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INTRODUCTION 

Unipolar, half-cycle, limit short pulses (LSPs) are the limit of shortening the 

duration of electromagnetic pulses in a given spectral range [1]. They contain a half-

wave field of one polarity and can have a non-zero electric area defined as the integral 

of the electric field strength𝐸𝐸�⃗ (𝑡𝑡) over time𝑡𝑡 at a given point of space [2-4]: 

𝑆𝑆𝐸𝐸 = ∫𝐸𝐸�⃗ (𝑡𝑡)𝑑𝑑𝑑𝑑. (1) 

The interest in obtaining such pulses has increased recently in connection with 

their possible numerous applications for ultrafast control of properties of quantum 

systems, holography with ultrahigh temporal resolution and other applications, see 

reviews [1,5-8] and monograph [9]. Thus, semi-cyclic quasiunipolar pulses of 

attosecond duration (of the order of hundreds of attoseconds) in the optical range can 

be obtained by coherent addition of monochromatic components of broadband 

pumping [10], as well as by fast braking of a beam of relativistic electrons in thin 

targets [11,12]. In the terahertz range, unipolar pulses can be produced by various 

nonlinear processes in plasma [13-16], superradiation of stopped polarization [17], and 

other methods, see reviews [1, 5-9]. 

For single-cycle and half-cycle PKI pulses of such a short duration, the features 

of coherent propagation and interaction with resonant media look differently, in 

contrast to the case of long multicycle pulses [10,18-22]. The study of the interaction 

of PKI with matter has led to the prediction of a number of new phenomena in optics, 

such as self-compression of the pulse [23], splitting of half-waves of opposite polarity 

[24], self-stopping of light [25], etc.  The use of a sequence of PKIs coherently 

propagating in a resonant medium when the pulse duration is shorter than the 
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polarization relaxation time of the medium𝑇𝑇2 , leads to the creation and ultrafast control 

of population difference gratings and polarization waves of the medium at times of the 

order of the pulse duration [26-42].  

It is also possible to create so-called dynamical microresonators when a pair of 

extremely short pulses collide in the medium [43-45]. In this case, the population 

difference in the overlap region of the pulses has an almost constant value, and a lattice 

of the population difference appears at its edges. It is also possible that the population 

difference has another constant value different from the value in the pulse overlap 

region. Thus, a microresonator with a size on the order of the wavelength of the 

resonance transition arises. The interest in such structures is related to the active study 

recently of the so-called temporal and spatiotemporal photonic crystals, i.e., media 

whose refractive index changes rapidly in time or in space and time, respectively [46-

49]. 

This paper gives an overview of the authors' recent research in the field of creation 

and control of population gratings and dynamic microresonators by means of a 

sequence of extremely short pulses coherently interacting with the medium and 

colliding in the medium. We present an analysis of the dynamics of microresonators 

when colliding2𝜋𝜋 such self-induced transparency (SIT) pulses. In this case, in contrast 

to earlier studies in which it was shown that dynamical resonators do not arise when 

pulses of the same polarity collide, it is shown in this work that this limitation is 

removed when a trailing edge of opposite polarity is added to the pulse. 
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CREATION OF POPULATION LATTICES AT COHERENT INTERACTION OF 

EXTREMELY SHORT PULSES WITH THE MEDIUM 

The possibility of creating atomic population lattices in the coherent interaction 

of light pulses with the medium was discovered quite a long time ago in the first photon 

echo experiments [26-27]. However, these studies used long multicycle pulses of light 

of nanosecond duration, which did not overlap in the medium at one time [28,29]. 

Obviously, the use of long multi-cycle pulses does not allow for ultrafast control of the 

population difference gratings. The gratings created in this way were used in echo 

holography [30,31] and for measuring the relaxation time of the medium polarization𝑇𝑇2 

[32]. 

