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Abstract. Using the method of moments, a system of equations for the parameters of
a pulse propagating in an isotropic medium with dispersion in the form of a Duhamel
integral is obtained. A criterion has been found for the parameters of the pulse and the
medium separating the propagation modes of soliton-like pulses.
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INTRODUCTION
When deriving model equations describing the propagation of laser pulses in
nonlinear dispersing media, two well-known approximations are often used. The
propagation of quasi-monochromatic pulses in a medium with Kerr nonlinearity in the
dielectric transparency region can be described by the nonlinear Schrédinger equation

(NSE) for the pulse envelope [1]. In this case, the corresponding criterion for a large
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number of field oscillations is given by the expression(a)or p) >>1, where @, — is the

center frequency of the pulse, 7, is its duration. To describe pulses involving only a

few oscillations of the light fieldw,7, ~ 1 (extremely short pulses), equations written

directly for the electric field of the pulse or its spectrum are used [2-8]. For such pulses,
the slowly varying envelope (SME) approximation becomes inapplicable. In both

cases, when the pulse spectrum lies in the region of optical transparency, the

corresponding condition can be written as|®, —®,[7,>>1 , where®, — is the

characteristic frequency of the resonance absorption line. In this case, the expression
for the dispersive response can be decomposed in a series. It is not difficult to see that
for quasi-monochromatic pulses this relation coincides with the MMO condition at a
significant distance of the carrier frequency of the pulse from the resonance. However,
in the case of materials with several narrow absorption lines, for example, molecular
gases, the condition of optical transparency can be violated even when the pulse
contains a sufficiently large number of field oscillations, although no significant
absorption occurs and the material can be considered transparent with a good degree
of accuracy. The present work is devoted to the theoretical analysis of the equations
describing the propagation of pulses in these cases and to finding the conditions of
soliton-like modes.
THE METHOD OF MOMENTS

The equation describing unidirectional propagation of optical pulses in a

nonlinear medium with dispersion has the following form
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wherer=t—z/c¢ , z 1s the coordinate along which the signal propagates,

X (T ) = ®(T )262 ZN (A, sinw, 7 / may; is the impulse response function related to the
Lj

dielectric ~ susceptibility @ of the medium by  Fourier transform
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@(r)— Heaviside function,e - electron charge, N, - concentration of atoms or molecules

of the variety ,/ 4, - value proportional to the oscillator strength - of the ; resonance,

- frequency of the corresponding resonance, ¢ - speed of light in vacuum, 4, - central

wavelength of the pulse, ,©® = S NP DN, -resulting cubic susceptibility of the
) 4

. . . . . 3 .
medium, ,, = > N, />N, -resulting nonlinear refractive index, , )(,( ) n,, -cubic

v
susceptibility and nonlinear refractive index of atoms or molecules of the variety/ . Let
us represent the electric field £ in the form
E(z,z'):%y/(z,r)exp(—ia)or)+1<.c. (3)
Substituting (3) into (1), we obtain

_onNar g 2_Li( 2) 4
S v (z=7)e de' +iyy|y| e vivl ). @

Herey is the envelope of the electric field,y =3y @, / 8c =nlw,n, / 87 is the cubic

nonlinearity coefficient,n, #1427y is the refractive index of the medium, @, is the center



frequency of the signal. In the transition from equation (1) to (4), we neglected the
generation of harmonics. In particular, in [9] it was shown that for pulses involving the
order of one or two field fluctuations cubic nonlinearity causes the generation of the
fourth harmonic. The corresponding effect of odd harmonic generation in a medium
with quadratic nonlinearity was described in [10]. Note that equation (1) describes both
quasi-monochromatic pulses and extremely short pulses [11-13].

The dynamics of the pulse parameters is analyzed on the basis of the method of
moments [14]. Let us choose a trial solution in the form

I{z-T 2 : .
w = Bexp —E[TT—J (1+zC)+z(¢+Q(z'—T)) , (5)

p

where B is the signal amplitude, C is the parameter defining the frequency modulation,

& 1s the phase,Q is the frequency shift. All parameters depend on the coordinate - .

