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Abstract. Using the method of moments, a system of equations for the parameters of 

a pulse propagating in an isotropic medium with dispersion in the form of a Duhamel 

integral is obtained. A criterion has been found for the parameters of the pulse and the 

medium separating the propagation modes of soliton-like pulses. 
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INTRODUCTION 

 When deriving model equations describing the propagation of laser pulses in 

nonlinear dispersing media, two well-known approximations are often used. The 

propagation of quasi-monochromatic pulses in a medium with Kerr nonlinearity in the 

dielectric transparency region can be described by the nonlinear Schrödinger equation 

(NSE) for the pulse envelope [1]. In this case, the corresponding criterion for a large 
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number of field oscillations is given by the expression ( )2

0 1pω τ >>  , where 0ω −  is the 

center frequency of the pulse, pτ  is its duration. To describe pulses involving only a 

few oscillations of the light field𝜔𝜔0𝜏𝜏𝑝𝑝 ∼ 1 (extremely short pulses), equations written 

directly for the electric field of the pulse or its spectrum are used [2-8]. For such pulses, 

the slowly varying envelope (SME) approximation becomes inapplicable. In both 

cases, when the pulse spectrum lies in the region of optical transparency, the 

corresponding condition can be written as 0| | 1R pω ω τ− >>  , where Rω −  is the 

characteristic frequency of the resonance absorption line. In this case, the expression 

for the dispersive response can be decomposed in a series. It is not difficult to see that 

for quasi-monochromatic pulses this relation coincides with the MMO condition at a 

significant distance of the carrier frequency of the pulse from the resonance. However, 

in the case of materials with several narrow absorption lines, for example, molecular 

gases, the condition of optical transparency can be violated even when the pulse 

contains a sufficiently large number of field oscillations, although no significant 

absorption occurs and the material can be considered transparent with a good degree 

of accuracy. The present work is devoted to the theoretical analysis of the equations 

describing the propagation of pulses in these cases and to finding the conditions of 

soliton-like modes. 

THE METHOD OF MOMENTS   

The equation describing unidirectional propagation of optical pulses in a 

nonlinear medium with dispersion has the following form                                    

               ( ) ( ) ( ) ( )
(3)

3

0

, 2 , ,
4

E z
E z d E z

z c
τ π χχ τ τ τ τ τ

τ π

∞ ∂ ∂ ′ ′ ′= − − + ∂ ∂  
∫   . (1) 
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where /t z cτ = −  , z is the coordinate along which the signal propagates,

( ) ( ) 2

,
2 sin /l lj lj lj

l j
e N A mχ τ τ ω τ ω= Θ ∑  is the impulse response function related to the 

dielectric susceptibility of the medium by Fourier transform             

( ) ( ) ( )0
0

1 / 2ie d nωτχ ω χ τ τ π
∞

= = −∫  ,  

( )
22

0 2 2 2
,0 0

41 lj
l lj

l j lj

en N A
m

λπλ
ω λ λ

= +
−∑ ,                                (2) 

( )τΘ − Heaviside function,e  - electron charge, lN  - concentration of atoms or molecules 

of the variety , l ljA  - value proportional to the oscillator strength - of the j  resonance,

ljω  - frequency of the corresponding resonance,с  - speed of light in vacuum, 0λ  - central 

wavelength of the pulse, ( )3 (3) /l l l
l l

N Nχ χ=∑ ∑  -resulting cubic susceptibility of the 

medium,
2 2, /l l l

l p
n N n N=∑ ∑  -resulting nonlinear refractive index, , (3)

lχ 2,ln  -cubic 

susceptibility and nonlinear refractive index of atoms or molecules of the variety l  . Let 

us represent the electric field E  in the form 

                              ( ) ( ) ( )0
1, , exp . .
2

E z z i к сτ ψ τ ω τ= − +                                 (3) 

Substituting (3) into (1), we obtain  

( ) ( ) ( )0
2 2

00

2 , iz e d i
z с

ω τχ τψ π γψ τ τ τ γψ ψ ψ ψ
τ ω τ

∞
′′∂∂ ∂′ ′= − − + −

′∂ ∂ ∂∫ .      (4)                

Hereψ  is the envelope of the electric field, (3) 2
0 0 0 23 / 8 / 8c n nγ χ ω ω π= =  is the cubic 

nonlinearity coefficient, 0 1 2n πχ≈ +  is the refractive index of the medium, 0ω  is the center 
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frequency of the signal. In the transition from equation (1) to (4), we neglected the 

generation of harmonics. In particular, in [9] it was shown that for pulses involving the 

order of one or two field fluctuations cubic nonlinearity causes the generation of the 

fourth harmonic. The corresponding effect of odd harmonic generation in a medium 

with quadratic nonlinearity was described in [10]. Note that equation (1) describes both 

quasi-monochromatic pulses and extremely short pulses [11-13]. 

