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ВВЕДЕНИЕ

В настоящее время одной из важнейших задач
квантовой оптики является генерация различных
неклассических состояний электромагнитного по-
ля. Так, например, в процессе параметрического
излучения света можно получить сжатые состояния
электромагнитного поля [1–5]. Важно, что сжатый
свет может быть использован для сверхчувстви-
тельных измерений с уменьшением уровня шума
ниже стандартного квантового предела [6]. При
этом крайне востребованными оказываются мето-
ды, позволяющие управлять свойствами генериру-
емого света [7–9]. Еще одним интересным и пер-
спективным направлением является анализ нели-
нейных процессов, происходящих под действием
неклассического света. Данное направление явля-
ется еще малоизученным в силу своей новизны, од-
нако по нему уже было проведено несколько экс-
периментальных реализаций, одними из немного-
численных примеров которых служат эксперимен-
ты по возбуждению второй гармоники светом в со-
стоянии сжатого вакуума [10]. Эксперименты по-
казали, что начальное состояние поля и состоя-
ния фотонов сильно влияют на характеристики вы-

ходного сигнала второй гармоники [10]. В боль-
шинстве случаев нелинейные процессы рассмат-
риваются именно в случае классической накачки,
так как квантовая накачка характеризуется огра-
ниченным запасом фотонов, которые могут рас-
ходоваться в процессе взаимодействия в отличие
от классического случая, где число фотонов на-
столько велико, что их убывание пренебрежимо
мало. Тем не менее, физические особенности нели-
нейных процессов, возникающих под действием
неклассических полей, представляют собой крайне
важное направление современных квантовых ис-
следований.

В данной работе в рамках полностью кван-
тового рассмотрения исследовано взаимное вли-
яние одновременно происходящих процессов па-
раметрического излучения света в вырожденном
по частоте режиме и генерации второй гармоники
в нелинейной среде. Нельзя не отметить, что ра-
нее такой полностью квантовый подход уже был
успешно применен в ряде работ [11–13]. Так, в ра-
боте [11] аналитически в пределе малых времен
был описан процесс многократной генерации вто-
рой гармоники. В работе [12] в этом же приближе-
нии в результате анализа процесса генерации выс-
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ших гармоник было показано значительное сжатие
фундаментальной моды. Детальный анализ кванто-
вого состояния поля фундаментальной моды, воз-
никающий в режиме генерации второй гармони-
ки, был проведен в [13]. В данной работе проведен-
ный анализ выходит за рамки приближения малых
времен, а в случае изначально малого запасенного
числа фотонов в системе позволяет найти аналити-
ческое решение. Кроме того, в отличие от [11–13],
в данной работе основное внимание уделено ана-
лизу именно процесса генерации параметрическо-
го излучения, поскольку изначально в фундамен-
тальной моде предполагается вакуум. Исследова-
ние заключается в анализе вырожденного по часто-
те режима, в результате чего возникает нелиней-
ное взаимодействие низкочастотной моды и мо-
ды на удвоенной частоте. На основе полученно-
го решения были исследованы различные режи-
мы динамики системы, приводящие к перераспре-
делению начальной энергии между высокочастот-
ной и низкочастотной модами. Обнаружены новые
эффекты, обусловленные квантовыми свойствами
поля в изначально заселенной моде. Аналитически
получены интегралы движения в системе и проде-
монстрированы особенности изменения среднего
числа фотонов для каждой из мод поля во време-
ни. Рассмотрены различные начальные состояния
каждого из полей, и для каждого из случаев деталь-
но проанализировано изменение статистики фото-
нов в каждой моде в процессе взаимодействия. По-
лучен параметр Шмидта, который количественно
характеризует степень перепутанности генерируе-
мых полевых состояний.