Let us define the moments of the pulse in the form

W = I|l//|2 dr , (6)

fiz%j(r—Tﬂy/rdr, (7)
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phase can be found from the following expression
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Using the method of moments, we obtain

W=W, exp[—2 Imjksdzj, (12)
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Here & —zz p p(zzF(g) \/;exp(—gf.))/\/l+C2 is called the soliton

wave number, , , , ,§; =7 Aa),/\/1+C Aw, =0, —Q-w, D, =27e’ N, A4, | mc



W =Bt W, = Bozfo\/; B, 7, , are the initial values of the corresponding

'
parameters F'({) = exp(—cj 2 )Iexp(tz)dt is the Dawson function.
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SOLITON-LIKE PROPAGATION MODE

As a medium we will consider air, which consists of 21% oxygen0, and 79%

nitrogen NV, . Argon Ar , water vapor 1,0 and carbon dioxide CO, account for less

than one percent of the concentration of all molecules. The refractive index of air is

presented in [15]. We consider the air transparency window belonging to the range
from3.5 — 4.1 MM , in which the group velocity dispersion f, is anomalous. The main

contribution to the anomalous air dispersion is given by two resonant wavelengths of
carbon dioxide ,A; = 4.223 MxMA, = 4.291 mxm , and therefore only these terms can

be considered in the expression for the group dispersion coefficientf, = (13/
2mc?)d?ng(1y)/dA? = 0%k /dw?3 (wherek =wyn, / ¢ is the wave number).

Oxygen and nitrogen give the largest contribution to the nonlinear refractive

index of air [16]

-1

P,
n,=0.79n,, +0.21n,, :% .(18)

1 0, N, ) 1
0,.N, 0

Here ,Py, = 14.63 I'B14,, = 0.3334 Mkm for nitrogen and ,P,, = 14.62 I'B1dy, =

0.3360 mxM for oxygen. The approximation (18) is valid in the rangel — 4 Mkm .

To consider the soliton-like regime, we will put ,C = 00C/dz = 0 . In addition,

we will consider the limit

Awz, >2.67, (19)



where ,A® = @, — @, @, is the resonant frequency of the medium nearest to the center

frequency of the pulse. In this limit, the asymptotic series expansion of the Dawson

function is valid [17]
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From the system (12) - (17) we obtain
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k,=Rek, - is the real part of the soliton wave number, the valued?ks,/dw3 can be

called the soliton group dispersion coefficient. The dependence of the pulse intensity
on its duration described by expression (21) is shown in Figs. /a and /b. For Fig. Ia,

condition (19) is satisfied ift,, > 35 ¢c , and for Fig. /b if .7, > 72 ¢c
From equation (4), we can obtain an equation with variance as a series if we

decompose the integrand functionl//(z,r - r’) into a series and use the Fourier
transform 9" y(w)/0e" = (i)’ IT"Z(T)e"“”dr.
0

Performing the transformations, we obtain
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Here, , 5, =0k /0w, ~1/c B, =0"k / 0w, (n>2 ),k=nyw,/c . The solution of this

equation coincides with (21) - (23) if the Dawson function is represented as an
asymptotic series (20). Thus, the variance decomposition (24) is valid if condition (19)
is satisfied. Otherwise, to describe the dynamics of pulses, we must consider equations
(1) or (4).

Let us determine the applicability limits of the trial solution (5) using the rule of

conservation of electric area [18]

TE(T,Z)dz':const. (25)

Obviously, if the electric field of momentum can be represented as the time
derivative E =0® / 0r of a function decreasing at infinity, then condition (25) is

satisfied and the momentum area is zero [4]. Let us represent the function® in the form

[19]
®(7,z)=— 21?;() exp(—iw,r) + r.c. » (26)
then
E(r,z) = %[1// exp(—ia)or) — %%exp(—ia)or) + K.C.j 27)

The contribution of the second summand in (27) is proportional tol/ @,7, and

can be neglected if the momentum includes about five or more field oscillations [19].
In this case, (27) goes to (3) with an envelope in the form of (5). Thus, the momentum
area conservation rule imposes restrictions on the applicability of the trial solution of

the form (5). It should be noted that the unidirectional propagation approximation



should be used with caution because it can lead to violation of the electric area

conservation rule [20-22].

CONCLUSION

The propagation of soliton-like pulses in air is analytically described using the
method of moments. The dispersion contribution is taken into account by means of the
Duhamel integral. The criterion (19) separating two modes of signal propagation is
found. It is shown that the MMO approximation may be inapplicable for pulses
including about ten field fluctuations if the pulse spectrum lies near the resonance of
the medium. For these cases, a system of equations on the pulse parameters is obtained.
A frequent solution of this system is found.
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FIGURE CAPTIONS
Fig. 1. Dependence of the pulse intensity on its duration at the central wavelength of

the signald = 3.6 (a),3.9 mxm (b).
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