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ВВЕДЕНИЕ

Рассмотрим строгое волновое решение об-
ратной задачи акустического рассеяния. Требует-
ся восстановить неоднородные пространственные
распределения скорости звука 𝑐(𝑟) и амплитудно-
го коэффициента поглощения α(𝑟, ωj) на заданной
частоте ωj внутри томографируемого объекта, на-
ходящегося в области ℜ. Вне области ℜ имеется
однородная непоглощающая фоновая среда; ско-
рость звука в ней 𝑐0 и волновое число 𝑘0j = ωj/𝑐0.
Излучатели и приемники, используемые для полу-
чения экспериментальных данных, находятся вне
области ℜ и окружают исследуемый объект со всех
сторон. Объект зондируется фиксированным пада-
ющим полем акустического давления 𝑢0(𝑟). Попа-
дая на объект, это поле 𝑢0(𝑟) рассеивается на аку-
стических неоднородностях внутри ℜ. Тем самым,
создается полное поле 𝑢(𝑟), которое регистриру-
ется всеми приемниками. После этого изменяет-
ся направление падающего поля, и соответствую-
щие поля 𝑢(𝑟) опять принимаются. Полный на-
бор данных получается перебором всевозможных
направлений зондирования и приема. Этот набор
данных обрабатывается, т. е. решается обратная за-
дача. В итоге восстанавливаются искомые функ-
ции 𝑐(𝑟) и α(𝑟, ωj) количественно. Возможность
получения количественных оценок в каждой точ-
ке пространства 𝑟 является принципиальным от-
личием обратных акустических задач томографи-

ческого типа от обратных задач УЗИ-типа. Эта
возможность обеспечивается, во-первых, за счет
наличия экспериментальных данных при самых
разных ракурсах и, во-вторых, за счет достаточ-
но строгого алгоритма обработки таких данных.
Ниже в целях обработки рассматривается двумер-
ный волновой функционально-аналитический ал-
горитм [1–5] в монохроматическом варианте. В ос-
нове этого алгоритма лежат идеи решения обрат-
ных задач рассеяния на квантово-механических
потенциалах [1–3, 6, 7].

Полное поле 𝑢(𝑟) при каждом фиксированном
𝑢0(𝑟) подчиняется уравнению Гельмгольца∇2𝑢(𝑟)+

+𝑘2
0j𝑢(𝑟) = 𝑣(𝑟)𝑢(𝑟), где 𝑣(𝑟, ωj) = ω2

j
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𝑐2(𝑟)
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− 𝑖2ωj

α(𝑟, ωj)
𝑐(𝑟)

— функция рассеивателя при вре-

менной зависимости полей ∼ exp(−𝑖ωj𝑡). Сначала
должна быть восстановлена функция 𝑣(𝑟, ωj) [8],
после чего из нее можно выделить отдельные функ-
ции 𝑐(𝑟) и α(𝑟, ωj) [9]. Входными данными для
функционального алгоритма являются комплекс-
ные значения классической амплитуды рассеяния
𝑓(𝑘, 𝑙⃗; ωj). Они полагаются известными для всех
действительных волновых векторов 𝑘, 𝑙⃗ ∈ ℝ2, где
𝑘2 = 𝑙⃗2 = 𝑘2

0j. Пусть падающее поле является класси-
ческой плоской волной

𝑢0(𝑟, 𝑘; ωj) = exp(𝑖𝑘𝑟) (1)
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с волновым вектором 𝑘, а поле 𝑢(𝑟, 𝑘, ωj) принима-
ется в дальней зоне в направлении, сонаправлен-
ном волновому вектору 𝑙⃗, т. е. 𝑟 ⇈ 𝑙⃗. Тогда значе-
ния 𝑓(𝑘, 𝑙⃗, ωj) пропорциональны рассеянному по-
лю 𝑢(𝑟, 𝑘; ωj) − 𝑢0(𝑟, 𝑘; ωj). В то же время, значения
𝑓(𝑘, 𝑙⃗; ωj)могут быть пересчитаны из полей, приня-
тых в ближней зоне вне области томографируемого
объекта [8, 10].