Another alternative, more common method of grating creation is based on the 

interference of long monochromatic laser fields overlapping in the medium [50]. In this 

method it is obviously also impossible to realize ultrafast control of gratings, for 

example, their erasure or spatial frequency multiplication.  

Creation and ultrafast control of lattices can be realized by extremely short pulses 

- one-cycle and half-cycle pulses coherently interacting with the medium. This 

possibility was first shown theoretically in the works of the authors [33-40], when the 

pulses do not overlap in the medium [33-36] and overlap in the medium [37,39-40], 

see also reviews [41-42]. The creation of such lattices occurs due to the interference of 

the polarization waves of the medium induced by the previous pulse with the 

subsequent pulse. 

An alternative explanation for the creation of such lattices, which is valid at small 

amplitudes of excitation pulses and in a sparse medium when the medium is weakly 



5 
 

excited, is based on the interference of the pulse areas or the interference of the 

amplitudes of the bound states of the medium [51]. A review of recent results of these 

studies is given in [41,42], and we will not dwell on it.  

 

DYNAMIC MICRORESONATORS AND TEMPORARY PHOTONIC CRYSTALS 

AT COLLISION OF EXTREMELY SHORT PULSES IN THE MEDIUM 

In [43], the possibility of forming so-called dynamic microresonators arising from 

the collision of𝜋𝜋/2 similar unipolar pulses of rectangular shape in a two-level resonant 

medium was shown for the first time. In this case, as numerical calculations have 

shown, in the region of pulse overlap the population difference has a constant value - 

the "light-induced channel", and outside this region it changes by a jump and has 

another value. In this sense we can talk about the formation of a dynamic 

microresonator in the medium. The size of such a structure is of the order of the spatial 

size of the pulse (wavelength of the resonance transition).  

In the subsequent work [44], the dynamics of such a microresonator was 

considered in the collision of already2𝜋𝜋 similar CIP pulses of rectangular shape and 

duration of the order of 1 fs. Numerical calculations showed the possibility of 

formation and control of dynamic microresonators at increasing number of pulse 

collisions in the medium. Detailed studies in [45] showed that the shape and parameters 

of the resonator depend significantly on the shape of the colliding pulses and on the 

steepness of the fronts - the steeper the fronts, the greater the modulation depth of the 

microresonator. These studies were carried out when the medium was modeled in the 

two-level approximation. Numerical calculations carried out in [52] showed the 
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possibility of guiding microresonators at collision of unipolar pulses of rectangular and 

triangular shape in a three-level medium. 

In the mentioned studies, the colliding pulses were unipolar. The possibility of 

creating microresonators with Bragg mirrors was shown in [53]. In this work, a pair of 

single-cycle attosecond pulses consisting of two half-waves of opposite polarity 

collided in the center of the medium. The parameters of the pulses were chosen so that 

the pulses acted similarly to4𝜋𝜋 CIP pulses. Numerical calculations showed that in the 

center of the medium, where the pulses collide, the medium remains practically 

unexcited. At the edges of this region, quasiperiodic lattices of populations with a 

length of only a few periods and localized in the vicinity of the pulse overlap region 

are formed.  

The spatial frequency of these structures increased with increasing number of 

collisions of pulses. Thus, a local microresonator with Bragg-like mirrors appeared in 

the medium. Estimates showed that the reflection coefficient of such structures at the 

wavelength corresponding to the maximum of Bragg reflection was about 30%. 

A detailed analysis of the dynamics of such microresonators arising from the 

collision of half-cycle attosecond pulses was carried out on the basis of the numerical 

solution of the system of Maxwell-Bloch equations in two- and three-level medium in 

[54]. In [55], the possibility of creating temporary photonic crystals in the collision of 

a pair of semi-cyclic attosecond pulses in a three-level medium was shown. Practical 

realization of such media with rapidly changing refractive index is difficult to realize 

in practice due to conventional nonlinear optical mechanisms because they are very 

slow [56]. A number of exotic materials with unusual properties have been developed 
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for this purpose [56,57]. However, our studies show that it is possible to realize 

spatiotemporal photonic crystals in two- and multilevel resonant media by means of a 

sequence of extremely short pulses, since this creates lattices of populations, i.e., 

changes the refractive index of the medium in space and time.   

