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ВВЕДЕНИЕ

Униполярные, полуцикловые, предельно ко-
роткие импульсы (ПКИ) являются пределом сокра-
щения длительности электромагнитных импульсов
в заданном спектральном диапазоне [1]. Они содер-
жат полуволну поля одной полярности и могут об-
ладать ненулевой электрической площадью, опре-
деляемой как интеграл от напряженности электри-
ческого поля 𝐸(𝑡) по времени 𝑡 в заданной точке
пространства [2–4]:

𝑆E = ∫ 𝐸(𝑡)𝑑𝑡. (1)

Интерес к получению подобных импульсов ак-
тивно возрос в последнее время в связи с их воз-
можными многочисленными применениями для
сверхбыстрого управления свойствами квантовых
систем, голографии со сверхвысоким временным
разрешением и др. приложений, см. обзоры [1, 5–8]
и монографию [9]. Так, полуцикловые квазиуни-
полярные импульсы аттосекундной длительности
(порядка сотен аттосекунд) в оптическом диапа-
зоне могут быть получены при когерентном сложе-
нии монохроматических составляющих широко-
полосной накачки [10], а также при быстром тормо-

жении пучка релятивистских электронов в тонких
мишенях [11, 12]. В терагерцовом диапазоне уни-
полярные импульсы могут быть получены при раз-
личных нелинейных процессах в плазме [13–16],
сверхизлучении остановленной поляризации [17]
и др. способами, см. обзоры [1, 5–9].

Для одноцикловых и полуцикловых ПКИ
импульсов такой малой длительности по-иному
выглядят особенности когерентного распро-
странения и взаимодействия с резонансными
средами, в отличие от случая длинных мно-
гоцикловых импульсов [10, 18–22]. Изучение
взаимодействия ПКИ с веществом привело
к предсказанию ряда новых явлений в опти-
ке, таких как самокомпрессия импульса [23],
расталкивание полуволн противоположной по-
лярности [24], самоостановка света [25] и др.
Использование последовательности ПКИ, коге-
рентно распространяющихся в резонансной среде,
когда длительность импульсов короче времени
релаксации поляризации среды 𝑇2, приводит к со-
зданию и сверхбыстрому управлению решетками
разности населенностей и волнами поляриза-
ции среды на временах порядка длительности
импульсов [26–42].
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При этом также возможно создание так называ-
емых динамических микрорезонаторов, когда пара
предельно коротких импульсов сталкивается в сре-
де [43–45]. В этом случае разность населенностей
в области перекрытия импульсов имеет почти по-
стоянное значение, а по краям от нее возникает
решетка разности населенностей. Также возмож-
но, что разность населенностей имеет другое по-
стоянное значение, отличное от значения в области
перекрытия импульсов. Таким образом, возникает
микрорезонатор с размером порядка длины волны
резонансного перехода. Интерес к таким структу-
рам связан с активным изучением в последнее вре-
мя так называемых временных и пространственно-
временных фотонных кристаллов, то есть сред, по-
казатель преломления которых быстро меняется
во времени или в пространстве и во времени соот-
ветственно [46–49].

В данной работе приводится обзор последних
исследований авторов в области создания и управ-
ления решетками населенностей и динамических
микрорезонаторов с помощью последовательности
предельно коротких импульсов, когерентно взаи-
модействующих со средой и сталкивающихся в сре-
де. Приводится анализ динамики микрорезона-
торов при столкновении 2π подобных импульсов
самоиндуцированной прозрачности (СИП). При
этом в отличие от ранних исследований, в кото-
рых было показано, что динамические резонаторы
не возникают при столкновении импульсов одной
полярности, в данной работе показано, что данное
ограничение снимается при добавлении к импуль-
су заднего фронта противоположной полярности.

СОЗДАНИЕ РЕШЕТОК НАСЕЛЕННОСТЕЙ
ПРИ КОГЕРЕНТНОМ ВЗАИМОДЕЙСТВИИ

ПРЕДЕЛЬНО КОРОТКИХ ИМПУЛЬСОВ
СО СРЕДОЙ

Возможность создания решеток атомных насе-
ленностей при когерентном взаимодействии свето-
вых импульсов со средой была обнаружена доволь-
но давно в первых экспериментах по фотонному эху
[26, 27]. Однако в этих исследованиях использова-
лись длинные многоцикловые импульсы света на-
носекундной длительности, которые одномомент-
но не перекрывались в среде [28, 29]. Очевидно ис-
пользование длинных многоцикловых импульсов
не позволяет осуществить сверхбыстрое управле-
ние решетками разности населенностей. Создан-
ные таким образом решетки использовались в эхо-
голографии [30, 31] и для измерения времени ре-
лаксации поляризации среды 𝑇2 [32].

