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Abstract. An analysis of superluminal propagation of resonant and quasi-resonant 

soliton-like laser pulses in non-equilibrium media is presented. It is shown that such 

pulses are unstable. However, at the initial stage of instability development, it is 

possible to observe superluminal propagation of these pulse profiles due to the 

reshaping mechanism. 
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INTRODUCTION 

 Due to the continuous improvement of laser technology, it has become possible 

to generate very short optical pulses [1-4]. The duration of such pulses is of the order 

of several femtoseconds, which is much shorter than the typical relaxation times of the 

populations of quantum levels of various media. Under such conditions there appear 

unique opportunities to study nonequilibrium states of matter corresponding to inverse 
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populations of quantum states. In such media, superluminal modes of propagation of 

laser pulses are present with necessity. Many works on this subject are known since 

the 1960s [5-8]. In the experimental work [5], the recorded group velocity exceeded 

the speed of light in vacuum by a factor of 6 - 9. In methodical reviews [6-8] the 

mechanisms of superluminal propagation are investigated in detail.  

The present work is devoted to the analysis of superluminal propagation of pulses 

in resonant and quasi-resonant two-level media with inverse population of quantum 

states.   

 

RESONANT SUPERLUMINAL PULSES 

Propagation along the axis z  of a quasi-monochromatic laser pulse in a two-level 

medium is described by a self-consistent system of Maxwell-Bloch (MB) equations 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑖𝑖,    (1) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑖𝑖
2

(𝜓𝜓∗𝑟𝑟 − 𝜓𝜓𝑟𝑟∗) ,   (2) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖 𝑐𝑐
2𝜔𝜔
𝛻𝛻⊥2𝜓𝜓.  (3) 

Here /dψ ε=   - complex Rabi frequency,ε  and r  - complex envelopes of the 

electric field of the pulse and atomic dipole moment, respectively, w  - population 

difference (inversion) of quantum states, d  - real matrix element of the dipole moment 

of the quantum transition under consideration,   - Planck's constant,c  - speed of light 

in vacuum, 0ω ω∆ = −  - detuning of the carrier frequencyω  of the pulse from the 

resonance frequency 0ω  of the quantum transition, , 24 /d n cα π ω=  n  - concentration of 

two-level atoms, 2
⊥∇  - transverse Laplacian.  
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In system (1) - (3), we neglected dissipative processes because we consider that 

the duration of pτ  pulse and the observation time of the propagation process are much 

shorter than all relaxation times.  

The system of material equations (1), (2) has a well-known integral of motion 

[9] 

     𝑤𝑤2 + |𝑟𝑟|2 = 𝑤𝑤𝑖𝑖𝑖𝑖2 ,     (4) 

where inw  is the initial difference of populations of quantum states.  

 Considering (4), it is easy to see that in the case of exact resonance ( 0∆ =  ) the 

system (1), (2) has the following solutions 

𝑟𝑟 = 𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ,  𝑤𝑤 = 𝑤𝑤𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃,  (5) 

where  

     
t

dtθ ψ
−∞

′= ∫ ,      (6)  

andψ  is a real dynamic variable. 

 Substituting (5) into (3) taking into account (6), we obtain in the one-dimensional 

case ( 2 0ψ⊥∇ =  ) the sine-Gordon (SG) equation 

     𝜕𝜕2𝜃𝜃
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 1
𝑐𝑐
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑡𝑡2

= 𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃,    (7) 

which has a "kinky" solution of the form [10]  

     𝜃𝜃 = 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒(𝑡𝑡−𝑧𝑧/𝑣𝑣)/𝜏𝜏𝑝𝑝,     (8) 

where  

𝜎𝜎 = 4,  1
𝑣𝑣

= 1
𝑐𝑐
− 𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖𝜏𝜏𝑝𝑝2,    (9) 

and the time duration𝜏𝜏𝑝𝑝 acts as a free parameter.    
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 From (5), (6) and (8) we find 

    𝑤𝑤 = 𝑤𝑤𝑖𝑖𝑖𝑖 �1 − 2sech2 �𝑡𝑡−𝑧𝑧/𝑣𝑣
𝜏𝜏𝑝𝑝

�� ,   

 (10) 