        The mentioned studies of the dynamics of such structures were carried out by 

numerical solution of the system of equations for the density matrix together with the 

wave equation for the electric field strength. Any analytical description was absent. In 

[58], a simple analytical approach was proposed to show the feasibility of such 

microresonators. It is based on an approximate solution of the time-dependent 

Schrödinger equation in the approximation of sudden perturbations, when the pulse 

duration was considered small compared to the period of the resonance transition of 

the medium. The amplitude of the excitation pulse field was also considered small. In 

this approach, the medium was considered to be sparse and weakly excited, and the 

dynamics of polarization waves was not taken into account.  

 A more detailed approach outside the framework of the sudden perturbation 

approximation was described in [59]. In the case of a two-level medium, it allows one 

to take into account dynamics of the medium polarization. This approach was also 

generalized to the case of a multilevel medium by approximate solution of the time-

dependent Schrödinger equation with the help of ordinary perturbation theory outside 

the framework of the sudden perturbation approximation. The results of this analysis 

show the possibility of creating microresonators with Bragg-like mirrors (the 

population difference varies in space according to the harmonic law to the left and right 

of the pulse overlap region) at each resonance transition of the medium allowed in the 
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dipole approximation. In the case of unipolar pulses of unusual shape (rectangular) in 

[52] the possibility of guiding microresonators was also shown. 

A detailed analytical approach showing the creation of such microresonators, 

based on an approximate solution of the Schrödinger equation using perturbation 

theory, is presented in [60]. The results of calculations of the populations 

(microresonator goodness of fit) performed using this approach agree with the results 

of the numerical solution of the system of equations for the density matrix of the 

medium when the amplitude of the excitation pulses is small.  

Let us briefly discuss the main idea of this approach. It is based on an approximate 

solution of the Schrödinger equation in the weak field approximation, when 

perturbation theory is applicable. The medium is considered sparse, and the influence 

of neighboring atoms on each other and the change in the shape of incident pulses 

during propagation in the medium can be neglected. Also in the above approximations, 

as it has been shown earlier [36,41], the problem about interaction of sequence of 

extremely short pulses with extended medium can be reduced to the problem about 

interaction of these pulses with a single quantum system at change of delay between 

pulses. In the first order of perturbation theory the expression for the population of 

bound states with number k after passage of the pulse has the form [61] 

                                𝑤𝑤𝑘𝑘 = 𝑑𝑑1𝑘𝑘
2

ℏ2
| ∫ 𝐸𝐸(𝑡𝑡)𝑒𝑒𝑖𝑖𝜔𝜔1𝑘𝑘𝑡𝑡𝑑𝑑𝑑𝑑 |2.                                                

In this expression,𝑑𝑑1𝑘𝑘 is the dipole moment of the transition,𝜔𝜔1𝑘𝑘 is the frequency of 

the resonant transition of the medium. For simplicity, we consider that the medium is 

affected by a pair of half-cycle pulses (the trailing edge of the opposite polarity is 
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neglected), following with a delay :Δ𝐸𝐸(𝑡𝑡) = 𝐸𝐸01 exp[ − 𝑡𝑡2/𝜏𝜏12] + 𝐸𝐸02 exp[ − (𝑡𝑡 −

Δ)2/𝜏𝜏22] .  Then the expression for the population in the above approximations can be 

written in the form (provided: 𝜔𝜔1𝑘𝑘𝜏𝜏1,2 ≪ 1) [36,41,58-60]:  

𝑤𝑤𝑘𝑘 = 𝑑𝑑1𝑘𝑘
2 𝑆𝑆𝐸𝐸,1

2

ℏ2
+ 𝑑𝑑1𝑘𝑘

2 𝑆𝑆𝐸𝐸,2
2

ℏ2
+2 𝑑𝑑1𝑘𝑘

2

ℏ2
𝑆𝑆𝐸𝐸,1𝑆𝑆𝐸𝐸,2cos𝜔𝜔1𝑘𝑘Δ,                 (2) 

in which𝑆𝑆𝐸𝐸,1,2 = 𝐸𝐸01,2𝜏𝜏1,2√𝜋𝜋 are the electrical areas of the pulses.   