Другой альтернативный, более распространен-
ный способ создания решеток основан на интерфе-
ренции длинных монохроматических лазерных по-
лей, перекрывающихся в среде [50]. В таком спосо-
бе очевидно также нельзя осуществить сверхбыст-

рое управление решетками, например, их стира-
ние или мультиплицирование пространственной
частоты.

Создание и сверхбыстрое управление решет-
ками можно осуществить с помощью предельно
коротких импульсов — одноцикловых и полуцик-
ловых, когерентно взаимодействующих со средой.
Впервые данная возможность была показана теоре-
тически в работах авторов [33–40], когда импульсы
не перекрываются в среде [33–36] и перекрываются
в среде [37, 39, 40], см. также обзоры [41, 42]. Созда-
ние таких решеток происходит за счет интерферен-
ции волн поляризации среды, наведенных преды-
дущим импульсом, с последующим импульсом.

Альтернативное объяснение создания таких ре-
шеток, справедливое при малых амплитудах воз-
буждающих импульсов и в разреженной среде, ко-
гда среда слабо возбуждена, основано на интерфе-
ренции площадей импульсов или интерференции
амплитуд связанных состояний среды [51]. Обзор
последних результатов этих исследований приве-
ден в [41, 42], и мы не будем на этом останавли-
ваться.

ДИНАМИЧЕСКИЕ МИКРОРЕЗОНАТОРЫ
И ВРЕМЕННЫЕ ФОТОННЫЕ КРИСТАЛЛЫ

ПРИ СТОЛКНОВЕНИИ ПРЕДЕЛЬНО
КОРОТКИХ ИМПУЛЬСОВ В СРЕДЕ

В работе [43] впервые была показана возмож-
ность формирования так называемых динамиче-
ских микрорезонаторов, возникающих при столк-
новении π/2 подобных униполярных импульсов
прямоугольной формы в двухуровневой резонанс-
ной среде. При этом, как показали численные рас-
четы, в области перекрытия импульсов разность
населенностей имеет постоянное значение — «све-
тоиндуцированный канал», а вне этой области ме-
няется скачком и имеет другое значение. В этом
смысле можно говорить о формировании дина-
мического микрорезонатора в среде. Размер такой
структуры порядка пространственного размера им-
пульса (длины волны резонансного перехода).

В последующей работе [44] была рассмотрена
динамика такого микрорезонатора при столкнове-
нии уже 2π подобных импульсов СИП прямоуголь-
ной формы и длительности порядка 1 фс. Числен-
ные расчеты показали возможность формирования
и управления динамическими микрорезонатора-
ми при увеличении числа столкновений импульсов
в среде. Подробные исследования, проведенные
в работе [45] показали, что форма и параметры ре-
зонатора существенно зависят от формы сталки-
вающихся импульсов и от крутизны фронтов —
чем круче фронты, тем больше глубина модуляции
микрорезонатора. Эти исследования проводились,
когда среда моделировалась в двухуровневом при-
ближении. Численные расчеты, проведенные в ра-
боте [52], показали возможность наведения мик-
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рорезонаторов при столкновении униполярных
импульсов прямоугольной и треугольной формы
в трехуровневой среде.

В упомянутых исследованиях сталкивающиеся
импульсы были униполярными. Возможность со-
здания микрорезонаторов с брэгговскими зеркала-
ми была показана в статье [53]. В этой работе па-
ра одноцикловых аттосекундных импульсов, состо-
ящих из двух полуволн противоположной поляр-
ности, сталкивались в центре среды. Параметры
импульсов были подобраны так, чтобы импульсы
действовали подобно 4π импульсам СИП. Числен-
ные расчеты показали, что в центре среды, где им-
пульсы сталкиваются, среда остается практически
невозбужденной. А по краям от этой области фор-
мируются квазипериодические решетки населен-
ностей, длиной всего в несколько периодов и лока-
лизованные в окрестности области перекрытия им-
пульсов.

