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ВВЕДЕНИЕ
В последнее время все более востребованной

становится технология радиовидения в радиофо-
тонных радарах, для осуществления которой необ-
ходимо создавать радиопортрет «блестящих точек»
удаленного объекта в СВЧ диапазоне [1–4]. Такие
радары могут быть использованы применительно
к ситуациям, когда окружающее пространство тре-
бует точного контроля — в аэропортах, морских
портах, в густонаселенных городах, на крупных ав-
тодорогах и др. Для реализации этой технологии
необходимо создание приемных устройств с вы-
сокой разрешающей способностью. При этом ис-
пользование приемных устройств СВЧ, построен-
ных на исключительно радиоэлектронной компо-
нентной базе, не всегда может подходить для ре-
шения такой задачи из-за ограничений по рабочей
полосе частот. В то же время более высокая разре-
шающая способность по дальности может быть до-
стигнута с помощью использования широкополос-
ных и сверхширокополосных импульсов в качестве
локационных сигналов [5–7]. Высокое разрешение

по углу поступления сигнала на приемную антенну
может быть получено с помощью голографическо-
го метода, где для формирования радиоголограм-
мы к отраженной волне добавляется опорная СВЧ
волна и регистрируется результат интерференции
двух волн, т. е. записывается электронная радио-
голограмма, которая затем может быть оцифрова-
на и подвергнута спектральному анализу для из-
влечения информации о местоположении удален-
ного объекта [8, 9]. Приемные устройства, спро-
ектированные на основе радиофотонных техноло-
гий, позволяют реализовать алгоритм формирова-
ния и регистрации радиоголограмм [10–12].

СХЕМА ПРИЕМНОГО УСТРОЙСТВА
Схема приемного устройства для формирова-

ния и регистрации радиоголограммы представле-
на на рис. 1. Она разработана для решения одно-
мерной задачи определения угла прихода отражен-
ного сигнала на приемную антенну от удаленного
объекта. Решение этой задачи требует формирова-
ния и регистрации радиоголограммы отраженной
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Рис. 1. Схема приемного устройства: 1 — излучающая антенна, 2 — приемная антенна, 3 — линия передвижения при-
емной антенны, θ — угол , 𝐿 — расстояние между излучающей и приемной антеннами, OF — оптоволокно, MZM —
двойной параллельный электрооптический модулятор Маха–Цандера, PD — фотодетектор, Анализ — анализ с помо-
щью пакета программ, Результат — выходные данные.

от объекта волны СВЧ. Для этого опорная вол-
на в радиофотонном блоке обработки, состоящем
из волоконного лазера, двойного параллельного
электрооптического модулятора и фотодетектора,
смешивалась с входным сигналом каждого при-
емника линейной антенной решетки. В результа-
те этого формировалась интерференционная кар-
тина взаимодействия отраженной и опорной волн,
т. е. происходил учет фазовой информации фронта
отраженной волны. Затем полученная интерферен-
ционная картина подвергалась спектральному ана-
лизу, в ходе которого определялся угол поступления
отраженной волны на приемную антенну.

ИССЛЕДОВАНИЕ РАБОТЫ СХЕМЫ
С ПОМОЩЬЮ ЧИСЛЕННОГО

МОДЕЛИРОВАНИЯ
С помощью численных моделирований в сре-

де MatLab была исследована работа такой систе-
мы. Волна, отраженная от объекта, рассматрива-
лась как излучение с синусоидальной зависимо-
стью от времени с плоским фронтом (дальняя зо-
на). В таком случае разность фаз между сигнала-
ми СВЧ, регистрируемыми соседними приемника-
ми, является постоянной. После смешивания от-
раженного и опорного сигналов в двойном парал-

лельном модуляторе Маха–Цандера и последую-
щего их фотодетектирования формируется сигнал,
содержащий сведения об интенсивности интерфе-
ренционной картины отраженной и опорной волн
𝐼p−r в точке нахождения отдельного приемника. При
этом все оптические частотные компоненты оказы-
ваются отфильтрованными. При условии постоян-
ства разности фаз сигналов между соседним при-
емниками 𝐼p−r является синусоидальной функци-
ей, аргументом которой является номер приемни-
ка в решетке или его координаты вдоль решетки.
То есть на решетке формируется пространственная
волна с частотой, зависящей от угла падения от-
раженной волны на решетку (угол падения отсчи-
тывается от вертикали к середине линейной антен-
ной решетки). Поэтому угол падения можно опре-
делять, вычисляя преобразование Фурье и находя
частотный максимум интерференционной карти-
ны 𝐼p−r.