ТЕОРЕТИЧЕСКИЙ ПОДХОД
Исследуется динамика взаимодействия высоко-

частотного и низкочастотного полей в нелинейно-
оптической среде с ненулевой квадратичной
нелинейной восприимчивостью в условиях одно-
временно происходящих процессов вырожденного
по частоте параметрического излучения света
и генерации второй гармоники. Взаимодействие
полей рассматривается в рамках нестационарного
уравнения Шредингера:

𝑖ℏ
𝜕Ψ

𝜕𝑡
= 𝐻̂Ψ. (1)

В исследуемом случае высокочастотное поле
является накачкой для вырожденного по частоте
процесса параметрической генерации, в то время
как фотоны низкочастотного поля стимулируют ге-
нерацию света на удвоенной частоте. Гамильтони-
ан такой системы имеет следующий вид:

𝐻̂ = ℏω0 ̂𝑎+ ̂𝑎 + 2ℏω0 ̂𝑐 + 𝑖ℏΓ ( ̂𝑎+2 ̂𝑐 − ̂𝑐+ ̂𝑎2) , (2)
где ̂𝑎+ и ̂𝑎 — операторы рождения и уничтоже-
ния фотона в низкочастотном поле, соответствен-
но, а ̂𝑐+ и ̂𝑐 — в высокочастотном поле. Коэффици-
ентΓопределяется нелинейной восприимчивостью

среды второго порядка, а частоты ω0 и 2ω0 — это
собственные частоты квантовых полевых осцил-
ляторов, характеризующих низкочастотную и вы-
сокочастотную полевые моды, соответственно. Га-
мильтониан (2) описывает одновременно проис-
ходящие и взаимосвязанные процессы генерации
параметрического излучения и сигнала суммарной
частоты, точнее, второй гармоники, поскольку рас-
сматривается вырожденный режим.

В общем случае нестационарное уравнения
Шредингера (1) решается численно с помощью ме-
тода разложения решения по собственным (фоков-
ским) состояниям φn(𝑞1) и (φ̃k(𝑞2) невзаимодей-
ствующих подсистем низкочастотного и высокоча-
стотного поля, соответственно:

ψ (𝑞1, 𝑞2, 𝑡) =∑Cn,kϕn (𝑞1) ϕ̃k (𝑞2) 𝑒−
𝑖𝐸nk𝑡
ℏ , (3)

где 𝑞i — безразмерная полевая квадратура моды
квантового поля, Cn,k(𝑡) — зависящие от време-
ни амплитуды вероятности обнаружить 𝑛 фотонов
в низкочастотном поле и 𝑘 фотонов в моде второй
гармоники, а суммарная энергия 𝐸nk определяется
следующим образом:

𝐸nkm = ℏω0 (𝑛 + 1
2
) + 2ℏω0 (𝑘 + 1

2
) . (4)

Подстановка решения (3) в уравнение (1) при-
водит к системе дифференциальных уравнений
для амплитуд вероятности Cn,k(𝑡):

̇Cn,k = Γ (−
√
(𝑛 + 1)(𝑛 + 2)𝑘Cn+2,k−1+

+
√
𝑛(𝑛 − 1)(𝑘 + 1)Cn−2,k+1) .

(5)

Решение данной системы было найдено анали-
тически для случая, когда в поле изначально запа-
сено малое количество фотонов.

В общем случае полученное решение позволит
нам рассчитать вероятность обнаружить 𝑛 фотонов
в низкочастотной моде и𝑘фотонов в высокочастот-
ной моде по следующей формуле:

𝑊nk(𝑡) = ∣𝐶nk(𝑡)∣2 . (6)
При этом вероятность обнаружения 𝑛 фотонов
в низкочастотном поле может быть получена
по формуле:

𝑊n(𝑡) =∑
𝑘

∣𝐶nk(𝑡)∣2 . (7)

Аналогичная формула используется для вычис-
ления вероятности обнаружить 𝑘 фотонов в высо-
кочастотной моде:

𝑊k(𝑡) =∑
𝑛

∣𝐶nk(𝑡)∣2 . (8)

В качестве начальных состояний квантового
поля были рассмотрены такие неклассические со-
стояния, как фоковское состояние Φn с различным
числом фотонов 𝑛 и когерентное состояние ∣α⟩,
которое может быть представлено в виде суперпо-
зиции фоковских состояний [14]:
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∣α⟩ =∑
𝑛

exp (−∣α∣
2

2
) 𝑎n
√
𝑛!
Φn. (9)

Данное состояние характеризуется распреде-
лением Пуассона со среднем числом фотонов
⟨𝑁⟩ = ∣α∣2 и дисперсией по числу фотонов 𝐷n = ⟨𝑁⟩.