In the case of an extended medium, the delay Δ~𝑧𝑧/𝑐𝑐(𝑐𝑐 - speed of light) is 

proportional to the moment of time when the second pulse arrives at the point of the 

medium having the coordinate𝑧𝑧 [36,41].  If the pulses collide at some point of the 

medium, then to calculate the populations at this point (and near it) we must put the 

delayΔ = 0 in expression (2), which leads to the relation𝑤𝑤𝑘𝑘 = 𝑑𝑑1𝑘𝑘
2

ℏ2
�𝑆𝑆𝐸𝐸,1 +  𝑆𝑆𝐸𝐸,2�

2 . It 

shows that in this region the populations are determined by the square of the total 

electric area of the pulses.  

Outside the pulse overlap region, the general relation (2) should be used to 

calculate the populations. It shows that the expression for the population𝑤𝑤𝑘𝑘  is the sum 

of squares of the electrical areas of the pulses and contains an "interference term", i.e., 

it periodically depends on the delay between the pulses . 2 𝑑𝑑1𝑘𝑘
2

ℏ2
𝑆𝑆𝐸𝐸,1𝑆𝑆𝐸𝐸,2cos𝜔𝜔1𝑘𝑘Δi.e., 

periodically depends on the delay between pulsesΔ . In this sense, as shown in [36], we 

can say that the effect of a pair of unipolar pulses in the weak field approximation is 

determined by the interference of the electric areas of the pulses.  
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Also, this expression shows the appearance of a periodic lattice of harmonic-

shaped populations outside the pulse overlap region. Despite its simplicity, the results 

of this approach have heuristic power, since they predict the possibility of forming a 

microresonator with Bragg-like mirrors in the form of lattices of population harmonic 

form (2) at each resonance transition of a multilevel medium. The modulation depth of 

these lattices is determined by the square of the electrical area of the pulses. Physically, 

the appearance of these lattices is related to the interference of the electric areas of 

pulses in the weak field approximation. 

In strong fields and dense media, when the above approximations become 

inapplicable, it is necessary to consider more complex models based on the material 

equations for a multilevel medium together with the wave equation for the electric field 

strength. In this case, the two-level approximation is usually used to describe the 

medium, which may not be suitable in the case of extremely short pulses. This issue 

was discussed in [62-64]. Numerical calculations carried out in these works showed 

that the effect of the appearance of lattices whose shape is close to harmonic, as 

predicted by the results obtained in the framework of perturbation theory, persists in a 

three-level medium. In numerical calculations, the parameters of the three-level 

medium corresponded to Rb87 atoms [63], as well as to atomic hydrogen [54,64], 

which shows that the effect can be observed in real systems. Also, the results of the 

numerical solution of the time-dependent Schrödinger equation for a one-dimensional 

quantum well taking into account ionization showed lattice conservation [65].  
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From the practical point of view, the appearance of lattices of good quality (e.g., 

in the form close to harmonic) is possible when the ground state of the medium is not 

strongly emptied, i.e., the medium is not strongly excited and ionization is not 

significant. In this case the medium should not be strongly excited under the action of 

pulses. Such a criterion is easily established in the case when the duration of the half-

cycle pulse𝜏𝜏   is shorter than the characteristic time𝑇𝑇𝑔𝑔 associated with the ground state 

energy 𝐸𝐸1, 𝜏𝜏 < 𝑇𝑇𝑔𝑔 = 2𝜋𝜋ℏ/𝐸𝐸1 . The medium will not be strongly excited and ionization 