Пространственная частота данных структур
возрастала с ростом числа столкновений импуль-
сов. Таким образом, в среде возникал локальный
микрорезонатор с брэггоподобными зеркалами.
Оценки показали, что коэффициент отражения
таких структур на длине волны, соответствующей
максимуму брэгговского отражения, составлял
порядка 30%.

Детальный анализ динамики таких микроре-
зонаторов, возникающих при столкновении полу-
цикловых аттосекундных импульсов, был проведен
на основе численного решения системы уравнений
Максвелла–Блоха в двух- и трехуровневой среде
в работе [54]. В работе [55] показана возможность
создания временных фотонных кристаллов при
столкновении пары полуцикловых аттосекундных
импульсов в трехуровневой среде. Практическая
реализация таких сред с быстро меняющимся пока-
зателем преломления трудно осуществима на прак-
тике за счет обычных нелинейно-оптических ме-
ханизмов, так как они очень медленные [56]. Для
этой цели разработаны ряд экзотических мате-
риалов с необычными свойствами [56, 57]. Од-
нако, приведенные нами исследования показы-
вают возможность реализации пространственно-
временных фотонных кристаллов в двух- и много-
уровневых резонансных средах с помощью после-
довательности предельно коротких импульсов, так
как при этом происходит создание решеток насе-
ленностей, т. е. изменение показателя преломления
среды в пространстве и во времени.

Упомянутые исследования динамики таких
структур проводились за счет численного реше-
ния системы уравнений для матрицы плотности
совместно с волновым уравнением для напряжен-
ности электрического поля. Какое-либо анали-
тическое описание отсутствовало. В работе [58]
был предложен простой аналитический подход,
показывающий возможность создания таких мик-

рорезонаторов. Он основан на приближенном
решении временного уравнения Шредингера
в приближении внезапных возмущений, когда
длительность импульса считалась малой по срав-
нению с периодом резонансного перехода среды.
Амплитуда поля возбуждающих импульсов также
считалась малой. В таком подходе среда считалась
разреженной и слабо возбужденной, динамика
волн поляризации не учитывалась.

Более подробный подход вне рамок при-
ближения внезапных возмущений был описан
в [59]. Результаты данного анализа показывают
возможность создания микрорезонаторов с брэгго-
подобными зеркалами (разность населенностей
меняется в пространстве по гармоническому
закону слева и справа от области перекрытия
импульсов) на каждом резонансном переходе сре-
ды. В случае униполярных импульсов необычной
формы (прямоугольной) в работе [52] также была
показана возможность наведения микрорезонато-
ров.

Детально аналитический подход, показываю-
щий создание таких микрорезонаторов, основан-
ный на приближенном решении уравнения Шре-
дингера с помощью теории возмущений, представ-
лен в работе [60]. Результаты расчетов населенно-
стей (добротности микрорезонатора), выполнен-
ные с помощью данного подхода, согласуются с ре-
зультатами численного решения системы уравне-
ний для матрицы плотности среды, когда амплиту-
да возбуждающих импульсов мала.

Обсудим кратко основную идею данного подхо-
да. Он основан на приближенном решении урав-
нения Шредингера в приближении слабого поля,
когда применима теория возмущений. Среда счи-
тается разреженной, при этом влиянием соседних
атомов друг на друга и изменением формы падаю-
щих импульсов при распространении в среде мож-
но пренебречь. Также в указанных приближениях,
как показано ранее [36–41], задачу о взаимодей-
ствии последовательности предельно коротких им-
пульсов с протяженной средой, можно свести к за-
даче о взаимодействии этих импульсов с единичной
квантовой системой при изменении задержки меж-
ду импульсами. В первом порядке теории возму-
щений выражение для населенности связанных со-
стояний с номером 𝑘 после прохождения импульса
имеет вид [61]

𝑤k =
𝑑2

1k

ℏ
∣∫ 𝐸(𝑡)𝑒𝑖ω1k𝑡𝑑𝑡∣

2
.