При проведении численных моделирований
использовались следующие параметры схемы: дли-
на волны СВЧ 3 см, длина решетки 1.5 м, коли-
чество приемников 100, расстояние между сосед-
ними приемниками линейной антенной решетки
1.5 см. Фаза опорной волны соответствовала слу-
чаю нормального падения (угол θ градусов от вер-
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тикали к линейной антенной решетке) при смеши-
вании отраженного и опорного сигналов в модуля-
торе Маха–Цандера. На рис.2а продемонстрирова-
на 𝐼p−r в результате усреднения по времени для слу-
чая одиночного отражающего объекта (шум пред-
полагался малым), на рис. 2б показан ее спектр.
В рассматриваемом случае отраженная волна па-
дала на антенную решетку под углом 50 градусов
от нормали. Различие формы 𝐼p−r от синусоидаль-
ной функции связано с относительно малой часто-
той расположения приемников на длине простран-
ственной волны. Однако расстояние между прием-
никами на периоде пространственной волны вы-
брано с учетом того, чтобы при скользящем па-
дении отраженной волны на периоде находилось
не менее двух точек оцифровки для сохранения ин-
формации. В случае низкого уровня шума угол па-
дения волны определяется с достаточной точно-
стью и составляет 50 градусов. В случае увеличен-
ных шумов точность определения угла будет де-
терминирована полушириной спектрального пика,
т. е. линейным размером антенной решетки. Ес-
ли рассматривать полуширину спектрального пика
по уровню половинной мощности, то она оказыва-
ется порядка одного градуса, что соответствует ди-
фракционной ширине луча.

На рис. 2в изображена 𝐼p−r в случае двух отра-
жающих объектов, расположенных под углами 25
и 50 градусов от нормали. На рис. 2г отображен
ее спектр. Направления на два объекта хорошо
определяются, несмотря на более сложный вид 𝐼p−r,
связанный с биением двух близких частот отра-
женных сигналов. На рис. 2д продемонстрирован
спектр 𝐼p−r для случая двух близкорасположенных
по углу объектов (объекты расположены под уг-
лами 20 и 21 градус от нормали). Объекты могут
быть разрешены, что подтверждает сделанную вы-
ше оценку.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ
СХЕМЫ

В качестве источника отраженной волны в схе-
ме экспериментального макета приемника для
определения угла падения сигнала (рис. 1) исполь-
зуется рупорная антенна. Излучение СВЧ генера-
тора, настроенного на частоту 7.5 ГГц, разделяет-
ся на 2 канала. Первый канал ведет к рупорной ан-
тенне, излучающей сигнал, второй — через аттеню-
атор (ослабление 20 дБ) к одному из плеч двойного
параллельного модулятора Маха–Цандера, предва-
рительно настроенного на квадратурную рабочую
точку (середина линейного участка передаточной
функции). Приемная антенна в виде отрезка пря-
моугольного волновода, перемещаемая вдоль ли-
нии 3, регистрирует падающие волны со сфери-
ческим фронтом, излучаемые рупорной антенной.
Сигнал с приемной антенны поступает на мало-
шумящий СВЧ усилитель (26 дБ). Затем усилен-

ная волна поступает на второе плечо двойного па-
раллельного электрооптического модулятора. Оп-
тические поля, промодулированные СВЧ сигнала-
ми, поступившими на оба плеча модулятора, сум-
мируются и поступают на фотодетектор по опти-
ческому волокну. СВЧ поле, полученное в резуль-
тате фотодетектирования, поступает на измеритель
мощности через усилитель (23 дБ). Данные о за-
меренной мощности оцифровываются и затем ана-
лизируются с помощью пакета программ в среде
MatLab.

В схеме использованы следующие компоненты:
● Agilent N1912A — измеритель мощности СВЧ;
● IXblue MXIQ-LN-30 — двойной параллель-

ный модулятор Маха–Цандера с полосой 30 ГГц;
● Pure Photonics PPCL550 — малошумящий

непрерывный одномодовый лазер с длиной волны
излучения 1.5 мкм;
● НПФ Дилаз ДФДШM40 — широкополосный

InGaAs PIN фотодетектор;
● Agilent аттенюаторы 3 и 10 дБ;
● Малошумящий усилитель с полосой частот

1–18 ГГц.
Экспериментальные данные, полученные

на макете, результаты их обработки, а также срав-
нение их с теоретической моделью представлены
на рис. 3. Интерференционная картина, получен-
ная в ходе эксперимента для угла прихода сигнала
30.8°, показана на рис. 3а (красная кривая 1).
Ее форма аналогична кривой на рис. 2а, полу-
ченной в результате численного моделирования
схемы. На рис. 3а также помещена кривая, демон-
стрирующая результат интерференции в случае
поля сферической волны (синяя кривая 2), когда
отраженный объект находится на недостаточном
удалении от приемной антенны. Разность фаз
двух кривых являлась свободным параметром
и была выбрана из условия максимально близ-
кого соответствия кривых. Можно заключить,
что теория дает достаточно хорошее совпадение
с экспериментом.