ДВУМЕРНЫЙ ФУНКЦИОНАЛЬНЫЙ
АЛГОРИТМ И АППАРАТ УГЛОВЫХ

ГАРМОНИК

Двумерный функциональный алгоритм вос-
становления функции рассеивателя 𝑣(𝑟, ωj) состо-
ит из нескольких последовательных этапов, кото-
рые приводятся ниже в терминах углов и угловых
гармоник [4, 5]. А именно, угловой спектр 𝑔̃(𝑞)
для произвольной периодической функции 𝑔(φ)
с периодом 2π определяется соотношениями (уг-
ловые гармоники имеют целочисленные номера
𝑞 = 0, ±1, ±2, …, т. е. 𝑞 ∈ ℤℤℤ):

𝑔̃(𝑞) = 1
2π

2π

∫
0

𝑔(φ) exp(−𝑖𝑞φ)𝑑φ,

𝑔(φ) =
∞

∑
𝑞=−∞

𝑔̃(𝑞) exp(𝑖𝑞φ), 𝑞 ∈ ℤℤℤ.

(2)

Для двумерных векторов 𝑘 и 𝑙⃗ в полярной систе-
ме координат имеем:

𝑘 = {𝑘0j, φ} , 𝑙⃗ = {𝑘0j, φ
′} , (3)

тогда 𝑓 (𝑘, 𝑙⃗; ωj) ≡ 𝑓 (φ, φ′; ωj). Сначала на осно-
ве известных значений классической амплиту-
ды рассеяния 𝑓 (φ, φ′; ωj) находятся две функции
ℎ± (φ, φ′; ωj)— так называемая обобщенная ампли-
туда рассеяния. С этой целью при каждом фикси-
рованном значении φ решается линейная система
уравнений, которая получается перебором всех уг-
лов φ′:

ℎ± (φ, φ′; ωj) − π𝑖
2π

∫
0

ℎ± (φ, φ″; ωj)×

×θ [± sin (φ″−φ)] 𝑓 (φ″, φ′; ωj) dφ″=𝑓 (φ, φ′; ωj) ,

(4)

где θ(𝑡) = {1 при 𝑡 > 0; 0 при 𝑡 ⩽ 0} — функция Хе-
висайда. После этого для каждой фиксирован-
ной точки 𝑟 с декартовыми координатами 𝑟 = {𝑥, 𝑦}
строятся вспомогательные функции

𝑄± (𝑟, φ, φ′; ωj) ≡ ℎ± (φ, φ′; ωj)×
× exp [𝑖𝑘0j {𝑥 (cosφ′−cosφ)+𝑦 (sinφ′−sinφ)}]×

×θ [± sin (φ′−φ)] .
(5)

Вычисляется их двойной угловой спектр фурье-
преобразованием по углам:

̃̃
𝑄± (𝑟, 𝑞, 𝑞′; ωj) ≡

1
(2π)2

2π

∫
0

𝑑φ

2π

∫
0

𝑑φ′×

×𝑄± (𝑟, φ, φ′; ωj) exp(−𝑖𝑞φ) exp (−𝑖𝑞′φ′) ,

(6)

и для всех 𝑞′ ∈ ℤℤℤ строится функция

̃̃𝐵 (𝑟, 𝑞, 𝑞′; ωj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑖π
̃̃
𝑄−(𝑟, 𝑞, 𝑞′; ωj)

при 𝑞 = 0, 1, 2, 3, … ;

𝑖π
̃̃
𝑄+(𝑟, 𝑞, 𝑞′; ωj)

при 𝑞 = −1,−2, … .

(7)

Знание ̃̃𝐵 (𝑟, 𝑞, 𝑞′; ωj) позволяет найти уг-
ловые гармоники μ̃cl (𝑟, 𝑞; ωj) классического
поля со снятой «несущей» волной: μcl (𝑟, 𝑘; ωj) ≡
≡ exp(−𝑖𝑘𝑟)𝑢 (𝑟, 𝑘; ωj). Эти угловые гармони-
ки находятся в каждой фиксированной точке 𝑟
из системы линейных уравнений:

μ̃cl (𝑟, 𝑞; ωj) + 2π
∞

∑
𝑞′=−∞

̃̃𝐵 (𝑟, 𝑞,−𝑞′; ωj)×

× μ̃cl (𝑟, 𝑞′; ωj) = δ𝑞0,

(8)