   𝜓𝜓 = 𝜓𝜓𝑚𝑚sech �𝑡𝑡−𝑧𝑧/𝑣𝑣
𝜏𝜏𝑝𝑝

� , 𝜓𝜓𝑚𝑚 = 2
𝜏𝜏𝑝𝑝

.    (11) 

 It can be seen from (11) that the envelope of the laser pulse has the form of a 

soliton, the time duration of which is equal to𝜏𝜏𝑝𝑝 . As follows from (10), after passing 

the soliton (at t →+∞  ), the population difference w  returns to its initial value𝑤𝑤𝑖𝑖𝑖𝑖 , 

which it was equal to at . 𝑡𝑡 → −∞ The velocity v  of the soliton is determined by the 

second expression (9). At equilibrium initial population of quantum states 0inw <  . 

Then, as can be seen from (9), we have a pre-light propagation regime at which v c<  . 

This mode corresponds to the self-induced transparency (SIT) effect [9, 10]. With the 

leading edge, the laser pulse induces the atoms from the ground state to the excited 

state, and with the trailing edge it also induces their return to the initial state. This 

causes the soliton propagation to be slower than the speed of light.  

 In the case of nonequilibrium initial population (𝑤𝑤𝑖𝑖𝑖𝑖 > 0 ), as follows from the 

second expression (9), the solution under consideration formally describes the 

superluminal mode of soliton propagation:𝑣𝑣 > 𝑐𝑐 . In this case, the optical pulse at the 

leading edge induces the atoms from the excited state to the ground state, and the 

trailing edge returns the atoms to the initial excited state (see (10)). At first sight, here 

the speed should also be less than the speed of light, since time is spent for pumping 

energy from atoms to momentum and for its return back to atoms. But this reasoning 

is clearly inconsistent with the second formula (9), from which it follows that in this 
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case the velocity of the soliton exceeds the velocity of light in the void.  The point is 

that the induced emission at nonequilibrium population of quantum levels is caused by 

an almost imperceptible "tail" part, which is far ahead of the central peak. As a result, 

it generates a new peak of impulse, transferring the medium to the equilibrium state by 

the moment of arrival of the old peak into it. At the same time, the old peak is absorbed 

and the impression of superluminal propagation of the pulse maximum is created. Thus, 

it is not the energy of the pulse but its shape that propagates with superluminal velocity 

[6]. This propagation mechanism is called reshaping [11]. Obviously, in this 

mechanism the pulse does not carry information either.  

In the experimental work [5] the registered group velocity of the light pulse 

exceeded the velocity of light in vacuum by a factor of 6-9. A detailed theoretical 

analysis of the reformation mechanism with interpretation of the results of [5] is 

contained in [6].  

According to the McCall-Hahn area theorem [9, 12], in an equilibrium medium 

the pulses whose total area𝐴𝐴 = 𝜃𝜃|𝑡𝑡→+∞ = ∫ 𝜓𝜓𝜓𝜓𝜓𝜓+∞
−∞  is a multiple of 2π  are stable. In 

media with non-equilibrium initial population, for which𝑤𝑤𝑖𝑖𝑖𝑖 > 0 , the pulses for 

which𝐴𝐴 = 𝜋𝜋, 3𝜋𝜋, 5𝜋𝜋. .. [12] are stable. It follows from (8) and the first expression (9) 

that in our case𝐴𝐴 = 𝜋𝜋𝜋𝜋/2 = 2𝜋𝜋 . Thus, in an equilibrium environment ( )𝑤𝑤𝑖𝑖𝑖𝑖 < 0 2π  -

soliton CIP (11), for which𝑣𝑣 < 𝑐𝑐 , is stable. In a nonequilibrium environment (𝑤𝑤𝑖𝑖𝑖𝑖 >

0 ) the superluminal considered 2π  -soliton is unstable. Two questions immediately 

arise here. 1) With what speed the stableπ  -impulse propagates in a nonequilibrium 

medium? 2) Why, nevertheless, unstable superluminal 2π  -soliton was observed in the 

experiment?   
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π  - IMPULSE 

 Following [12], we introduce the automodel variable 

      𝜉𝜉 = 𝑧𝑧(𝑡𝑡 − 𝑧𝑧/𝑐𝑐).    (12) 

Then (7) will take the form of an ordinary differential equation 

𝜉𝜉𝜃𝜃″ + 𝜃𝜃′ = 𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃,                           (13) 

where "dash" denotes the derivative on the variable . ξ  

 Numerical analysis shows that equation (13) has a solution in which the envelope

ψ  has a prominent main maximum at the point𝜉𝜉 = 0 [12]. On the sides of the main 

maximum there are small-amplitude oscillations.  The area of such an impulse is equal 

toπ  , which corresponds to the condition of its stability in a nonequilibrium medium.   

