ON THE SUPERLUMINAL OBJECTS IN NON-EQUILIBRIUM MEDIA
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Abstract. An analysis of superluminal propagation of resonant and quasi-resonant
soliton-like laser pulses in non-equilibrium media is presented. It is shown that such
pulses are unstable. However, at the initial stage of instability development, it is
possible to observe superluminal propagation of these pulse profiles due to the
reshaping mechanism.
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INTRODUCTION
Due to the continuous improvement of laser technology, it has become possible
to generate very short optical pulses [1-4]. The duration of such pulses is of the order
of several femtoseconds, which is much shorter than the typical relaxation times of the
populations of quantum levels of various media. Under such conditions there appear

unique opportunities to study nonequilibrium states of matter corresponding to inverse
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populations of quantum states. In such media, superluminal modes of propagation of
laser pulses are present with necessity. Many works on this subject are known since
the 1960s [5-8]. In the experimental work [5], the recorded group velocity exceeded
the speed of light in vacuum by a factor of 6 - 9. In methodical reviews [6-8] the
mechanisms of superluminal propagation are investigated in detail.

The present work is devoted to the analysis of superluminal propagation of pulses
in resonant and quasi-resonant two-level media with inverse population of quantum

states.

RESONANT SUPERLUMINAL PULSES
Propagation along the axisz of a quasi-monochromatic laser pulse in a two-level

medium is described by a self-consistent system of Maxwell-Bloch (MB) equations
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Herey =de/n - complex Rabi frequency,s andr - complex envelopes of the
electric field of the pulse and atomic dipole moment, respectively,w - population
difference (inversion) of quantum states, d - real matrix element of the dipole moment
of the quantum transition under consideration, 7 - Planck's constant, ¢ - speed of light
in vacuum,A=w,-® - detuning of the carrier frequencyw of the pulse from the

resonance frequency w, of the quantum transition, ,a = 4zd’nw/ hc n - concentration of

two-level atoms, V2 - transverse Laplacian.



In system (1) - (3), we neglected dissipative processes because we consider that

the duration ofz, pulse and the observation time of the propagation process are much

shorter than all relaxation times.

The system of material equations (1), (2) has a well-known integral of motion

w2+ |r|? = w, 4)
wherew, is the initial difference of populations of quantum states.
Considering (4), it is easy to see that in the case of exact resonance (A=0 ) the
system (1), (2) has the following solutions
r=1iw;, Sinf W = W;, cos 8, (5)

where
0= [ yar, (6)

andy 1s a real dynamic variable.

Substituting (5) into (3) taking into account (6), we obtain in the one-dimensional
case (Viy =0 ) the sine-Gordon (SG) equation

920 1926 )
Py + ~opz = QWi Sin 0, (7)

which has a "kinky" solution of the form [10]
6 = o arctanet=%/V)/® (8)
where
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and the time durationt,, acts as a free parameter.



From (5), (6) and (8) we find
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It can be seen from (11) that the envelope of the laser pulse has the form of a
soliton, the time duration of which is equal tot,, . As follows from (10), after passing
the soliton (atz—+w ), the population differencew returns to its initial valuew;, ,
which it was equal toat. t - —o  The velocity v of the soliton is determined by the

second expression (9). At equilibrium initial population of quantum statesw, <0 .

Then, as can be seen from (9), we have a pre-light propagation regime at whichv<c .
This mode corresponds to the self-induced transparency (SIT) effect [9, 10]. With the
leading edge, the laser pulse induces the atoms from the ground state to the excited
state, and with the trailing edge it also induces their return to the initial state. This
causes the soliton propagation to be slower than the speed of light.

In the case of nonequilibrium initial population (w;,, > 0 ), as follows from the
second expression (9), the solution under consideration formally describes the
superluminal mode of soliton propagation:v > c . In this case, the optical pulse at the
leading edge induces the atoms from the excited state to the ground state, and the
trailing edge returns the atoms to the initial excited state (see (10)). At first sight, here
the speed should also be less than the speed of light, since time is spent for pumping
energy from atoms to momentum and for its return back to atoms. But this reasoning

is clearly inconsistent with the second formula (9), from which it follows that in this
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case the velocity of the soliton exceeds the velocity of light in the void. The point is
that the induced emission at nonequilibrium population of quantum levels is caused by
an almost imperceptible "tail" part, which is far ahead of the central peak. As a result,
it generates a new peak of impulse, transferring the medium to the equilibrium state by
the moment of arrival of the old peak into it. At the same time, the old peak is absorbed
and the impression of superluminal propagation of the pulse maximum is created. Thus,
it is not the energy of the pulse but its shape that propagates with superluminal velocity
[6]. This propagation mechanism is called reshaping [11]. Obviously, in this
mechanism the pulse does not carry information either.

