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Abstract. An expression is obtained that allows us to determine the law of dispersion 

of plasma waves ω(k) in a two-dimensional semiconductor superlattice under the 

influence of a nonlinear electromagnetic wave and, in the extreme case of weak 

nonlinearity, an analytical expression for ω(k) is found. The possibility of controlling 

the frequency of the plasma wave by the parameters of a nonlinear wave has been 

established. 
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INTRODUCTION 

The quantum theory of plasma waves for semiconductor superlattices (SRs) was 

constructed in [1,2]. An important direction of the study of collective phenomena in 

condensed media is the study of plasma wave propagation in low-dimensional 

electronic systems and, in particular, in two-dimensional (2D) semiconductor SRs. The 
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attention of researchers to the study of nonlinear electromagnetic waves propagating 

in semiconductor structures with a nonquadratic dispersion law is not weakening. In 

[3-5], nonlinear plasma oscillations of electron gas in semiconductor quantum SR were 

studied. In the regime of rare collisions ( ν<< ωp, the collision frequency of the electron 

with irregularities of the crystal latticeν is much smaller than the generalized plasma 

frequency of the electron in the minizoneωp), the propagation of the electromagnetic 

wave along the SR layers, when its field is directed along the SR axis, is described by 

the Sine-Gordon equation (SGE) [6]. One of the most general periodic solutions of the 

SGE are those expressed through elliptic Jacobi functions and called knoidal waves. 

When the characteristic distance at which a noticeable change in the wave field occurs 

is much larger than the length of the electrons' free path, the wave field can be 

considered homogeneous. In this case, the electric field strength of the wave has the 

form [7-9] 
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where cn(x) is the elliptic Jacobi function,
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deEк  is the nonlinearity 

modulus (hereinafter 1=  ), , pкK
ωβπω

β 120 )(2 −
= β =  u/V (β > 1), V is the wave 

velocity in the absence of electrons, u is the phase velocity of the wave, K(k) is the full 

elliptic integral of the first kind, E0is the amplitude of the nonlinear wave field strength. 

In [7-9], the peculiarities of the influence of the nonlinear knoidal wave field on various 

physical processes in SR are considered. Recently, a significant number of works 
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devoted to the theory of knoidal waves have appeared [10-13].  This emphasizes the 

relevance of the present study. 

The processes of plasma wave propagation in 2D semiconductor SRs are of great 

interest in semiconductor physics. The possibility of plasma waves and the density of 

plasma excitations in 2D electron gas SRs have been studied in [14, 15]. In [16, 17], 

the effect of strong DC and AC electric field on plasma oscillations in 2D electron gas 

SRs was investigated. The possibility of propagation of solitary electromagnetic waves 

in 2D SR is shown in [18]. Works [19-23] are devoted to the study of new graphene-

based materials - graphene SRs and peculiarities of the law of dispersion of plasma 

waves in such structures. In the case of weak non-additivity of the energy spectrum of 

graphene SRs, the expressions for finding the law of dispersion of plasma wavesω (k) 

obtained for quantum semiconductor SRs can be used to estimateω (k) both in the 

absence of external influences and in strong static and alternating electric fields. 

This paper investigates the effect of a nonlinear electromagnetic wave on the 

dispersion law of plasma waves in a two-dimensional semiconductor quantum 

superlattice. 

 

MAIN PART 

The energy spectrum of charge carriers in 2D SR can be chosen in model form 

[14-15] 

[ ])cos()cos(
2
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where∆ is the half-width of the conduction minizone; d is the SR period; p  is the 

electron quasi-impulse. We limit ourselves to the one-minizone approximation, 

neglecting interminizone transitions. 

Fig. 1 shows the geometry of the problem. Let a nonlinear electric field (1) be 

applied in the direction of the OX axis of SR, which will be described by the vector 

potential ( ) ( ){ }0,/ edtctA Φ−=


 . It is more convenient to pass from the nonlinear wave 

intensity to the dimensionless potential F(t)  
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where 0 < k ≤ 1, sn(x) is an elliptic Jacobi function. 

In the self-consistent field approximation, the Hamiltonian of interacting 

electrons taking into account the overshooting processes has the form [16,17] 
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where pp aa  ,+  are the birth and annihilation operators of an electron with momentum p  

; Nxand Nyare the number of potential wells forming the SR along the x and y axes, 

respectively, , )2,2( dmdng ππ=
  
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χ - is the dielectric constant of the lattice. 

