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INTRODUCTION 

The possibility of optical computation of the Laplace operator is of great interest 

for optical information processing tasks, especially analog optical computing and 

image processing tasks [1-7]. The Laplace operator can be applied to detect changes in 

brightness or contrast in images, as it allows to highlight object contours, line 

intersection points and other important details, which, in particular, can improve the 

accuracy of image classification [8]. 

The optical realization of the Laplace operator requires diffraction structures 

possessing a second-order zero in spatial frequencies in the reflection or transmission 

spectrum. This condition is easiest to fulfill in the normal incidence geometry, since in 

this case, due to the symmetry of the diffraction problem, the reflection (transmission) 

zeros will be second-order zeros [1]. In [1, 3, 9, 10], layered diffraction structures (in 

reflection) [1, 9] and diffraction gratings with two-dimensional periodicity (in 

transmission) [3, 5, 10] were successfully used for the optical realization of second-

order differentiation operators. Note that the previously considered layered dielectric 

structures (Bragg gratings with period defect) for optical calculation of the Laplace 

operator [1] are simpler in terms of their fabrication compared to diffraction gratings. 

At the same time, they have a horizontal plane of symmetry, which creates difficulties 

in their practical realization (because, in particular, the location of these structures on 

the substrate breaks the symmetry and leads to the disappearance of the reflection zero). 

According to the authors of the present work, metallodielectric layered 

structures, in comparison with purely dielectric Bragg structures, have an advantage in 
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calculating the Laplace operator at normal incidence because they do not require the 

presence of a horizontal plane of symmetry.  

In the present work, a layered metal-dielectric-metal structure "metal-dielectric-

metal-dielectric" located on a metal substrate is investigated. It is shown that such a 

structure allows to perform the optical calculation of the Laplace operator from the 

incident optical beam profile with high accuracy. At the same time, the numerical 

simulation results are in full agreement with the theoretical description. 

 

OPTICAL BEAM TRANSFORMATION AT REFLECTION FROM THE 

STRUCTURE 

Let us first consider the transformation of the x-component of the electric field 

of a three-dimensional linearly polarized optical beam occurring during its reflection 

from some layered structure at normal incidence. Following [1], we can show that the 

x-component of the electric field of the reflected beam, represented as a plane wave 

expansion, will have the following form 

 ( )refl, ( , ) ( , ) ( , )exp i i d d ,x x x y x y x y x yE x y G k k H k k k x k y k k= +∫∫  (1) 

where ( , )x x yG k k  is the spectrum of the x-component of the electric field of the incident 

beam, representing the amplitudes of plane waves with tangential components of the 

wave vectors (spatial frequencies) kx, ky, forming the incident beam, and ( , )x yH k k  is 

the transfer function (TF), which describes the transformation of the spectrum of the 

incident beam (change in the amplitudes of plane waves occurring during reflection). 

As shown in [1], this TF is expressed through the reflection coefficients of the structure 
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for TE- and TM-polarized plane waves and for a layered structure with zero reflection 

at normal incidence has the following Taylor series expansion to quadratic terms in the 

vicinity of zero: 

 2 2
,2 ,2( , ) ≈ +x y x x y yH k k c k c k . (2) 

Thus, in the neighborhood of zero, the PF contains only quadratic terms. In this 

case, as follows from formulas (1), (2), the structure realizes the following operation 

of second-order differentiation of the transverse profile of the x-component of the 

incident beam electric field: 

 
2 2

inc, inc,
refl, ,2 ,22 2

( , ) ( , )( , ) ∂ ∂
= − −

∂ ∂
x x

x x y
E x y E x yE x y c c

x y
. (3) 

Obviously, if the coefficients c(x) (,2)and c(y) (,2)in (2) are equal, the reflected beam 

profile (3) will be proportional to the Laplace operator from the profile of the incident 

beam. As noted above, this case is of most practical interest and will therefore be 

discussed below. 

 

GEOMETRY OF THE INVESTIGATED METAL-DIELECTRIC 

LAYERED STRUCTURE AND OBTAINING ZERO REFLECTION 

To calculate the second-order differential operator (3) at normal incidence, we 

propose to use a four-layer metal-dielectric-metal-dielectric (MDMD) structure located 

on a substrate (optically thick layer) made of metal. We will assume that above the 

structure there is a medium with refractive index nsup= 1 (Fig. 1). 