In the experimental work [5] the registered group velocity of the light pulse
exceeded the velocity of light in vacuum by a factor of 6-9. A detailed theoretical
analysis of the reformation mechanism with interpretation of the results of [5] is
contained in [6].

According to the McCall-Hahn area theorem [9, 12], in an equilibrium medium
the pulses whose total aread = 6, = f::o Ydt 1s a multiple of2z are stable. In

media with non-equilibrium initial population, for whichw;,, > 0 , the pulses for
whichA = m, 3w, 5m... [12] are stable. It follows from (8) and the first expression (9)
that in our caseA = mo /2 = 2m . Thus, in an equilibrium environment ( )w;,, < 027 -
soliton CIP (11), for whichv < ¢, is stable. In a nonequilibrium environment (w;,, >
0 ) the superluminal considered2r -soliton is unstable. Two questions immediately
arise here. 1) With what speed the stablez -impulse propagates in a nonequilibrium
medium? 2) Why, nevertheless, unstable superluminal 2z -soliton was observed in the

experiment?



7T - IMPULSE
Following [12], we introduce the automodel variable
E=2z(t—2z/c). (12)
Then (7) will take the form of an ordinary differential equation
§0"+ 0 = aw;, siné, (13)
where "dash" denotes the derivative on the variable . &
Numerical analysis shows that equation (13) has a solution in which the envelope
w has a prominent main maximum at the point§é = 0 [12]. On the sides of the main
maximum there are small-amplitude oscillations. The area of such an impulse is equal
tor , which corresponds to the condition of its stability in a nonequilibrium medium.
At the point of major highdy/0t~8" = 0 . Moreover, hereé = 0 . Therefore,
given the goal of finding a solution in the neighborhood of the main maximum, we can
neglect the first summand in the right-hand side of equation (13). Then we have an

approximate solution of the form (8), where

o=2, v =c, (14)
1
— = AW, Z. (15)
Tp

Thus, the area of the momentum is determined by the area of its main maximum

in the neighborhood ofé = 0 and is equal torr . Using also (5), we find

w = —w;, tanh (%) (16)
Tp
If at the beginning (att = —oo ) all atoms are excited, thenw;,, = 1/2 . Then, as
can be seen from (16), after the impulse (att = +o00 ) we havew = —1/2 . L.e., all atoms
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transition to the ground state. Thus, as propagates, the automodel z - pulse induces
atoms from the excited state to the ground state.
For the electric field envelope from (6) and (8), taking into account (14), we have

the first expression (11), where

P = —, (17)

Tp
and the speed and duration are determined by formulas (14) and (15), respectively.

Thus, the automodelr -impulse in a nonequilibrium medium propagates with a
speed equal to the speed of light in vacuum. This is the answer to the first question
posed at the end of the previous section.

As them -pulse propagates, it experiences amplification accompanied by its self-
compression. In this case, the temporal duration of the pulse decreases inversely
proportional to the distance traveled, and the amplitude grows proportional to the
distance.

The distancel;,s; , at which the instability of the superluminal2m -pulse
considered in the previous section develops, can be estimated from the area theorem
[9] by the formulal;,s;~m/aT, , whereT, 1is the time characterizing the
inhomogeneous broadening of the quantum transition. With the parameters of
crystalline ruby used in [5], we havel;,;; = 30 cm. At the same time, the experimental
work [5] used ruby samples with sizes from 7 to24 cm . Thus, the discussed instability
did not have time to develop. Therefore, a superluminal2m -pulse propagating in the
reshaping regime was observed. This is the answer to the second question posed at the

end of the previous section.



The lifetime of the medium in the nonequilibrium state is ~ 10¢® s, During this
time, a superluminal pulse travels a distance of ~ 1 -10 m , which significantly exceeds
the size of the samples used in [5]. Therefore, the spontaneous relaxation of the
nonequilibrium medium to the equilibrium state could be neglected with good

accuracy.