Для количественной характеристики запутан-
ности полевых мод был рассчитан параметр Шмид-
та 𝐾 [15], который для нашей системы может быть
вычислен следующим образом:

𝐾 = 1
∑

𝑛,𝑎,𝑘,𝑗

𝐶nk𝐶
∗

ak𝐶
∗

nj𝐶aj
. (10)

Чем больше этот параметр, тем выше степень
перепутывания в системе [15, 16]. Минимальное
значение параметра Шмидта равняется 1, что со-
ответствует случаю полной независимости полевых
мод друг от друга.

Для случая, когда изначально вся энергия за-
пасена в высокочастотной моде и превалирует
процесс рождения низкочастотных фотонов, бы-
ло проведено сравнение полученных результатов
со случаем параметрической генерации под дей-
ствием классической накачки. Гамильтониан такой
системы имеет следующий вид:

𝐻̂ = ℏω0 ̂𝑎+ ̂𝑎 + 𝑖ℏΓ ( ̂𝑎+2𝑒−2𝑖ω0𝑡 + ̂𝑎2𝑒2𝑖ω0𝑡) , (11)

где ̂𝑎+ и ̂𝑎 — это операторы рождения и уничтоже-
ния фотона в полевой моде, соответствующей ча-
стоте ω0.

Для случая классической накачки изменение
среднего числа фотонов в квантовой моде со вре-
менем хорошо известно и имеет следующий вид:

⟨𝑁a(𝑡)⟩ = sh2 (2Γ𝑡) . (12)
Поскольку в случае классической накачки в пара-
метр Γ включена амплитуда поля накачки, обоб-
щение данной формулы на квантовый случай при-
водит к выражению для правой части (12) в виде

sh2 (2Γ
√
⟨𝑁c⟩𝑡), где ⟨𝑁c⟩ — среднее число фотонов

на входе высокочастотной квантовой моды.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эффект истощения квантовой накачки

Первоначально в работе рассматривается взаи-
модействие квантовых полей при таком начальном
состоянии ψin1

, что высокочастотное поле находит-
ся в фоковском состоянии с 10 фотонами, а низко-
частотное — в вакууме. В результате анализа изме-
нения энергии каждой из полевых мод наблюдает-
ся периодическая перекачка энергии из одной мо-
ды в другую. Так, на рис. 1 представлены осцилля-
ции среднего числа фотонов в низкочастотной мо-
де, на фоне которых режим генерации сигнала па-
раметрического излучения можно увидеть на самом
начальном этапе взаимодействия.

Для более детального исследования данного
режима сравним воздействие квантовой накачки
с влиянием классической, для изучения которой
был взят гамильтониан (11), соответствующий си-
стеме, состоящей из низкочастотного квантового
поля с параметрической нелинейностью. Из рис. 1
видно, что на начальном этапе энергетические кри-
вые совпадают. Однако в силу того, что в случае
квантовой накачки изначальный запас фотонов ко-
нечен и достаточно мал, с течением времени на-
чинает проявляться все в большей степени эффект
истощения накачки. Он проявляется значитель-
ным отклонением кривой, полученной в кванто-
вом случае, от результата, соответствующего клас-
сической накачке, в которой запас фотонов на-
столько велик, что их убывание никак не проявля-
ется. Как только эффект истощения накачки стано-
вится существенным, возникает режим квазипери-
одического обмена энергией между полевыми мо-
дами.