In [11, 12], a method for calculating three-layer metal-dielectric structures 

consisting of two metal layers separated by a dielectric layer and having zero reflection 
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was considered. We use an approach similar to these works to calculate the parameters 

of the investigated four-layer MDMD structure having zero reflection. The formula for 

calculating the thickness of the upper metal layer at the given thicknesses of the "lower" 

pair of metal and dielectric layers to achieve zero reflection [11] is as follows: 

 2 2 ρ=
−
r

r t
, (4) 

where r, t are the complex reflection and transmission coefficients of the upper metallic 

layer considered as functions of its thickness h1; ρ is the complex reflection coefficient 

of the "lower" pair of layers consisting of metallic layer with thickness h3and dielectric 

layer with thickness h(4) (Fig. 1). Note that in formula (4) the coefficients r and t are 

assumed to be calculated at fixed wavelength λ and polarization of the incident wave. 

After finding the thickness of the first (upper) metallic layer h(1),the thickness of the 

dielectric layer h(2) of the "upper" pair, providing zero reflection, can be found from the 

formula [11] 

 2 2 2
0

1 arg argρ 2
2

rh j
k n r t

 = − + − 
π , (5) 

where k0is the wave number, n is the refractive index of the dielectric layer, j is an 

integer providing a positive value of the thickness h2. 

It should be noted that the structure whose parameters are calculated by formulas 

(4) and (5) in the case of normal incidence will have zero second-order reflection at 

spatial frequencies due to the symmetry of the diffraction problem. 

 

NUMERICAL SIMULATION RESULTS 
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Let us now consider the possibility of using the investigated four-layer MDMD-

structure to calculate the Laplace operator from the profile of the x-component of the 

electric field of the incident beam. According to (2), (3), for this purpose it is necessary 

to fulfill the condition c(x) (,2) =  c(y) (,2). The possibility of achieving the above condition 

was investigated for MDMD-structures in the configuration "Cu-TiO2-Cu-TiO(2) 

"(materials of layers - copper and titanium dioxide) on a substrate of chromium (Cr) at 

a fixed wavelength λ = 633 nm and TM- polarization. The optimization parameters 

were the thicknesses of the lower "metal-dielectric pair" layers h3and h(4) (Fig. 1), and 

the thicknesses of the upper two layers h1and h2were calculated using formulas (4) and 

(5) from the condition of obtaining zero reflection. For the selected wavelength, the 

following values of refractive indices for the above materials were used [13, 14]: nCu= 

0.23+ 3.43i (Cu), nTiO2= 2.58 (TiO2), nCr= 3.14+ 3.31i (Cr). 

As a result of calculations, a structure with the following layer thicknesses was 

found: h1= 7.2 nm, h2= 51 nm, h3= 34.0 nm, h4= 79.1 nm. For this structure, the 

condition cx,2= cy,2is satisfied with high accuracy cy,2 = 0.034 ⋅ e–2.92i μm(2). 

Fig. 2a shows the PF modulus of the investigated structure calculated 

numerically within the framework of the strict solution of Maxwell's equations by the 

method [15]. The PF modulus in Fig. 2a turned out to be visually indistinguishable 

from the modulus of the "model" transfer function (2) at the values of the coefficients 

given above, so the latter is not shown for brevity. The deviation between the moduli 

of the model function and the numerically calculated PF is small: the RMS normalized 

to the maximum of the PF modulus is only 0.73%, and the maximum deviation is 

1.94%. Note that the strictly calculated PF has the required quadratic form at
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2 2
0/ 0.135+ ≤x yk k k  , which corresponds to a spatial resolution of ~3.7λ [10] . The 

achieved spatial resolution practically coincides with the spatial resolution obtained in 

[10], where a much more complicated structure in the form of metasurface with 

essentially subwavelength dimensions of the unit cell details was used for the 

calculation of the Laplace operator. 

Next, we consider the transformation of the x-component of the electric field 

occurring at reflection from the investigated structure of an incident Gaussian beam: 

 
2 2

inc, 2
( , ) exp + = − σ 

x
x yE x y . (6) 

For the case under consideration, the "model" function describing the profile of 

the reflected beam and calculated by formula (3) will have the following form: 

 ( )
2 2

,2 2 2 2
refl, 4 2

( , ) 4 exp + = − + − σ − σ σ 
x

x
c x yE x y x y . (7) 

Fig. 2b shows the modulus of the rigorously calculated reflected beam profile at 

σ = 6 μm. As in the case of the transfer function, the model (7) and the strictly 

calculated reflected beam profiles match well, with a normalized RMS error of only 

0.45% and a maximum deviation of 1.07%. 

