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Рассмотрена задача нестационарной дифракции монополярного TM-поляризованного
электромагнитного импульса с плоским фронтом на тонкой щели в идеально проводящем
экране. Методами вычислительного эксперимента показано, что в случае, если ширина щели
много меньше пространственной длины импульса, то за экраном формируется поле в виде
цилиндрического монополярного импульса, т. е. имеет место преобразование формы фронта
падающего поля без изменения его характера (монополярности).
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ВВЕДЕНИЕ

Проблема генерации сверхкоротких электро-
магнитных импульсов является актуальной уже
на протяжении многих лет. Способы ее решения
постоянно развиваются и зависят, в частности,
от частотного диапазона.

Особо следует отметить задачу генерации элек-
тромагнитных импульсов, длительность которых
составляет доли периода колебаний (см., напри-
мер [1]). В литературе такие импульсы получили
название уни- или монополярных (МЭМИ) [2]. Де-
тальный обзор работ российских авторов по рас-
сматриваемой тематике представлен в [3].

Теоретические и экспериментальные ис-
следования МЭМИ представляют интерес как
с общефизической, так и с прикладной точек
зрения. Если говорить о фундаментальных про-
блемах генерации МЭМИ, следует упомянуть
работу [4], в которой несколькими способами
проведено доказательство того, что набором
пространственно-ограниченных источников
создать униполярный импульс в трехмерном
пространстве в общем случае невозможно. Следо-
вательно, как отмечалось, в частности, в [3], при
рассмотрении МЭМИ следует указывать ту про-
странственную область и тот временной интервал,
на котором МЭМИ существует. Например, в ра-

боте [5] рассмотрен один из способов генерации
в микроволновом диапазоне пары МЭМИ проти-
воположного знака. В качестве источника выбран
пространственно-короткий электрический ток,
временная зависимость которого имеет вид трапе-
ции. Показано, что пространственно-временное
разделение импульсов пары определяется длитель-
ностью временного интервала, на котором ток
постоянен.

Отдельной задачей является преобразования
характеристик МЭМИ, таких как изменение
направления распространения, их фокусировка
и т. д., которые не приводили бы к разрушению
основного свойства МЭМИ: монополярности.

Так, в работе [6] приведен теоретический ана-
лиз распространения униполярного предвестника,
генерируемого в результате многофотонной иони-
зации в электрооптическом кристалле, индуци-
рованной ультракоротким лазерным импульсом.
В этой же работе обращено внимание, что по ме-
ре распространения указанного электромагнитно-
го образования оно теряет свойства монополяр-
ности, что еще раз подтверждает тот факт, что
говорить о существовании МЭМИ можно только
при рассмотрении какой-то ограниченной области
пространства в ограниченный интервал времени.
Результаты экспериментального наблюдения уни-
полярного предвестника приведены в [7].
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С учетом указанных пространственно-времен-
ных ограничений были рассмотрены задачи ди-
фракции МЭМИ на простейших двумерных объ-
ектах: бесконечных цилиндре, ленте и др. [8–10].
Было указано на существенное отличие динами-
ки поля дифракции для различных поляризаций
электрического поля 𝐸 падающего МЭМИ. Ес-
ли вектор 𝐸 был направлен параллельно объекту,
то в большинстве рассмотренных методами вычис-
лительного эксперимента случаев поле дифракции
было близко к униполярному виду. Если же век-
тор 𝐸 лежал в плоскости поперечного сечения объ-
екта, то поле дифракции было знакопеременным.

Отметим, что в этих работах поперечные ли-
нейные размеры объектов значительно превосхо-
дили пространственную длину падающего импуль-
са 𝐿имп, определяемую как произведение его вре-
менной длительности на скорость света. Исходя
из предложенного в указанных работах механиз-
ма формирования знакопеременного поля (за счет
возбуждения на краях объектов цилиндрических
волн), для задачи дифракции на щели МЭМИ, име-
ющего плоский фронт, можно сделать следующее
предположение. Если ширина щели будет много
меньше пространственной длины падающего им-
пульса, то следует ожидать формирования поля ди-
фракции, структура которого будет близка к моно-
полярной. Форма же фронта поля дифракции мо-
жет оказаться цилиндрической.

ПОСТАНОВКА ЗАДАЧИ

Для проверки этого предположения рассмот-
рим следующую задачу.

Пусть в двумерной области 𝐺 (рис. 1), элек-
тродинамические характеристики которой совпа-
дают с характеристиками свободного простран-
ства, в положительном направлении оси 𝑥 распро-
страняется монополярный электромагнитный им-
пульс 1, имеющий плоский фронт. Импульс имеет
одну отличную от нуля компоненту электрического
поля, которая на левой границе𝐺 зависит от време-
ни 𝑡 следующим образом:

Рис. 1. К постановке задачи.
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где𝐸0 — амплитуда напряженности электрического
поля, τ1 — длительность переднего фронта импуль-
са (время, за которое поле от нулевого значения до-
стигает максимального), τ2 — параметр, определя-
ющий длительность заднего фронта импульса. От-
метим, что 𝐿имп ≈ 𝑐 (τ1 + τ2), где 𝑐 — скорость света
в вакууме.

Область содержит бесконечный в направлении
оси 𝑦 идеально проводящий экран 2 со щелью
шириной 𝑑. Экран имеет конечную толщину ℎ
(по оси 𝑥 выбранной системы координат). Края
экрана, образующие щель, имеют скругление, ра-
диус которого равен ℎ/2.