б

t
t

<Na(t)>

<Na(t)> для ψin1 = |0 >a|10 >c 

sh2(2 √10 Гt)

<Na(t)>
а

10

15

5

0.30.20.1 0.4

2

4

8

12

6

2 4 86

14

0

10

Рис. 1. Сравнение временных зависимостей изменения среднего числа фотонов в низкочастотной моде ⟨𝑁a(𝑡)⟩
в случае численного расчета для системы, состоящей из двух квантовых полевых мод, при начальном условии
ψin1
= ∣0⟩a∣ 10⟩c (а) и в случае аналитически полученной зависимости для параметрического излучения с классической

накачкой (б).
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Эффект достижения равновесного числа фотонов
в модах поля

Также был рассмотрен случай, когда высо-
кочастотное поле в начальный момент времени
находится в когерентном состоянии ψin2

= ∣0⟩a∣α⟩c
со средним числом фотонов ⟨𝑁⟩ = 20. При анали-
зе изменения средних энергий полей на началь-
ных этапах взаимодействия обнаружена перекач-
ка энергии из одной подсистемы в другую, во вре-
мя которой происходит квазипериодическая сме-
на режимов генерации параметрического излуче-
ния и второй гармоники. Эффективность данно-
го процесса постепенно снижается, пока не насту-
пает баланс между процессами генерации фото-
нов в низкочастотной и высокочастотной полевых
модах. Данный эффект соответствует достижению
равновесного числа фотонов в каждой из мод по-
ля, что хорошо проиллюстрировано на рис. 2 в виде
квазипериодического формирования так называе-
мых «плато», свидетельствующих о том, что среднее
число фотонов в каждой из полевых мод практиче-
ски не меняется со временем.

Формирование перепутанного двумодового полевого
состояния

Проанализируем свойства двумодового поле-
вого состояния, формирующегося в интервале вре-
мен, соответствующих «плато». Для любого момен-
та времени полевое состояние должно удовлетво-
рять закону сохранения энергии, согласно которо-
му суммарная энергия, запасенная в системе изна-
чально, сохраняется:

⟨𝑁a(𝑡)⟩ + ⟨𝑁c(𝑡)⟩ = 𝑐𝑜𝑛𝑠𝑡 = ⟨𝑁a(0)⟩ + 2⟨𝑁c(0)⟩. (13)

Более того, анализ системы уравнений Гей-
зенберга для операторов числа фотонов ̂𝑛𝑎 = ̂𝑎+ ̂𝑎
и ̂𝑛𝑐 = ̂𝑐+ ̂𝑐, записанных для гамильтониана (2),
⎧⎪⎪⎨⎪⎪⎩

̂𝑛′a(𝑡) = 2Γ ( ̂𝑐(𝑡) ̂𝑎+2(𝑡) + ̂𝑐+(𝑡) ̂𝑎2(𝑡)) ,
̂𝑛′c(𝑡) = −Γ ( ̂𝑐(𝑡) ̂𝑎+2(𝑡) + ̂𝑐+(𝑡) ̂𝑎2(𝑡))

(14)

позволяет выявить следующий интеграл движения
в операторном виде:

̂𝐼 = ̂𝑛a(𝑡) + 2 ̂𝑛c(𝑡). (15)

Найденный интеграл движения не только вос-
производит закон сохранения энергии (13), опреде-
ляя для выбранного начального условия соотноше-
ние между средним числом фотонов ⟨𝑘⟩ и ⟨𝑛⟩ высо-
кочастотной и низкочастотной мод поля в виде:

⟨𝑘⟩ = 2∣α∣2 − ⟨𝑛⟩
2

, (16)

но и дает возможность получить для любого момен-
та времени дисперсию суммы чисел фотонов в двух
модах, которая определяется начальной дисперси-
ей числа фотонов входного высокочастотного поля:

𝐷n+2k = 4∣α∣2. (17)
Соотношения (16) и (17) показывают, что двойное
распределение по числу фотонов в полевых модах
будет иметь анти-диагональную структуру с харак-
терной шириной, определяемой из (17). Это под-
тверждает и представленное на рис. 3 получен-
ное численно двумерное распределение по чис-
лу фотонов для момента времени, соответствую-
щий «плато». Действительно, распределение име-
ет анти-диагональный вид с широким разбросом
по номерам, квазилинейчатые структуры в рас-
пределении, подчиняющиеся закону (16), исходят
из четных высоких номеров𝑛, соответствующих ва-
кууму в высокочастотном поле.