В этом выражении, 𝑑1k — дипольный момент пере-
хода, ω1k — частота резонансного перехода среды.
Для простоты считаем, что на среду воздействует
пара полуцикловых импульсов (задним фронтом
противоположной полярности пренебрегаем),
следующих с задержкой Δ: 𝐸(𝑡) = 𝐸01 exp [−𝑡2/τ2

1] +

+𝐸02 exp [−(𝑡 − Δ)2/τ2
2]. Тогда выражение для
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населенности в указанных выше приближени-
ях может быть записано в виде (при условии:
ω1kτ1,2 ≪ 1 [36, 41, 58–60]:

𝑤k =
𝑑2

1k𝑆
2
E,1

ℏ2 +

𝑑2
1k𝑆

2
E,2

ℏ2 + 2
𝑑2

1k

ℏ2 𝑆E,1𝑆E,2 cosω1kΔ, (2)

в котором 𝑆E,1,2 = 𝐸01,2τ1,2
√

π — электрические пло-
щади импульсов.

В случае протяженной среды задержка Δ ∝ 𝑧/𝑐
(𝑐 — скорость света) пропорциональна моменту
времени, когда второй импульс приходит в точ-
ку среды, имеющую координату 𝑧 [36, 41]. Ес-
ли импульсы сталкиваются в какой-либо точ-
ке среды, то для расчета населенностей в этой
точке (и вблизи нее) надо положить задержку
Δ = 0 в выражении (2), что приводит к соотно-

шению 𝑤k =
𝑑2

1k

ℏ2
(𝑆E,1 + 𝑆E,2)

2. Оно показывает, что
в этой области населенности определяются квад-
ратом суммарной электрической площади импуль-
сов.

Вне области перекрытия импульсов для расче-
та населенностей надо пользоваться общим соот-
ношением (2). Из него видно, что выражение для
населенности𝑤k представляет собой сумму квадра-
тов электрических площадей импульсов и содержит

«интерференционный член» 2
𝑑2

1k

ℏ2 𝑆E,1𝑆E,2 cosω1kΔ,

т. е. периодически зависит от задержки между им-
пульсами Δ. В этом смысле, как показано в рабо-
те [36], можно говорить о том, что воздействие па-
ры униполярных импульсов в приближении слабо-
го поля определяется интерференцией электриче-
ских площадей импульсов.

Также это выражение показывает возникнове-
ние периодической решетки населенностей гар-
монической формы вне области перекрытия им-
пульсов. Несмотря на простоту, результаты данно-
го подхода имеют эвристическую силу, так как они
предсказывают возможность формирования мик-
рорезонатора с брэггоподобными зеркалами в виде
решеток населенностей гармонической формы (2)
на каждом резонансном переходе многоуровневой
среды. Глубина модуляции этих решеток определя-
ется квадратом электрической площади импульсов.
Физически возникновение данных решеток связа-
но с интерференцией электрических площадей им-
пульсов в приближении слабого поля.

В сильных полях и плотных средах, когда ста-
новится не применимы указанные выше прибли-
жения, необходимо рассматривать более сложные
модели, основанные на материальных уравнени-
ях для многоуровневой среды совместно с вол-
новым уравнением для напряженности электриче-
ского поля. При этом обычно для описания среды
используют двухуровневое приближение, которое
может оказаться не пригодным в случае предель-

но коротких импульсов. Данный вопрос обсуждал-
ся в работах [62–64]. Численные расчеты, прове-
денные в этих работах, показали, что эффект воз-
никновения решеток, форма которых близка к гар-
монической, как предсказывают результаты, полу-
ченные в рамках теории возмущений, сохраняет-
ся и в трехуровневой среде. При этом в числен-
ных расчетах параметры трехуровневой среды со-
ответствовали атомам Rb87 [63], а также атомар-
ному водороду [54, 64], что показывает возмож-
ность наблюдения эффекта в реальных системах.
Также результаты численного решения временно-
го уравнения Шредингера для одномерной кванто-
вой ямы с учетом ионизации показали сохранение
решеток [65].

С практической точки зрения возникновение
решеток хорошего качества (например, по форме,
близкой к гармонической) возможно, когда ос-
новное состояние среды несильно опустошается,
т. е. среда не сильно возбуждается и ионизация
не значительна. В этом случае среда должна
не сильно возбуждаться под действием импульсов.
Такой критерий легко установить в случае, когда
длительность полуциклового импульса τ короче
характерного времени 𝑇g, связанного с энер-
гией основного состояния 𝐸1, τ < 𝑇g = 2πℏ/𝐸1.
Среда будет несильно возбуждаться и иониза-
ция незначительна, если электрическая площадь
падающего импульса 𝑆E меньше характерной атом-
ной меры площади 𝑆E < 𝑆at = ℏ/𝑒𝑟, где 𝑒 — заряд
электрона, 𝑟 — характерный размер квантовой
системы [22]. В численных расчетах, проведен-
ных в работе [64] для параметров, соответство-
вавших атому водорода, данное условие было
выполнено.