As mentioned in the introduction, the Laplace operator is widely used to extract 

contours (brightness variations) in an image. As an example illustrating this operation, 

consider an incident beam with a profile of the x-component of the electric field in the 

form of a so-called super Gaussian function 

 
6 6

inc, 6
( , ) exp + = − σ 

x
x yE x y . (8) 



8 
 

Fig. 3a shows the result of MDMD-structure conversion of the incident beam 

with profile (8) at σ= 3 μm, and Fig. 3b - normalized cross sections of the incident and 

reflected beam profiles at y = 0. Fig. 3 shows the appearance of double contours 

characteristic of the Laplace operator at the boundaries of the input beam with a quasi-

rectangular shape and a width on the recession level of 0.5 in 6 μm. 

 

CONCLUSION 

Thus, we have investigated the optical realization of the second-order spatial 

differentiation operation at normal incidence of the optical beam using a layered metal-

dielectric structure. The parameters of the four-layer MDMD structure are found, under 

which the condition required for the optical calculation of the Laplace operator from 

the incident beam profile is fulfilled. Numerical simulation results confirm the 

theoretical results and show the possibility of optical calculation of the Laplace 

operator with high quality (with RMS error less than 1%). The results obtained can be 

applied in the development of analog optical computing and optical information 

processing systems. 

FUNDING 

This work was supported by the Russian Science Foundation (project№  24-12-

00028). 

REFERENCES 

1. Bykov D.A., Doskolovich L.L., Bezus E.A., Soifer V.A. // Opt. Express. 2014. V. 22. 

No. 21. P. 25084. 

2. Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Opt. Express. 2023. V. 31. 



9 
 

No. 10. P. 17050. 

3. Zhou Y., Zheng H., Kravchenko I.I., Valentine J. // Nature Photon. 2020. V. 14. 

P. 316. 

4. Tu Y., Liang Y., Zhu X. et al. // Opt. Commun. 2023. V. 549. Art. No. 129935. 

5. Guo C., Xiao M., Minkov M. et al. // Optica. 2018. V. 5. No. 3. P. 251. 

6. Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // Comp. Opt. 2023. V. 47. No. 

6. P. 845. 

7. Kashapov A.I., Bezus E.A., Bykov D.A., Doskolovich L.L. // Bull. Russ. Acad. Sci. 

Phys. 2023. V. 87. No. 1. P. 13. 

8. Soshnikov D.V., Doskolovich L.L., Byzov E.V. et al. // Comp. Opt. 2023. V. 47. 

No. 5. P. 691. 

9. Wesemann L., Panchenko E., Singh K. et al. // APL Photonics. 2019. V. 4. No. 10. 

Art. No. 100801. 

10. Pan D., Wan L., Ouyang M. et al. // Photon. Res. 2021. V. 9. No. 9. P. 1758. 

11. Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // J. Optics. 2021. V. 23. No. 2. 

Art. No. 023501. 

12. Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Photon. Nanostruct. 2022. 

V. 52. Art. No. 101069. 

13. https://refractiveindex.info/. 

14. Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. No. 12. P. 4370. 

15. Moharam M.G., Pommet D.A., Grann E.B. Gaylord T.K. // J. Opt. Soc. Amer. A. 

1995. V. 12. P. 1077. 

  

https://refractiveindex.info/


10 
 

FIGURE CAPTIONS 

Fig. 1. Geometry and parameters of the investigated metal-dielectric layered structure. 

 

Fig. 2. Modulus of the strictly calculated PF of the metallodielectric layered structure 

performing the calculation of the Laplace operator (a) and the absolute value 

normalized to the maximum value of the x-component of the electric field of the 

numerically calculated reflected beam (b). 

 

Fig. 3. Maximal value-normalized profile modulus of the x-component of the reflected 

electric field formed at the incident beam with a profile in the form of a supergaussian 

function (a); Cross sections of the maximal value-normalized profiles of the reflected 

beam E(refl) (,)(x)(x, y) (black line) and the incident beam E(inc) (,) (x)(x, y) along the x-axis at 

y= 0 (red dashed line) (b). The blue arrow shows the width of the incident beam at level 

0.5. 

 

 
Fig. 1. 
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