only 0.73%, and the maximum deviation is

1.94%. Note that the strictly calculated PF has the required quadratic form at
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Jki+k} /ky<0.135 , which corresponds to a spatial resolution of ~3.7A [10] . The

achieved spatial resolution practically coincides with the spatial resolution obtained in
[10], where a much more complicated structure in the form of metasurface with
essentially subwavelength dimensions of the unit cell details was used for the
calculation of the Laplace operator.

Next, we consider the transformation of the x-component of the electric field

occurring at reflection from the investigated structure of an incident Gaussian beam:

x2 4 2
Einc,x (X, y) = eXp|:_ Gzy :| . (6)

For the case under consideration, the "model" function describing the profile of

the reflected beam and calculated by formula (3) will have the following form:

2 2
Epen (X, ) = —4C;—f(x2 +57 —Gz)exp[—x ;y } (7)

Fig. 2b shows the modulus of the rigorously calculated reflected beam profile at
c = 6 um. As in the case of the transfer function, the model (7) and the strictly
calculated reflected beam profiles match well, with a normalized RMS error of only
0.45% and a maximum deviation of 1.07%.

As mentioned in the introduction, the Laplace operator is widely used to extract
contours (brightness variations) in an image. As an example illustrating this operation,
consider an incident beam with a profile of the x-component of the electric field in the

form of a so-called super Gaussian function

x6 + 6
Einc,x (x9 y) = eXp|:_ G6y :| . (8)



Fig. 3a shows the result of MDMD-structure conversion of the incident beam
with profile (8) at 6= 3 um, and Fig. 3 - normalized cross sections of the incident and
reflected beam profiles at y = 0. Fig. 3 shows the appearance of double contours
characteristic of the Laplace operator at the boundaries of the input beam with a quasi-

rectangular shape and a width on the recession level of 0.5 in 6 pum.

CONCLUSION

Thus, we have investigated the optical realization of the second-order spatial
differentiation operation at normal incidence of the optical beam using a layered metal-
dielectric structure. The parameters of the four-layer MDMD structure are found, under
which the condition required for the optical calculation of the Laplace operator from
the incident beam profile is fulfilled. Numerical simulation results confirm the
theoretical results and show the possibility of optical calculation of the Laplace
operator with high quality (with RMS error less than 1%). The results obtained can be
applied in the development of analog optical computing and optical information
processing systems.
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FIGURE CAPTIONS

Fig. 1. Geometry and parameters of the investigated metal-dielectric layered structure.

Fig. 2. Modulus of the strictly calculated PF of the metallodielectric layered structure
performing the calculation of the Laplace operator (a) and the absolute value
normalized to the maximum value of the x-component of the electric field of the

numerically calculated reflected beam (b).

Fig. 3. Maximal value-normalized profile modulus of the x-component of the reflected
electric field formed at the incident beam with a profile in the form of a supergaussian
function (a); Cross sections of the maximal value-normalized profiles of the reflected
beam Eren) (v, V) (black line) and the incident beam Ejine) () 0> ) along the x-axis at
y=10 (red dashed line) (b). The blue arrow shows the width of the incident beam at level

0.5.
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