Физически сохранение эффекта решеток
и микрорезонаторов в многоуровневой среде легко
понять, если вспомнить физический механизм
их формирования [34–36, 41]. Проходящий по сре-
де предельно короткий импульс оставляет после
себя среду в суперпозиционном квантовом состоя-
нии, в котором когерентность среды (поляризация
среды), т. е. недиагональные элементы матрицы
плотности осциллируют на каждом резонанс-
ном переходе среды. Это приводит к появлению
волн поляризации среды, которые существуют
в течение времени релаксации 𝑇2. Эти колебания
поляризации существуют всегда независимо от то-
го, сколько уровней среды учитывается два или
более. Последующий импульс будет когерентно
управлять этими осцилляциями дипольного мо-
мента, что приведет к возникновению решетки
разности населенностей на каждом резонансном
переходе среды, как отмечалось выше. Поэтому,
приближение двухуровневой среды представляется
оправданным в подобных задачах. Поэтому, ниже
мы будем использовать для простоты двухуровне-
вое приближение.
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В случае большой амплитуды поля динами-
ка микрорезонаторов изучалась с помощью чис-
ленного решения системы уравнений Максвелла-
Блоха для двухуровневой среды [60]. В расчетах
использовались полностью униполярные импуль-
сы гауссовой формы длительностью сотни атто-
секунд. При этом импульсы действовали подоб-
но 2π импульсам СИП. Результаты численных рас-
четов показали невозможность создания микроре-
зонаторов, когда сталкивающиеся импульсы име-
ли одинаковую полярность. Когда импульсы име-
ли противоположную полярность, в области пере-
крытия импульсов возникал локальный микроре-
зонатор. Пространственный период наводимых ре-
шеток возрастал с ростом числа столкновений. Бо-
лее сложная динамика микрорезонаторов возника-
ла при столкновении 4π импульсов.

Результаты этих исследований [60] показыва-
ют, что формирование микрорезонаторов возмож-
но, когда сталкивающиеся импульсы имеют разную
полярность. Снять указанные ограничения можно,
если использовать не полностью униполярный им-
пульс, как в работе [60], а квазиуниполярный суб-
цикловый импульс, содержащий мощную полувол-
ну поля и задние фронты противоположной по-
лярности. Сказанное иллюстрируется результата-
ми численного расчета, представленного в следую-
щем разделе.

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО
МОДЕЛИРОВАНИЯ

Для изучения динамики решеток разности на-
селенностей при столкновении последовательно-
сти 2π-подобных импульсов СИП в резонансной
среде проводилось численное решение системы
уравнений Максвелла-Блоха, включающей в себя
материальные уравнения для недиагонального эле-
мента матрицы плотности ρ12, разности населенно-
стей среды (инверсии) 𝑛 = ρ11 − ρ22 двухуровневой
среды, ее поляризации 𝑃 и напряженности элек-
трического поля 𝐸 [66, 67]:

𝜕ρ12(𝑧, 𝑡)

𝜕𝑡
= −

ρ12(𝑧, 𝑡)

𝑇2
+ 𝑖ω0ρ12(𝑧, 𝑡)−

−
𝑖

ℏ
𝑑12𝐸(𝑧, 𝑡)𝑛(𝑧, 𝑡),

(3)

𝜕𝑛(𝑧, 𝑡)

𝜕𝑡
= −

𝑛(𝑧, 𝑡) − 𝑛0(𝑧)

𝑇1
+

+
4
ℏ
𝑑12𝐸(𝑧, 𝑡) Im ρ12(𝑧, 𝑡),

(4)

𝑃(𝑧, 𝑡) = 2𝑁0𝑑12 Re ρ12(𝑧, 𝑡), (5)

𝜕2𝐸(𝑧, 𝑡)

𝜕𝑧2 −
1
𝑐2

𝜕2𝐸(𝑧, 𝑡)

𝜕𝑡2
=

4π
𝑐2

𝜕2𝑃(𝑧, 𝑡)