На рис. 3б продемонстрированы угловые спек-
тры, полученные в результате Фурье-анализа ин-
терференционных картин. Оценка угла, проведен-
ная по середине экспериментального распределе-
ния (по уровню −3 дБ), составляет 30.8°. Это зна-
чение совпадает с истинным углом в эксперимен-
те и является близким к углу 30.2°, полученно-
му по середине теоретического спектра. Точность
вычисления угла определяется шириной распре-
деления, полученного в результате Фурье-анализа.
В рассматриваемом случае ширина спектра значи-
тельная и составляет около 20°. Это обусловлено
тем, что расстояние до источника сигнала являет-
ся недостаточно большим, поэтому падающая вол-
на является не плоской, а сферической. В резуль-
тате величина периода пространственной волны
изменяется нелинейно вдоль линии перемещения
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Рис. 2. Сигнал на выходе фотодетектора для одиночного отражающего объекта, расположенного под углом 50 градусов
от нормали: усредненная по времени интенсивность интерференционной картины 𝐼p−r (а); спектральный вид 𝐼p−r (б).
Сигнал на выходе фотодетектора в случае двух отражающих объектов: усредненная по времени 𝐼p−r для объектов, рас-
положенных под углами 25 и 50 градусов от нормали (в) и ее спектральный вид (г); спектральный вид 𝐼p−r (д) в случае
двух близкорасположенных целей под углами 20 и 21 градус.
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Рис. 3. Экспериментальные данные и результаты их обработки. Сравнение экспериментальных и теоретических ин-
терференционных картин (а) и угловых спектров (б): 1 — эксперимент, 2 — теория (сферическая волна). Предло-
женный алгоритм обработки экспериментальных данных (в): 1, 2 — спектры данных, полученных с правой и левой
половин антенной решетки, 3 — полный спектр для сравнения. Исходные и восстановленные координаты цели (г):
1 — истинное положение источника, 2 — восстановленное положение, желтая линия — антенная решетка.

приемной антенны (линейной антенной решетки).
Для небольших уровней шума (отношение сиг-
нал/шум более 10–12 дБ) такой метод оценки угла
прихода сигнала может быть приемлемым, однако
для более зашумленных данных алгоритм обработ-
ки должен быть модифицирован.

Путем к определению истинных координат ис-
точника может служить решение уравнений макси-
мального правдоподобия с использованием метода
последовательных приближений. Первое прибли-
жение может быть получено путем деления массива
данных интерференционной картины на две рав-
ные части, соответствующие правой и левой поло-
винам антенной решетки. В ходе регистрации из-
лучения каждая часть решетки обнаруживает ис-
точник под своим углом. В рассматриваемом слу-
чае эти углы составляют 26° и 36° согласно спек-
трам 1 и 2 на рис. 3в. Точка пересечения прямых
линий, проходящих через середины половин ан-
тенной решетки под найденными углами, дает све-

дения о положении источника в первом прибли-
жении (рис. 3г). В рассматриваемом случае обра-
ботки данных измеренное значение угла поступле-
ния сигнала составляет 31.4 градуса. Таким обра-
зом, ошибка по углу оказывается менее 1°, а коор-
динаты 𝑥 и 𝑦 истинного (265,342) и восстановлен-
ного (241,285) источников различаются в пределах
10% и 20% соответственно.

ЗАКЛЮЧЕНИЕ
Рассмотрена задача определения угла прихода

отраженной волны на линейную антенную решет-
ку. Предложена схема радиофотонного приемно-
го устройства СВЧ для формирования и регистра-
ции радиоголограмм. Проведено численное и экс-
периментальное исследования такого устройства.
Предложен алгоритм обработки интерференцион-
ной картины для определения координат отража-
ющего объекта в случае сферичности отраженной
волны при недостаточном удалении приемника
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от объекта. Массив данных с антенной решетки де-
лится на две части для определения угла падения
на каждую из них. Точка пересечения прямых, про-
ходящих через середины половин антенной решет-
ки под найденными углами, может быть использо-
вана в качестве первого приближения к истинным
координатам отражающего объекта, которое мо-
жет быть уточнено с использованием метода мак-
симального правдоподобия.
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Application of microwave photonics methods in the design of microwave receiving
devices for the formation and registration of radio holograms
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A scheme for implementing a microwave photonics receiving device for microwave signals for the formation
and registration of radio holograms is proposed. The operation of such a receiving device was studied
numerically and experimentally. A data processing method is proposed to reduce the error in determining
the source coordinates.
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