is negligible if the electrical area of the incident pulse𝑆𝑆𝐸𝐸 is smaller than the 

characteristic atomic area measure𝑆𝑆𝐸𝐸 < 𝑆𝑆𝑎𝑎𝑎𝑎 = ℏ/𝑒𝑒𝑟𝑟 , where𝑒𝑒 is the electron charge,𝑟𝑟 

is the characteristic size of the quantum system [22]. In numerical calculations carried 

out in [64] for parameters corresponding to the hydrogen atom, this condition was 

fulfilled. 

Physically, the preservation of the effect of lattices and microresonators in a 

multilevel medium is easy to understand if we recall the physical mechanism of their 

formation [34-36,41]. An extremely short pulse passing through the medium leaves the 

medium in a superposition quantum state in which the medium coherence (medium 

polarization), i.e. non-diagonal elements of the density matrix oscillate at each 

resonance transition of the medium. This leads to the appearance of polarization waves 

of the medium, which exist during the relaxation time𝑇𝑇2 . These polarization 

oscillations always exist no matter how many levels of the medium two or more are 

considered. A subsequent pulse will coherently drive these dipole moment oscillations, 

resulting in a population difference lattice at each resonance transition of the medium, 
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as noted above. Therefore, the two-level medium approximation seems justified in such 

problems. Therefore, below we will use the two-level approximation for simplicity. 

In the case of a large field amplitude, the dynamics of microresonators was studied 

by numerically solving the system of Maxwell-Bloch equations for a two-level medium 

[60]. Fully unipolar pulses of Gaussian form with a duration of hundreds of attoseconds 

were used in the calculations. The pulses acted similarly to2𝜋𝜋 CIP pulses. The results 

of numerical calculations showed the impossibility of creating microresonators when 

the colliding pulses had the same polarity. When the pulses had opposite polarity, a 

local microresonator appeared in the overlapping region of the pulses. The spatial 

period of the induced gratings increased with increasing number of collisions. More 

complicated dynamics of microresonators arose when4𝜋𝜋 pulses collided.  

The results of these studies [60] show that the formation of microresonators is 

possible when the colliding pulses have different polarity. These limitations can be 

removed if one uses not a fully unipolar pulse, as in [60], but a quasiunipolar subcycle 

pulse containing a powerful half-wave of the field and trailing edges of opposite 

polarity. The above is illustrated by the results of the numerical calculation presented 

in the next section. 

 

NUMERICAL SIMULATION RESULTS 

To study the dynamics of the population difference lattice at collision of a 

sequence of 2π-like CIP pulses in a resonant medium, we numerically solved the 

system of Maxwell-Bloch equations including material equations for the non-diagonal 

element of the density matrix𝜌𝜌12 , the population difference of the medium 
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(inversion)𝑛𝑛 = 𝜌𝜌11 − 𝜌𝜌22 of the two-level medium, its polarization𝑃𝑃 , and the electric 

field strength E [66,67]: 

𝜕𝜕𝜌𝜌12(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝜕𝜕

= − 𝜌𝜌12(𝑧𝑧,𝑡𝑡)
𝑇𝑇2

+ 𝑖𝑖𝜔𝜔0𝜌𝜌12(𝑧𝑧, 𝑡𝑡) − 𝑖𝑖
ℏ
𝑑𝑑12𝐸𝐸(𝑧𝑧, 𝑡𝑡)𝑛𝑛(𝑧𝑧, 𝑡𝑡) ,                       (3) 

𝜕𝜕𝜕𝜕(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝜕𝜕

= −𝑛𝑛(𝑧𝑧,𝑡𝑡)−𝑛𝑛0(𝑧𝑧)
𝑇𝑇1

+ 4
ℏ
𝑑𝑑12𝐸𝐸(𝑧𝑧, 𝑡𝑡)Im𝜌𝜌12(𝑧𝑧, 𝑡𝑡),                                     (4) 