QUASI-RESONANT SUPERLUMINAL PULSES
Let us now consider optical pulses propagating under conditions of quasi-
resonance [13-15]
§=(Ar,) ' << 1. (18)
It is clear that at such a large detuning of A from the resonance the excitation of
atoms is weak, 1.e.,w should be insignificantly different fromw;,, . Carrying out in (1)

the expansion on the small parameters [13 - 15], we have

= Yy Wi wWin 2
r= Aw+LA2 6t+A3 PR (19)

From (4) with accuracy up to terms ~|r|" we find

2
W= W, (1— I )

2
2wi,

Substituting here instead ofr the first summand from expansion (19) using

substitutionw — w. . we obtain

mn o

w = wp (1-20). (20)

242

From (19) and (20) we come to the expression

= —w (1 WL 4w win 0%
re WinA(l 2A2)+1A2 at+A3 at?’ (21)



After substituting (21) into (3) and simple transformations we have

02 _ olo2o + EL2 4 < p2
i— = glel e + S T 5o Vio, (22)
where
b = l/)e—iawinz/A , (23)

g = awy,/24%,, B = 2aw;,/A® T =t — z/v, , and the linear group velocityv,

is defined by the expression

1 1 a

=~ Wins. (24)

vy

If we neglect the third summand in the right part of (22), we obtain a one-
dimensional nonlinear Schrodinger equation (NLS). The coefficientsg and g in this
equation have the same signs. In this case, the NUSH has stable solutions in the form
of "light" solitons propagating with linear group velocityv, [16]. From (24) we can see
that in a nonequilibrium (w;;, > 0 ) environmentv, > c¢ . In this case, as in the case of
exact resonance, the superluminal propagation occurs in the reshaping regime.
Therefore, there are no contradictions with the principles of the theory of relativity.

One-dimensional superluminal NUSH solitons can be observed at propagation
distances smaller than the diffraction broadening length of these solitons. Therefore, it
is important to consider the stability of quasi-resonant three-dimensional localized
pulses - spatio-temporal solitons or light bullets [17 - 20]. For illustration, let us
consider the caseg, f > 0.

Following [19, 20], we perform the Madelung transformation

1 = pexp(—iwg/c), (25)



where p and ¢ are functions to be defined. Substituting (25) into (22), we come to the

system of equations formally describing the flow of an imaginary quantum fluid:

d

Z+7(pVe) =0, (26)
dp (V)2 ¢ _(c 2v2/p
a2 T 2 _ng_(Z) 2/p’ (27)

wherel’? = V2 + 0% /97?2 is the effective three-dimensional Laplacian,
n= |=1, (28)

V - is the effective three-dimensional gradient operator in the variablesr, and ,nr is

the radius-vector transverse to the direction of momentum propagation.

The hydrodynamic approach based on a system like (26), (27) is very effective
in the theory of self-focusing and light bullet formation [17 - 23].

The continuity equation (10) has an automodel "spherically symmetric" solution

in the coordinate system ( ,r, 7 ) [21]

R3 2R
p = Ym_sexp(—(*/R?), ¢ =f(2)+5—, (29)
where ,{ = /12 + %R = R(z) is the characteristic size of the light energy cluster
under consideration,y, is the field amplitude,R, is the equilibrium value of the

parameter ,Rf (z) is some function, the dash over the variable R here and below denotes
the derivative on the variable . -

Following [22], we use the near-axis approximation (near-axis approximation)
in the left-hand side of equation (27), i.e., we writee ™ /R® ~ 1 — r2/R? . Equating

then in the left and right parts of the expressions atr® andr? , we come to the equations

FetguaB-3(L) L, (30)

nw
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R"z_a_U_(L)Zi_Eg 2 R (31)

dR  \nw
Equation (31) is an equation of motion of a Newtonian particle of unit mass in

an external field with "potential energy" U(R)where R andz play the roles of particle
coordinates and time, respectively.

The first summand in the right part of (31) corresponds to diffraction effects. In
turn, the second summand describes the effect of cubic (Kerr) nonlinearity.

The conditions for the formation of a stable spatiotemporal soliton are(dU/
OR)g=g, =0, (0*U/OR?)g=g, > 0, which corresponds to the presence of a local
minimum in the dependenceU(R) at the equilibrium value of the bullet radius. From

(31) it is easy to see that it is impossible to satisfy these conditions, since the

dependence U(R) does not have a local minimum. On the contrary, this dependence has

a local maximum. This conclusion is consistent with the known fact: at Kerr

nonlinearity alone, three-dimensional space-time solitons are unstable [24].

CONCLUSION
The methodological consideration carried out in the present work shows that
superluminal optical pulses in nonequilibrium (amplifying) media are unstable, as well
as nonequilibrium media themselves. This conclusion is consistent with the
conclusions of previous works, including [6] and [8], although the stability issues are
investigated here in other ways. On the other hand, the reshaping mechanism, which
does not contradict fundamental physical principles, allows us to observe superluminal

impulses at distances smaller than the characteristic lengths of instability development.
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