 At the point of major high𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕~𝜃𝜃″ = 0 . Moreover, here𝜉𝜉 = 0 . Therefore, 

given the goal of finding a solution in the neighborhood of the main maximum, we can 

neglect the first summand in the right-hand side of equation (13). Then we have an 

approximate solution of the form (8), where  

   𝜎𝜎 = 2,  𝑣𝑣 = 𝑐𝑐,     (14)  

      1
𝜏𝜏𝑝𝑝

= 𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧.     (15)  

Thus, the area of the momentum is determined by the area of its main maximum 

in the neighborhood of𝜉𝜉 = 0 and is equal to𝜋𝜋 . Using also (5), we find 

    𝑤𝑤 = −𝑤𝑤𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ �
𝑡𝑡−𝑧𝑧/𝑐𝑐
𝜏𝜏𝑝𝑝

�.    (16) 

If at the beginning (at𝑡𝑡 = −∞ ) all atoms are excited, then𝑤𝑤𝑖𝑖𝑖𝑖 = 1/2 . Then, as 

can be seen from (16), after the impulse (at𝑡𝑡 = +∞ ) we have𝑤𝑤 = −1/2 . I.e., all atoms 
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transition to the ground state. Thus, as propagates, the automodelπ  - pulse induces 

atoms from the excited state to the ground state.  

For the electric field envelope from (6) and (8), taking into account (14), we have 

the first expression (11), where  

     𝜓𝜓𝑚𝑚 = 1
𝜏𝜏𝑝𝑝

,     (17) 

and the speed and duration are determined by formulas (14) and (15), respectively.  

 Thus, the automodel𝜋𝜋 -impulse in a nonequilibrium medium propagates with a 

speed equal to the speed of light in vacuum. This is the answer to the first question 

posed at the end of the previous section. 

As the𝜋𝜋 -pulse propagates, it experiences amplification accompanied by its self-

compression. In this case, the temporal duration of the  pulse decreases inversely 

proportional to the distance traveled, and the amplitude grows proportional to the 

distance.   

The distance𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , at which the instability of the superluminal2𝜋𝜋 -pulse 

considered in the previous section develops, can be estimated from the area theorem 

[9] by the formula𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~𝜋𝜋/𝛼𝛼𝑇𝑇2∗ , where𝑇𝑇2∗ is the time characterizing the 

inhomogeneous broadening of the quantum transition. With the parameters of 

crystalline ruby used in [5], we have𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≈ 30 cm. At the same time, the experimental 

work [5] used ruby samples with sizes from 7 to24 см . Thus, the discussed instability 

did not have time to develop. Therefore, a superluminal2𝜋𝜋 -pulse propagating in the 

reshaping regime was observed. This is the answer to the second question posed at the 

end of the previous section.  
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The lifetime of the medium in the nonequilibrium state is ~ 10(-8) s. During this 

time, a superluminal pulse travels a distance of ~ 1 -10 м , which significantly exceeds 

the size of the samples used in [5]. Therefore, the spontaneous relaxation of the 

nonequilibrium medium to the equilibrium state could be neglected with good 

accuracy.  

    

QUASI-RESONANT SUPERLUMINAL PULSES 

 Let us now consider optical pulses propagating under conditions of quasi-

resonance [13-15]  

     𝛿𝛿 = (𝛥𝛥𝜏𝜏𝑝𝑝)−1 << 1.    (18) 

 It is clear that at such a large detuning of∆  from the resonance the excitation of 

atoms is weak, i.e.,𝑤𝑤 should be insignificantly different from𝑤𝑤𝑖𝑖𝑖𝑖 . Carrying out in (1) 

the expansion on the small parameterδ  [13 - 15], we have  

    𝑟𝑟 = −𝜓𝜓
𝛥𝛥
𝑤𝑤 + 𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖

𝛥𝛥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤𝑖𝑖𝑖𝑖
𝛥𝛥3

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑡𝑡2

 .   (19) 

 From (4) with accuracy up to terms ~ 2r  we find 

     𝑤𝑤 = 𝑤𝑤𝑖𝑖𝑖𝑖 �1 − |𝑟𝑟|2

2𝑤𝑤𝑖𝑖𝑖𝑖
2 �. 