𝜕𝑡2
. (6)

Данная система уравнений (3)–(6) содержит
следующие параметры (значения некоторых из них
приведены в таблице 1): 𝑧 — продольная координа-
та, 𝑐 — скорость света в вакууме, 𝑡 — время, 𝑁0 —
концентрация двухуровневых атомов, ℏ — приве-
денная постоянная Планка,ω0 — частота резонанс-
ного перехода среды (λ0 = 2π𝑐/ω0 — длина волны
резонансного перехода), 𝑑12 — матричный элемент
дипольного момента резонансного перехода среды,
𝑛0 — разность населенностей среды при отсутствии
электрического поля, причем 𝑛0 = 1 для поглощаю-
щей среды. Возможность применения двухуровне-
вого приближения в подобных задачах обсуждалась
выше и в работах [36, 41, 52–55, 58–60, 62–65].

Для создания последовательности импуль-
сов использовались нулевые граничные условия
на концах области интегрирования, которая имела
длину 𝐿 = 12λ0. Двухуровневая среда помещалась
в центре области интегрирования между точками
с координатами 𝑧1 = 4λ0 и 𝑧2 = 8λ0. В начальный
момент времени в среду слева направо и справа
налево из вакуума запускалась пара субцикловых
импульсов, выражение для которых имеет вид:

𝐸(0, 𝑡) = 𝐸01𝑒
−
(𝑡−τ1)

2

τ2 cos (ω0 [𝑡 − τ1]) , (7)

𝐸(𝐿, 𝑡) = 𝐸02𝑒
−
(𝑡−τ2)

2

τ2 cos (ω0 [𝑡 − τ2]) . (8)
Здесь τ1,2 — задержки, которые регулируют момент
встречи импульсов. Импульсы действовали подоб-
но 2π импульсам СИП и имели одну полярность,
но содержали задние фронты противоположной
полярности. Одномерное распространение полу-
цикловых импульсов на большие расстояния может
быть реализовано в коаксиальных волноводах [68].

В таком случае импульсы сталкивались в цен-
тре среды, затем выходили из нее. На границах

Таблица 1. Параметры задачи, использованные в численном моделировании

Длина волны резонансного перехода среды λ0 = 700 нм
Дипольный момент перехода 𝑑12 = 20 Д
Время релаксации разности населенностей 𝑇1 = 10 пс
Время релаксации поляризации 𝑇2 = 5 пс
Концентрация атомов 𝑁0 = 1018 см−3

Амплитуда поля 𝐸01 = 𝐸02 = 259 000 ед. СГС
Длительность импульса возбуждения τ τ = 580 ас
Параметры задержки τ1 = τ2 = 3τ
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области интегрирования размещались идеальные
зеркала. Импульсы отражались от них и вновь воз-
вращались в среду. Проводилось численное реше-
ние системы уравнений (2)–(5) при параметрах,
указанных в таблице ниже, с начальными условия-
ми в виде импульсов (6)–(7). Строились и анализи-
ровались пространственно-временные зависимо-
сти поляризации и разности населенностей среды.
Параметры численного моделирования указаны
в таблице. Длина волны перехода в сотни наномет-
ров могут быть реализованы, например в атомных
парах или квантовых точках. Однако, результаты
теоретического рассмотрения на основе уравне-
ния Шредингера, проведенного выше, показыва-
ют возможность формирования решеток и резона-
торов и носят общий характер. Концентрация ча-
стиц влияет на отражательную способность реше-
ток, и их форма может искажаться при ее больших
значениях [53, 54, 60].

На рис. 1 представлена пространственно-вре-
менная динамика разности населенностей и по-
ляризации. После первого столкновения импульса
около момента времени порядка 23 фс среда оста-
ется в слабо возбужденном состоянии. Микрорезо-
натор начинает формироваться после 2-го столк-
новения, произошедшего в районе момента вре-
мени 50 фс, разность населенностей в центре по-
чти постоянна, а по краям изменяется скачком.
Вне области перекрытия импульсов среда остает-
ся в невозбужденном состоянии со значением ин-
версии 𝑛 = 1. После последующих столкновений
в моменты времени 75, 100, 125 фс и т. д. фор-
ма микрорезонатора становится более выражен-
ной. Отдельный интерес представляет формирова-

z/
λ 0

z/
λ 0

t, фс

n(z,t)

P(z,t), ед. СГСЭ

t, фс

–

–

б

а

Рис. 1. Динамика разности населенностей 𝑛(𝑧, 𝑡) (a);
динамика поляризации 𝑃(𝑧, 𝑡) при столкновении па-
ры субцикловых импульсов СИП одинаковой поляр-
ности (б), 𝐸01 = 𝐸02, в центре среды в точке 𝑧 = 6λ0.
Параметры расчета указаны в табл. 1.