Найдем динамику электромагнитного поля
в области 𝐺. Для этого воспользуемся систе-
мой дифференциальных уравнений Максвелла
в пространственно-временном представлении [11].
Рассмотрим такую поляризацию поля, при которой
вдоль оси 𝑧, перпендикулярной плоскости распо-
ложения 𝐺, отличной от нуля является только одна
магнитная компонента (TM-поляризация). С уче-
том того, что в свободном пространстве диэлектри-
ческая (ε) и магнитная (μ) проницаемости равны
единице, покомпонентная запись уравнений имеет
следующий вид:
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(2)

где ε0 иμ0 — электрическая и магнитная постоянная
соответственно.

Предположим, что до момента 𝑡 = 0 электро-
магнитное поле в 𝐺 отсутствует. При 𝑡 > 0 элек-
трическое поле на левой границе 𝐺 соответству-
ет (1). Отражение электромагнитных волн от ниж-
ней, верхней и правой границ 𝐺 отсутствует. Гра-
ничные условия на поверхности экрана соответ-
ствуют граничным условиям на идеально проводя-
щей поверхности.

Для решения системы уравнений Максвелла
с указанными начальными и граничными услови-
ями воспользуемся численным методом, основан-
ным на конечно-разностной аппроксимации част-
ных производных по пространственным координа-
там и времени [12]. Отсутствие отражения волново-
го поля от границ 𝐺 обеспечим внедрением абсо-
лютно согласованного слоя [13].
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РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Численное моделирование рассматривае-
мой системы было выполнено при следующих
фиксированных параметрах. Длина области 𝐺
(направление 𝑥) была равна 700 см, ширина (на-
правление 𝑦) 400 см. Экран, толщина которого
составляла 5 см, был расположен на удалении
352.5 см от левой границы 𝐺. Радиус скругле-
ния краев экрана был равен 2.5 см. Падающий
электромагнитный импульс имел единичную ам-
плитуду 𝐻0 = 1, τ1 = 5 ⋅ 10−10 с, τ2 = 3 ⋅ 10−10 с. Его
пространственная длина 𝐿имп = 24 см.

Изменяемым параметром в моделировании бы-
ла ширина щели 𝑑, которая соответствовала рас-
стоянию между скруглениями краев экрана. В ка-
честве контролируемых величин были использова-
ны зависимости значения магнитной компоненты
поля от продольной координаты на прямой, прохо-
дящей через середину щели в фиксированный мо-
мент времени, а также пространственное распреде-
ление этого поля в правой части области𝐺 (за экра-
ном).

Проведенное моделирование динамики поля
показали, что при соотношении 𝐿имп/𝑑 > 5 за экра-
ном формируется монополярный цилиндрический
импульс, амплитуда которого уменьшается с увели-
чением указанного соотношения.

Характерные зависимости поля дифракции
приведены на рис. 2, которые были получены
для 𝐿имп/𝑑 ≈ 5. Для удобства рассмотрения нача-

ло оси 𝑥 совмещено с правой границей экрана.
Ноль вертикальной координаты совпадает с цен-
тром щели. Момент времени 𝑡 = 0 соответствует
появлению МЭМИ на левой границе 𝐺.

На рис. 2а показаны зависимости распределе-
ния Hz от продольной координаты в моменты вре-
мени 𝑡 = 132, 148, 165, 181 и 198 нс (кривые 1,
2, 3, 4 и 5 соответственно). Максимальные зна-
чения сформированного МЭМИ убывают с рас-
стоянием от щели ∼ 1/

√

𝑟, что соответствует за-
кону убывания амплитуды цилиндрической волны
с расстоянием до ее источника. Амплитуда поля
дифракции 𝐻

диф
0 , а также величина наблюдаемо-

го перегиба на заднем фронте импульса (обозна-
чен на рис. 2а стрелкой) уменьшается с увеличе-
нием соотношения 𝐿имп/𝑑. Для 𝐿имп/𝑑 = 5 величи-
на𝐻диф

0 /𝐻0 ≈ 0.25. Таким образом, при стремлении
ширины щели к нулю, профиль поля дифракции
будет стремиться к профилю падающего импуль-
са, однако при этом 𝐻

диф
0 также будет исчезающе

малой.
На рис. 2б показаны изолинии магнитной ком-

поненты поля дифракции, построенные в момент
времени 𝑡 = 135 нс. Отметим, что вблизи прямой
𝑦 = 0 наблюдается область максимальных значе-
ний, а большинство изолиний имеют форму полу-
окружностей, что соответствует фазовым поверх-
ностям цилиндрической волны, т. е. можно утвер-
ждать, что плоский фронт исходного МЭМИ был
преобразован в цилиндрический.
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Рис. 2. Зависимость магнитного поля дифракции от продольной координаты (а) и его пространственное распределе-
ние (б).
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ЗАКЛЮЧЕНИЕ
Таким образом, основываясь на результатах

проведенных вычислительных экспериментов,
можно считать, что поле дифракции МЭМИ
с плоским фронтом на идеально проводящем
экране со щелью, ширина которой удовлетворяет
условию 𝐿имп/𝑑 ≫ 1, имеет вид монополярного
импульса с цилиндрическим фронтом. Данное
свойство может быть использовано при прове-
дении экспериментальных работ по воздействию
МЭМИ на искусственные и естественные объекты.

Работа выполнена в рамках темы государствен-
ного задания ИРЭ им. В. А. Котельникова РАН.
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Conversion of a flat front of a unipolar radiation pulse into a cylindrical one
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The problem of nonstationary diffraction of a monopolar TM-polarized electromagnetic pulse with a flat
front on a thin slit in a perfectly conducting screen is considered. Using computational experiment methods,
it has been shown that if the slit width is much smaller than the spatial length of the pulse, then a field
is formed behind the screen in the form of a cylindrical monopolar pulse, i. e. there is a transformation
of the shape of the incident field front without changing its character (monopolarity).

Keywords: monopolar electromagnetic pulse, non-stationary diffraction, front shape transformation
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