 Substituting here instead of𝑟𝑟 the first summand from expansion (19) using 

substitution inw w→  , we obtain 

    𝑤𝑤 = 𝑤𝑤𝑖𝑖𝑖𝑖 �1 − |𝜓𝜓|2

2𝛥𝛥2
�.     (20) 

 From (19) and (20) we come to the expression 

𝑟𝑟 = −𝑤𝑤𝑖𝑖𝑖𝑖
𝜓𝜓
𝛥𝛥
�1 − |𝜓𝜓|2

2𝛥𝛥2
� + 𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖

𝛥𝛥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤𝑖𝑖𝑖𝑖
𝛥𝛥3

𝜕𝜕2𝜓𝜓
𝜕𝜕𝑡𝑡2

.    (21) 
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After substituting (21) into (3) and simple transformations we have 

𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑔𝑔|𝛷𝛷|2𝛷𝛷 + 𝛽𝛽
2
𝜕𝜕2𝛷𝛷
𝜕𝜕𝜏𝜏2

+ 𝑐𝑐
2𝜔𝜔
𝛻𝛻⊥2𝛷𝛷,    (22) 

where  

𝛷𝛷 = 𝜓𝜓𝑒𝑒−𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧/𝛥𝛥 ,     (23) 

𝑔𝑔 = 𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖/2𝛥𝛥3, ,  𝛽𝛽 = 2𝛼𝛼𝑤𝑤𝑖𝑖𝑖𝑖/𝛥𝛥3  𝜏𝜏 = 𝑡𝑡 − 𝑧𝑧/𝑣𝑣𝑔𝑔 , and the linear group velocity𝑣𝑣𝑔𝑔 

is defined by the expression 

     1
𝑣𝑣𝑔𝑔

= 1
𝑐𝑐
− 𝑤𝑤𝑖𝑖𝑖𝑖

𝛼𝛼
𝛥𝛥2

.     (24)    

 If we neglect the third summand in the right part of (22), we obtain a one-

dimensional nonlinear Schrödinger equation (NLS). The coefficients g  andβ  in this 

equation have the same signs. In this case, the NUSH has stable solutions in the form 

of "light" solitons propagating with linear group velocity𝑣𝑣𝑔𝑔 [16]. From (24) we can see 

that in a nonequilibrium (𝑤𝑤𝑖𝑖𝑖𝑖 > 0 ) environment𝑣𝑣𝑔𝑔 > 𝑐𝑐 . In this case, as in the case of 

exact resonance, the superluminal propagation occurs in the reshaping regime. 

Therefore, there are no contradictions with the principles of the theory of relativity. 

 One-dimensional superluminal NUSH solitons can be observed at propagation 

distances smaller than the diffraction broadening length of these solitons. Therefore, it 

is important to consider the stability of quasi-resonant three-dimensional localized 

pulses - spatio-temporal solitons or light bullets [17 - 20]. For illustration, let us 

consider the case𝑔𝑔, 𝛽𝛽 > 0 .   

 Following [19, 20], we perform the Madelung transformation  

     𝜓𝜓1 = �𝜌𝜌 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝑖𝑖𝑖𝑖/𝑐𝑐),    (25) 
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whereρ  andϕ  are functions to be defined. Substituting (25) into (22), we come to the 

system of equations formally describing the flow of an imaginary quantum fluid: 

     𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻(𝜌𝜌𝛻𝛻𝜑𝜑) = 0,     (26) 

    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝛻𝛻𝜑𝜑)2

2
− 𝑐𝑐

𝜔𝜔
𝑔𝑔𝑔𝑔 = �𝑐𝑐

𝜔𝜔
�
2 𝛻𝛻2�𝜌𝜌
2�𝜌𝜌

,   (27) 

where𝛻𝛻2 = 𝛻𝛻⊥2 + 𝜕𝜕2/𝜕𝜕𝜂𝜂2 is the effective three-dimensional Laplacian, 

     𝜂𝜂 = �
с
𝜔𝜔𝜔𝜔

𝜏𝜏,      (28) 

∇  - is the effective three-dimensional gradient operator in the variables𝒓𝒓⊥ and ,η𝒓𝒓⊥ is 

the radius-vector transverse to the direction of momentum propagation.  