 The dynamics of the pulse parameters is analyzed on the basis of the method of 

moments [14]. Let us choose a trial solution in the form            

         ( )( )
2

1exp (1 )
2 p

TB iC i Tτψ φ τ
τ

  − = − + + + Ω −     
,                                (5) 

where B  is the signal amplitude,C  is the parameter defining the frequency modulation,

φ  is the phase,Ω  is the frequency shift. All parameters depend on the coordinate z  . 

Let us define the moments of the pulse in the form 

                                                 2W dψ τ
∞

−∞

= ∫  ,                                                            (6)                              

                                       ( ) 222 2
p T d

W
τ τ ψ τ

∞

−∞

= −∫  ,                                    (7)    

                             ( )iC T d
W

ψ ψτ ψ ψ τ
τ τ

∞ ∗
∗

−∞

 ∂ ∂
= − − ∂ ∂ 

∫ , (8)                                  

                                        21T d
W

τ ψ τ
∞

−∞

= ∫ ,                                                (9) 

                             
2

i d
W

ψ ψψ ψ τ
τ τ

∞ ∗
∗

−∞

 ∂ ∂
Ω = − − ∂ ∂ 

∫ ,                                               (10) 
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phase can be found from the following expression 

( ) ( ) ( )0

, 0

2 Im lji
lj

l j
d i D e d d

z z
ω ω τψ ψψ ψ τ ψ τ ψ τ τ τ τ

∞ ∞ ∞∗
′−∗ ∗

−∞ −∞

 ∂ ∂ ′ ′− = − − + ∂ ∂ 
∑∫ ∫ ∫  

                          4 2

0

2 Imi d i dγ ψγ ψ τ ψ ψ τ
ω τ

∞ ∞
∗

−∞ −∞

∂
+ −

∂∫ ∫ . (11) 

Using the method of moments, we obtain 

                           0
0

exp 2 Im
z

sW W k dz
 

= − 
 

∫ ,                                         (12) 

                                
( )2 2

2
0

1
Im

2
p s

p

iC k
z
τ

τ ω

 ∂ + ∂
=  

∂ ∂  
,                                          (13) 

         
( )( )2 2

2 2
0 0

1 1
Re 1

2
s

p p

C iC kС W
z

γ
τ ω ωπτ

 + +  ∂∂ Ω = + − ∂ ∂    
,                         (14) 

                        ( )
0 0

3Re 1
2 2

s

p

kT WiC
z

γ
ω πω τ

 ∂∂
= + + ∂ ∂ 

,                                 (15) 

                            
( )2

2 3
0 0

1
Im

2
s

p p

C k WC
z

γ
τ ω πω τ

 + ∂∂Ω  = −
∂ ∂  

,                              (16) 

                
( )2 2

2 2
0 0

1
Re 5

4 4 2
s

s z
p p

iC k Wk T
z
ϕ γ

τ ω ωπτ

 +  ∂∂ Ω
= + + + + Ω   ∂ ∂    

.                 (17) 

  Here   ( )( )2 2

,
2 exp( ) / 1s lj p lj lj

l j
k i D iF Cτ ζ π ζ= + − +∑  is called the soliton 

wave number, , , , , 2/ 1lj p lj Cζ τ ω= ∆ + 0lj ljω ω ω∆ = − Ω − 22 /lj l ljD e N A mcπ=
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2
pW B τ π= 2

0 0 0W B τ π= 0B 0τ   , ,are the initial values of the corresponding 

parameters ( ) ( )2 2

0

exp exp( )F t dt
ζ

ζ ζ= − ∫  is the Dawson function.  

 

SOLITON-LIKE PROPAGATION MODE 

As a medium we will consider air, which consists of 21% oxygen 2O  and 79% 

nitrogen 2N  . Argon Ar  , water vapor 2H O  and carbon dioxide 2CO  account for less 

than one percent of the concentration of all molecules.  The refractive index of air is 

presented in [15]. We consider the air transparency window belonging to the range 

from3.5 − 4.1 мкм , in which the group velocity dispersion 2β  is anomalous. The main 

contribution to the anomalous air dispersion is given by two resonant wavelengths of 

carbon dioxide ,𝜆𝜆1 = 4.223 мкм𝜆𝜆2 = 4.291 мкм , and therefore  only these terms can 

be considered in the expression for the group dispersion coefficient𝛽𝛽2 = (𝜆𝜆03/

2𝜋𝜋𝑐𝑐2)𝑑𝑑2𝑛𝑛0(𝜆𝜆0)/𝑑𝑑𝜆𝜆2 = 𝜕𝜕2𝑘𝑘/𝜕𝜕𝜔𝜔0
2 (where 0 0 /k n cω=  is the wave number). 