Представленное на рис. 3 распределение поз-
воляет детально проанализировать статистические
характеристики возникающих «квазистационар-
ных» состояний поля во время установления ба-
ланса между процессами генерации фотонов в рас-
сматриваемых полевых модах. Так, для низкоча-
стотного поля в распределении по числу фотонов
задействованы лишь четные номера состояний,
при этом для низких фоковских состояний ха-
рактерен спад вероятности с увеличением но-
мера состояния. Таким образом, распределение

tt
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ба
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Рис. 2. Временная зависимость среднего числа фотонов в низкочастотной (а) и высокочастотной (б) модах поля в слу-
чае начального состояния ψin2

= ∣0⟩a∣α⟩c, где ∣α∣2 = 20.
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Рис. 3. 2D-распределение вероятности нахождения
𝑛 фотонов в низкочастотной и 𝑘 фотонов в высоко-
частотной моде поля в случае начального состояния
ψin3
= ∣0⟩a∣α⟩c, где ∣α∣2 = 20 для 𝑡 = 6.

низкочастотного поля аналогично распределению
для сжатого состояния [2, 16, 17]. Тем не менее,
для высоких номеров, соответствующих основа-
ниям анти-диагоналей на рис. 3, возникают ло-
кальные пики вероятности. Что касается статисти-
ки фотонов высокочастотного поля, то, с одной
стороны, распределение Пуассона, соответствую-
щее начальному состоянию (9), сильно деформи-
руется, однако при этом его очертания в изначаль-
ной окрестности номеров все же заметны. С дру-
гой стороны, наблюдается сильное проявление ва-
куума, а также низких фоковских состояний с чет-
ными номерами. Такое формирование квазиста-
ционарных состояний и есть проявление особен-
ностей установления баланса между процессами
генерации параметрического излучения и второй
гармоники.

Отметим, что, как и можно было ожидать, рас-
пределение, представленное на рис. 3, однознач-
но свидетельствует о формировании перепутанно-
го двумодового полевого состояния, которое не мо-
жет быть представлено в виде произведения век-
торов состояний в отдельных модах. Для анали-
за квантовых корреляций в системе был рассчитан
параметр Шмидта (10), который показал, что мо-
ды в процессе нелинейного взаимодействия харак-
теризуются высокой степенью запутывания вплоть
до тех пор, пока в системе не наступит баланс.
В этом случае параметр Шмидта выходит на кон-
кретное значение, примерно равное 5, в окрестно-
сти которого осциллирует с малой амплитудой.

ЗАКЛЮЧЕНИЕ
Таким образом, изучена динамика взаимно-

го влияния процессов генерации второй гармо-
ники и параметрического излучения, одновремен-

но происходящих в нелинейной среде. Продемон-
стрирован эффект истощения квантовой накачки
при сравнении динамики среднего числа фотонов
в низкочастотной моде, в случае квантовой и клас-
сической высокочастотной накачки. Обнаружено
квазипериодическое формирование «плато» на за-
висимостях средней энергии в высокочастотном
и низкочастотном полях от времени, причем в дан-
ном режиме среднее число фотонов в каждой из по-
левых мод практически не меняется со временем.
Продемонстрировано формирование квазистаци-
онарного двумодового полевого состояния, возни-
кающего за счет установления баланса между рас-
сматриваемыми процессами, и выявлены его ста-
тистические характеристики. Показано, что в про-
цессе взаимодействия полевые моды оказывают-
ся сильно перепутаны, причем максимальная пе-
репутанность достигается именно для формирую-
щегося квазистационарного двумодового полевого
состояния в режиме баланса энергии между двумя
рассматриваемыми нелинейными процессами.
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We analyzed the mutual influence of simultaneous processes of second harmonic generation and parametric
down conversion within the framework of a fully quantum approach. The effect of depletion of quantum
pumping has been revealed. The effect of establishing a balance between the processes under consideration
and achieving an equilibrium number of photons in the field modes is found. The generation of a strongly
entangled two-mode field is demonstrated.
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