A good enough approximation, which is used in the theoretical physics of low-

dimensional systems, is the random phase approximation [14-17, 19, 21-23]. The 

equation of motion for the mean >< +

++ pgkp
aa 






 in this case has the form [16, 17] 
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where ><= +
ppp aan   - numbers of filling of electronic levels in 2D - electron gas.  

The solution of equation (7) has the form 
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To calculate the second integral included in expression (8), we will use the 

decomposition ofsin Φ(𝑡𝑡) andcos Φ(𝑡𝑡) into a trigonometric Fourier series for the value 

of the nonlinearity modulus )1,0(∈κ  : 
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Substituting the solution of equation (7) into (6), we obtain the equation defining 

the law of dispersion of plasma waves )(k


ω  . Estimates show that at ∆>0ω  and k < 

0.5, only the first terms of the sums (9) can be left in the dispersion equation with a 

sufficient degree of accuracy. Then the dispersion equation will take the form 
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where , . 2/dkxx =α 2/dk yy =α  

To obtain the explicit form )(kS


 we need to specify the form of potential pits in 

SR. Whenϕ (x) = const at 0≤ x≤ d, andϕ (x) = 0 at x < 0, x >  d, formula (12) will take 

the following form 
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Even in such a simple model case, for arbitrary values of k


 one cannot obtain an 

analytical expression for )(kS


 . However, at small values of ( )dkkk yx /, π<< )(kS


∼ 

1/k and the plasmon spectrum has a dispersion k~2ω  , characteristic of a 2D gas 

without a periodic potential. 
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For the ungenerated electron gas in the limit of high temperatures:∆ << T we 

consider a special case for which we can obtain an analytical expression of the 

dispersion lawω (k). Atω0 >> ∆ and ky=0 we obtain: 
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Fig. 2 shows a plot of the dependence of the plasma wave frequency on the wave 

number )(kω  , obtained by numerical analysis of formula (15). The possibility of 

controlling the plasma wave frequency by the parameters of the external nonlinear 

wave is established. It follows from Fig. 2 that a decrease in the amplitude of the 

nonlinear wave leads to an increase in the plasma frequency. At 12/ <<kd  we obtain 

the expected dispersion dependence k~2ω  , characteristic of a 2D gas without SR. In 

the limit of linear waves (to→ 0), expression (15) corresponds to the law of dispersion 

of plasma waves in a 2D electron gas SR under the influence of an alternating high-

frequency electric field [17]. In the case when E0= 0 (to= 0) the limiting transition to 

the results of [14] is performed.  

The parameters of the SR electronic spectrum can be estimated within the 

framework of the Kronig-Penny model [15]. Thus it is possible to determine from (11) 

the dispersion dependence ofω (k) in a wide range of temperatures, period of SR and 

width of potential wells forming SR. 

Recently, the attention of researchers has been focused on the study of graphene 

SRs and, in particular, on the peculiarities of the laws of dispersion of plasma waves 
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in such structures [19-23], which may determine the further subject of research and 

development of this work. 

 

CONCLUSION 

The problem of the influence of a nonlinear electromagnetic wave on the law of 

dispersion of plasma waves in a two-dimensional semiconductor quantum superlattice 

has been solved. An expression allowing to determine the dispersion dependenceω (k) 

in a wide range of temperatures, superlattice period and width of potential pits forming 

the superlattice is obtained. It is shown that the plasma frequency decreases as the 

amplitude of the nonlinear wave increases. In the limiting case of weak nonlinearity, 

an analytical expression forω (k) is obtained. Calculations are performed on the basis 

of the quantum theory of plasma waves in the approximation of random phases taking 

into account the overshooting processes. 

This study has a fundamental character, the obtained theoretical results can be 

useful in the experimental study of SR and effectively complement the available data 

on collective effects in low-dimensional semiconductor superstructures. 
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FIGURE CAPTIONS  

Fig. 1. Geometry of the problem. 

Fig. 2. Plasma wave dispersion lawω (k) at: k=0.4; T=100 K (a), k=0; T=100 K (b), 

k=0.4 (c); T=300 K, k=0; T=300 K (d). 
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