ние сложных структур поляризации, образующих-
ся в области микрорезонатора, см. рис. 1б. Такие
структуры поляризации существуют в течение вре-
мени 𝑇2 и могут излучать световые волны в разных
направлениях.

Результаты расчетов, когда импульсы имели
противоположную полярность, 𝐸01 = −𝐸02, пред-
ставлены на рис. 2. Остальные параметры такие же,
как на рис. 1. Видно, что смена полярности одного
из импульсов влияет на динамику системы. В этом
случае микрорезонатор формируется уже сразу по-
сле первого столкновения импульсов. В центре сре-
ды, в точке 𝑧 = 6λ0, система находится в невоз-
бужденном состоянии, а по краям от нее разность
населенности изменяется скачком. С ростом чис-
ла столкновений пространственная частота реше-
ток увеличивается. При этом в области локализа-
ции микрорезонатора образуются сложные струк-
туры поляризации в виде стоячих волн. Взаимодей-
ствие падающих импульсов возбуждения с этими
колебаниями поляризации является причиной уве-
личения пространственной частоты решеток насе-
ленностей [34, 35]. Похожее поведение разности
населенностей наблюдалось в [60] при столкнове-
нии полностью униполярных импульсов противо-
положной полярности.

ЗАКЛЮЧЕНИЕ
Исследование взаимодействия полуцикловых

импульсов с резонансными средами привело
к предсказанию и детальному исследованию
нового явления — возможности формирования
и сверхбыстрого управления динамическими
микрорезонаторами, возникающих при столк-

z/
λ 0

z/
λ 0

t, фс

P(z,t), ед. СГСЭ

–

–

n(z,t)

t, фс

а

б

Рис. 2. Динамика разности населенностей 𝑛(𝑧, 𝑡) (a);
динамика поляризации 𝑃(𝑧, 𝑡) при столкновении па-
ры субцикловых импульсов СИП противоположной
полярности (б), 𝐸01 = −𝐸02, в центре среды в точке
𝑧 = 6λ0. Параметры расчета указаны в табл. 1.
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новении предельно коротких импульсов в среде.
С ростом числа столкновений импульсов парамет-
рами данного микрорезонатора можно управлять.
Показано, что микрорезонатор может возникать,
когда сталкивающиеся 2π подобные субцик-
ловые импульсы СИП имеют как одинаковую,
так и противоположную полярность, в отличие
от результатов ранних исследований [60].

Исследованный эффект представляет интерес
для остановки и хранения импульсов света в сре-
де [25], создания сверхбыстрых аттосекундных
оптических переключателей [69], голографии
со сверхвысоким временным разрешением [70],
создания пространственно-временных фотонных
кристаллов нового типа с управляемыми парамет-
рами [46–49], а также в физике фотонных кристал-
лов [71–73]. Полученные результаты открывают
новые направления исследований в аттосекундной
физике и оптике предельно коротких импуль-
сов и показывают возможность сверхбыстрого
управления состоянием среды на сверхкоротких
временных масштабах с помощью субцикловых
световых импульсов.

Исследование поддержано грантом Российско-
го научного фонда в рамках проекта № 23-12-00012
(создание динамических резонаторов) и Государ-
ственным заданием ФТИ им. А. Ф. Иоффе, тема
0040-2019-0017 (создание решеток разности насе-
ленностей).
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Microcavities and photonic time crystals formed by collision of half-cycle light pulses
in a resonant medium
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We discussed the authors’ recent research into the generation and ultrafast control of light-induced
dynamic microcavities and photonic time crystals created by the collision of half-cycle pulses in a medium.
The possibility of guiding microcavities during the collision of self-induced transparency half-cycle pulses
of the same polarity has been demonstrated.

Keywords: unipolar pulses, half-cycle pulses, dynamic microcavities, photonic time crystals, population
density gratings, coherent effects
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