 Oxygen and nitrogen give the largest contribution to the nonlinear refractive 

index of air [16]  

       
2 22 2, 2,0.79 0.21N On n n= +    , 2 2

2 2

2 2

1
,

2, , 2 2
, 0

O N
O N

O N

P
n

λ λ

−

− −=
−

 . (18) 

Here ,𝑃𝑃𝑁𝑁2 = 14.63 ГВт𝜆𝜆𝑁𝑁2 = 0.3334 мкм for nitrogen and ,𝑃𝑃𝑂𝑂2 = 14.62 ГВт𝜆𝜆𝑁𝑁2 =

0.3360 мкм for oxygen. The approximation (18) is valid in the range1 − 4 мкм .                                                              

To consider the soliton-like regime, we will put ,С = 0𝜕𝜕С/𝜕𝜕𝜕𝜕 = 0 . In addition, 

we will consider the limit  

                                           2.67pωτ∆ ≥ ,                                                 (19) 
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where , 0 1ω ω ω∆ = − 1ω  is the resonant frequency of the medium nearest to the center 

frequency of the pulse. In this limit, the asymptotic series expansion of the Dawson 

function is valid [17] 

                  ( )
3 5 1 2 1

1 3 5 .. 2 11 1 3( )
2 4 8 2n n

n
F x

x x x x+ +

⋅ ⋅ ⋅ −
= + + +  .                  (20) 

From the system (12) - (17) we obtain 

2
0 0 0 0 08 /W B I cnτ π π τ π= = , 0Ω = , 

                                       
2

0 2 2
0 0 0 2 0

2 sRkcI
n nτ ω ω

∂
=

∂
,                                                (21) 

                                          0 2 0

0

3
2 2

sRk n n IT z
cω

 ∂
= + ∂ 

,                                         (22) 

                        
2

0 2 0 0
2

0 0

51
4 4 2

sR
sR

k n n Ik z
c
ω

ϕ
τ ω

 ∂
= + + ∂ 

.                                      (23) 

ResR sk k=  - is the real part of the soliton wave number, the value𝜕𝜕2𝑘𝑘𝑠𝑠𝑠𝑠/𝜕𝜕𝜔𝜔0
2 can be 

called the soliton group dispersion coefficient. The dependence of the pulse intensity 

on its duration described by expression (21) is shown in Figs. 1a and 1b. For Fig. 1a, 

condition (19) is satisfied if𝜏𝜏𝑝𝑝 > 35 фс , and for Fig. 1b if .𝜏𝜏𝑝𝑝 > 72 фс 

 From equation (4), we can obtain an equation with variance as a series if we 

decompose the integrand function ( ),zψ τ τ ′−  into a series and use the Fourier 

transform    ( ) ( ) ( )
0

/ nn n n ii e dωτχ ω ω τ χ τ τ
∞

∂ ∂ = ∫ . 

Performing the transformations, we obtain 

   ( ) ( )
1

2 20

0!

n n

n n
n

i
i k i

z c n
ωψ ψ γψ β γψ ψ ψ ψ

τ ω τ

−
∂ ∂ ∂ = − − + − ∂ ∂ ∂ 

∑ . (24) 
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Here, , 1 0/ 1 /k cβ ω= ∂ ∂ − 0/n n
n kβ ω= ∂ ∂  ( 2n ≥  ), 0 0 /k n cω=  . The solution of this 

equation coincides with (21) - (23) if the Dawson function is represented as an 

asymptotic series (20). Thus, the variance decomposition (24) is valid if condition (19) 

is satisfied. Otherwise, to describe the dynamics of pulses, we must consider equations 

(1) or (4).  

Let us determine the applicability limits of the trial solution (5) using the rule of 

conservation of electric area [18] 

                                             ( ),E z d constτ τ
∞

−∞

=∫ .                                     (25) 

Obviously, if the electric field of momentum can be represented as the time 

derivative /E τ= ∂Φ ∂  of a function decreasing at infinity, then condition (25) is 

satisfied and the momentum area is zero [4]. Let us represent the functionΦ  in the form 

[19] 

                                 ( ) ( )0
0

, exp . .
2

z i к с
i
ψτ ω τ
ω

Φ = − − +  , (26) 

then  

           ( ) ( ) ( )0 0
0

1 1, exp exp . .
2

E z i i к с
i

ψτ ψ ω τ ω τ
ω τ

 ∂
= − − − + ∂ 

                   (27) 

The contribution of the second summand in (27) is proportional to 01 / pω τ  and 

can be neglected if the momentum includes about five or more field oscillations [19]. 