𝑃𝑃(𝑧𝑧, 𝑡𝑡) = 2𝑁𝑁0𝑑𝑑12𝑅𝑅𝑅𝑅𝜌𝜌12(𝑧𝑧, 𝑡𝑡),                                                                    (5) 

𝜕𝜕2 𝐸𝐸(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝜕𝜕2

− 1
𝑐𝑐2

𝜕𝜕2 𝐸𝐸(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝜕𝜕2

= 4𝜋𝜋
𝑐𝑐2

𝜕𝜕2 𝑃𝑃(𝑧𝑧,𝑡𝑡)
𝜕𝜕𝜕𝜕2

 .                                                             (6) 

This system of equations (3)-(6) contains the following parameters (values of 

some of them are given in the table below): z - longitudinal coordinate, c - speed of 

light in vacuum, t - time, N0- concentration of two-level atoms,ℏ   - reduced Planck's 

constant,𝜔𝜔0 - frequency of the resonance transition of the medium (𝜆𝜆0 = 2𝜋𝜋𝜋𝜋/𝜔𝜔0 - 

wavelength of the resonance transition),𝑑𝑑12 - matrix element of the dipole moment of 

the resonance transition of the medium,𝑛𝑛0 - population difference of the medium in the 

absence of electric field, and𝑛𝑛0 = 1 for the absorbing medium. The possibility of 

applying the two-level approximation in such problems was discussed above and in 

[36,41,52-55,58-60, 62-65]. 

To create the pulse sequence, zero boundary conditions were used at the ends of 

the integration domain, which had a length of𝐿𝐿 = 12𝜆𝜆0 . The two-level medium was 

placed in the center of the integration region between the points with coordinates𝑧𝑧1 =

4𝜆𝜆0 and𝑧𝑧2 = 8𝜆𝜆0 . At the initial moment of time, a pair of subcyclic impulses was 
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launched into the medium from left to right and right to left from vacuum, the 

expression for which has the form:   

   𝐸𝐸(0, 𝑡𝑡) = 𝐸𝐸01𝑒𝑒
−(𝑡𝑡−𝜏𝜏1)2

𝜏𝜏2 cos(𝜔𝜔0[𝑡𝑡 − 𝜏𝜏1]) ,     (7) 

   𝐸𝐸(𝐿𝐿, 𝑡𝑡) = 𝐸𝐸02𝑒𝑒
−(𝑡𝑡−𝜏𝜏2)2

𝜏𝜏2 cos(𝜔𝜔0[𝑡𝑡 − 𝜏𝜏2]).      (8) 

Here𝜏𝜏1,2 are delays that regulate the moment when the pulses meet. The pulses acted 

similarly to 2π CIP pulses and had the same polarity but contained trailing edges of 

opposite polarity. One-dimensional propagation of half-cycle pulses over long 

distances can be realized in coaxial waveguides [68]. 

In this case, the impulses collided in the center of the medium and then left it. 

Ideal mirrors were placed on the boundaries of the integration region. The impulses 

were reflected from them and returned to the medium again. The system of equations 

(2)-(5) was numerically solved at the parameters given in the table below with initial 

conditions in the form of impulses (6)-(7). The spatial and temporal dependences of 

the polarization and population difference of the medium were constructed and 

analyzed. The parameters of the numerical simulation are given in the table. Transition 

wavelengths of hundreds of nanometers can be realized, for example, in atomic pairs 

or quantum dots. However, the results of the theoretical consideration based on the 

Schrödinger equation above show the possibility of lattice and resonator formation and 

are general in nature. The concentration of particles affects the reflectivity of lattices, 

and their shape can be distorted at its large values [53,54,60]. 
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Figure 1 shows the spatiotemporal dynamics of the population difference and 

polarization. After the first collision of the pulse near time instant of the order of 23 fs, 

the medium remains in a weakly excited state. The microresonator begins to form after 

the 2nd collision, which occurred near the time instant of 50 fs, the population 

difference in the center is almost constant, while at the edges it changes by a jump. 