 The hydrodynamic approach based on a system like (26), (27) is very effective 

in the theory of self-focusing and light bullet formation [17 - 23].  

 The continuity equation (10) has an automodel "spherically symmetric" solution 

in the coordinate system ( , ⊥r η  ) [21] 

 𝜌𝜌 = 𝜓𝜓𝑚𝑚2
𝑅𝑅03

𝑅𝑅3
𝑒𝑒𝑒𝑒𝑒𝑒(−𝜁𝜁2/𝑅𝑅2),  𝜑𝜑 = 𝑓𝑓(𝑧𝑧) + 𝜁𝜁2

2
𝑅𝑅′

𝑅𝑅
,   (29) 

where ,𝜁𝜁 = �𝑟𝑟⊥2 + 𝜂𝜂2𝑅𝑅 = 𝑅𝑅(𝑧𝑧) is the characteristic size of the light energy cluster 

under consideration, mψ  is the field amplitude,𝑅𝑅0 is the equilibrium value of the 

parameter ,𝑅𝑅𝑅𝑅(𝑧𝑧) is some function, the dash over the variable R  here and below denotes 

the derivative on the variable . z  

Following [22], we use the near-axis approximation (near-axis approximation) 

in the left-hand side of equation (27), i.e., we write𝑒𝑒−𝑟𝑟2/𝑅𝑅2 ≈ 1 − 𝑟𝑟2/𝑅𝑅2 . Equating 

then in the left and right parts of the expressions at𝑟𝑟0 and𝑟𝑟2 , we come to the equations 

𝑓𝑓 ′ = 𝑐𝑐
𝜔𝜔
𝑔𝑔𝜓𝜓𝑚𝑚2

𝑅𝑅03

𝑅𝑅3
− 3

2
� 𝑐𝑐
𝑛𝑛𝑛𝑛
�
2 1
𝑅𝑅2

 ,   (30)  
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     𝑅𝑅″ = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= � 𝑐𝑐
𝑛𝑛𝑛𝑛
�
2 1
𝑅𝑅3
− 2𝑐𝑐

𝜔𝜔
𝑔𝑔𝜓𝜓𝑚𝑚2

𝑅𝑅03

𝑅𝑅4
.  (31)  

 Equation (31) is an equation of motion of a Newtonian particle of unit mass in 

an external field with "potential energy" ( )U R where R  and z  play the roles of particle 

coordinates and time, respectively.  

 The first summand in the right part of (31) corresponds to diffraction effects. In 

turn, the second summand describes the effect of cubic (Kerr) nonlinearity.  

The conditions for the formation of a stable spatiotemporal soliton are(𝜕𝜕𝜕𝜕/

𝜕𝜕𝑅𝑅)𝑅𝑅=𝑅𝑅0 = 0 ,  (𝜕𝜕2𝑈𝑈/𝜕𝜕𝑅𝑅2)𝑅𝑅=𝑅𝑅0 > 0 , which corresponds to the presence of a local 

minimum in the dependence ( )U R  at the equilibrium value of the bullet radius. From 

(31) it is easy to see that it is impossible to satisfy these conditions, since the 

dependence ( )U R  does not have a local minimum. On the contrary, this dependence has 

a local maximum. This conclusion is consistent with the known fact: at Kerr 

nonlinearity alone, three-dimensional space-time solitons are unstable [24].   

  

CONCLUSION 

 The methodological consideration carried out in the present work shows that 

superluminal optical pulses in nonequilibrium (amplifying) media are unstable, as well 

as nonequilibrium media themselves. This conclusion is consistent with the 

conclusions of previous works, including [6] and [8], although the stability issues are 

investigated here in other ways. On the other hand, the reshaping mechanism, which 

does not contradict fundamental physical principles, allows us to observe superluminal 

impulses at distances smaller than the characteristic lengths of instability development.    
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