In this case, (27) goes to (3) with an envelope in the form of (5). Thus, the momentum 

area conservation rule imposes restrictions on the applicability of the trial solution of 

the form (5).  It should be noted that the unidirectional propagation approximation 
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should be used with caution because it can lead to violation of the electric area 

conservation rule [20-22]. 

 

CONCLUSION 

The propagation of soliton-like pulses in air is analytically described using the 

method of moments. The dispersion contribution is taken into account by means of the 

Duhamel integral. The criterion (19) separating two modes of signal propagation is 

found. It is shown that the MMO approximation may be inapplicable for pulses 

including about ten field fluctuations if the pulse spectrum lies near the resonance of 

the medium.  For these cases, a system of equations on the pulse parameters is obtained. 

A frequent solution of this system is found. 

FUNDING 

The work of V.A. Khalyapin was financially supported by the grant of the 

Ministry of Science and Higher Education of the Russian Federation№ 075-02-2024-

1430. 

ACKNOWLEDGEMENT 

The authors thank Prof. S.V. Sazonov for helpful discussions during the 

preparation of the paper. 

 

REFERENCES 

 

1. Kivshar Yu.S., Agrawal G.P., Optical solitons: from fibers to photonic crystals. New 

York: Academic Press Inc, 2003. 540 p. 

2. Brabec T., Krausz F. // Phys. Rev. Lett. 1997. V. 78. P. 3282.  



10 
 

3. Belenov E.M., Nazarkin A.V. // JETP Lett. 1990. V. 51. P. 252. 

4. Kozlov S.A., Sazonov S.V. // JETP. 1997. V.  84. P. 221.  

5. Sazonov S.V., Ustinov N.V. // Phys. Rev. A. 2020. V. 100. P. 508. 

6. Sazonov S.V., Ustinov N.V. // Rom. Rep. Phys. 2020. V. 72. P. 508.  

7. Sazonov S.V. // JETP Lett. 1991. V. 53. P. 420. 

8. Sazonov S.V. // JETP. Lett. 2021. V. 114. P. 132.  

9. Drozdov A.A., Kozlov S.A., Sukhorukov A.A., Kivshar Y.S. // Phys. Rev. A. 2012. 

V. 86. Art. No. 053822. 

10. Sazonov S.V. // J. Russ. Laser Res. 2018. V. 39.  No. 3. P. 252. 

11. Kalinovich A.A., Sazonov S.V. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. 

P. 49. 

12. Koshkin K.V., Sazonov S.V., Kalinovich A.A., Komissarova M.V. // Bull. Russ. 

Acad. Sci. Phys. 2024. V. 88. No. 1. P. 56. 

13. Koshkin K.V., Sazonov S.V., Kalinovich A.A., Komissarova M.V. // Bull. Russ. 

Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1796. 

14. Santhanam J., Agraval G. // Opt. Commun. 2003. V. 222. P. 413.  

15. Voronin A.A., Zheltikov A.M. // Sci. Reports. 2017. V. 7. P. 46111. 

16. Fedorov V.Yu., Stortzakis S. // Sci. Appl. 2020. V. 9. P. 186.         

17. Fedorov U.A., et al. // Acta Universitaria. 2019. V. 29. P. 1.      

18. Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. P. 721. 

19. Sazonov S.V., Khalyapin V.A. // Opt. Spectrosc. 2003. V. 95. P. 401. 

20. Pakhomov A.V., Rosanov N.N., Arkhipov M.V., Arkhipov R.M. // JETP. Lett. 2024. 

V. 119. No. 2. P. 94. 



11 
 

21. Bogatskaya A.V., Volkova E.A., Popov A.M. // Laser Phys. Lett. 2024. V. 21. Art. 

No. 015401. 

22. Bogatskaya A.V., Popov A.M.  // JETP. Lett. 2023. V. 118. No. 4. P. 296. 

 

 

 

FIGURE CAPTIONS  

Fig. 1. Dependence of the pulse intensity on its duration at the central wavelength of 

the signal𝜆𝜆 = 3.6  (a),3.9 мкм (b). 
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Fig. 1. 

 

 

 

 

 