Outside the pulse overlap region, the medium remains in the unexcited state with the 

inversion value𝑛𝑛 = 1 . After subsequent collisions at time moments 75, 100, 125 fs, 

etc., the shape of the microresonator becomes more pronounced. Of particular interest 

is the formation of complex polarization structures formed in the region of the 

microresonator, see Fig. 1b. Such polarization structures exist during the time𝑇𝑇2 and 

can emit light waves in different directions. 

The results of calculations when the pulses had opposite polarity,𝐸𝐸01 = −𝐸𝐸02 , 

are presented in Fig. 2. The other parameters are the same as in Fig. 1. It can be seen 

that the change of polarity of one of the pulses affects the dynamics of the system. In 

this case, the microresonator is formed immediately after the first collision of pulses. 

In the center of the medium, at the point z=6λ0, the system is in the unexcited state, 

while at the edges of the medium the population difference changes by a jump. With 

increasing number of collisions, the spatial frequency of the lattice increases. In this 

case, complex polarization structures in the form of standing waves are formed in the 

region of microresonator localization. The interaction of incident excitation pulses with 

these polarization fluctuations is the reason for the increase in the spatial frequency of 

the population lattices [34,35]. A similar behavior of the population difference was 

observed in [60] at collision of fully unipolar pulses of opposite polarity.  
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CONCLUSION 

         The study of the interaction of half-cycle pulses with resonant media has led to 

the prediction and detailed investigation of a new phenomenon - the possibility of 

formation and ultrafast control of dynamic microresonators arising from the collision 

of extremely short pulses in the medium. With increasing number of collisions of 

pulses the parameters of this microresonator can be controlled. It is shown that a 

microresonator can arise when colliding2𝜋𝜋 similar subcyclic CIP pulses have both the 

same and opposite polarity, in contrast to the results of earlier studies [60]. 

          The investigated effect is of interest for stopping and storing light pulses in the 

medium [25], creation of ultrafast attosecond optical switches [69], holography with 

ultrahigh temporal resolution [70], creation of space-time photonic crystals of a new 

type with controllable parameters [46-49], and in the physics of photonic crystals [71-

73].  The obtained results open new directions of research in attosecond physics and 

optics of extremely short pulses and show the possibility of ultrafast control of the 

medium state on ultra-short time scales by means of subcyclic light pulses. 
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FIGURE CAPTIONS 

Fig. 1. Dynamics of the population difference n(z,t) (a); dynamics of the 

polarization P(z,t) at the collision of a pair of subcyclic CIP pulses of the same 

polarity (b),𝐸𝐸01 = 𝐸𝐸02 , in the center of the medium at the point z=6λ0. The 

calculation parameters are given in Table 1.  

 

Fig. 2. Dynamics of the population difference n(z,t) (a); dynamics of the 

polarization P(z,t) at the collision of a pair of subcyclic CIP pulses of opposite 

polarity (b),𝐸𝐸01 = −𝐸𝐸02 , in the center of the medium at the point z=6λ0. The 

calculation parameters are given in Table 1.  
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Table 1. Problem parameters used in numerical modeling. 

Wavelength of the resonance transition 

of the medium 

𝜆𝜆0 = 700 nm 

Dipole moment of the transition 𝑑𝑑12 = 20 Д 

Relaxation time of the population 

difference 

𝑇𝑇1 = 10 ps 

Polarization relaxation time 𝑇𝑇2 = 5 ps 

Concentration of atoms 𝑁𝑁0 = 1018 cm-3 

Field amplitude  𝐸𝐸01 = 𝐸𝐸02 = 259 000 units. GHS 

Excitation pulse duration 𝜏𝜏 𝜏𝜏 = 580 ace 

Delay parameters  𝜏𝜏1 = 𝜏𝜏2 = 3𝜏𝜏 
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