где δ𝑞0 = {1 при 𝑞 = 0; 0 при 𝑞 ≠ 0}. Наконец, иско-
мая функция рассеивателя вычисляется из соотно-
шения

𝑣 (𝑟, ωj) = 𝑘0j (𝑖
𝜕

𝜕𝑥
+ 𝜕

𝜕𝑦
)
⎧⎪⎪⎨⎪⎪⎩
μ̃cl (𝑟, 𝑞 = −1; ωj) +

+ 2𝑖π2
∞

∑
𝑞′=−∞

̃̃
𝑄−(𝑟, 𝑞 = −1,−𝑞′; ωj)μ̃cl (𝑟, 𝑞′; ωj)

⎫⎪⎪⎬⎪⎪⎭
.

(9)

Описанный двумерный функциональный алго-
ритм позволяет практически строго (с точностью
до эффектов, связанных с рассеянием назад) учи-
тывать процессы многократного рассеяния волн
на неоднородностях среды. При этом все решаемые
системы уравнений (4) и (8) остаются линейными
относительно неизвестных. Тем не менее, числен-
ная реализация алгоритма [4, 5] весьма нетривиаль-
на. При численной реализации оказывается удоб-
ным использовать аппарат угловых гармоник, ко-
торый уже применялся ранее для записи соотно-
шений (6)–(9) данного алгоритма [4, 5], а также
для коррекции экспериментальных данных в слу-
чае неидеальных позиций излучателей и приемни-
ков [11].

В предшествующих вариантах численной реа-
лизации [4, 5] обобщенная амплитуда рассеяния
ℎ± (φ, φ′; ωj) находилась из системы (4) непосред-
ственно в терминах углов φ и φ′. Вспомогатель-
ные функции 𝑄± (𝑟, φ, φ′; ωj) формировались, со-
гласно (5), также в терминах углов, после чего вы-
полнялось двойное фурье-преобразование по уг-
лам (6). Последующие действия (7)–(9) выполня-
лись уже в терминах угловых гармоник [4, 5].
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Ниже предлагается решать систему (4) и рас-
сматривать соотношение (5) сразу с помощью угло-
вых гармоник. Такой прием позволяет, во-первых,
повысить точность численной реализации при пе-
реходе от непрерывных значений углов φ и φ′ к дис-
кретным номерам угловых гармоник 𝑞 и 𝑞′. Во-
вторых, в соотношениях (4) и (5) присутствуют
функции Хевисайда

θ±(φ) ≡ θ(± sinφ), (10)
которые изменяются скачкообразно от 1 до 0
в бесконечно малой окрестности нулевого значе-
ния их аргумента. Поэтому угловой шаг дискре-
тизации для функций θ±(φ) должен быть гораз-
до мельче, чем для 𝑓 (φ, φ′; ωj) и ℎ± (φ, φ′; ωj). Это
взаимосвязано с тем, что угловой спектр θ̃±(𝑞) ≡
≡

1
2π ∫

2π
0 θ±(φ) exp(−𝑖𝑞φ)𝑑φ функций θ±(φ) спада-

ет медленно:

θ̃±(𝑞) = 1
2
(∓𝑖)𝑞 sinc (π

2
𝑞) ≡

≡ {1
2

при 𝑞 = 0; ± 𝑖

2π𝑞
{(−1)𝑞 − 1} при 𝑞 ≠ 0} ,

(11)

причем θ̃−(𝑞) = {θ̃+(𝑞)}∗, ∀𝑞. В то же время, в (5)
присутствует функция
𝐸 (𝑟, φ, φ′; ωj) ≡ exp [𝑖𝑘0j {𝑥 (cosφ′ − cosφ) +
+ 𝑦 (sinφ′ − sinφ)}] ≡ exp {𝑖(𝑙⃗ − 𝑘)𝑟},

(12)

где учтено (3). Функция 𝐸 (𝑟, φ, φ′; ωj) осциллиру-
ет при изменении φ и φ′ тем сильнее, чем больше
фиксированное значение 𝑘0j∣𝑟∣. Как следствие, уг-
ловой спектр этой функции будет иметь тем более
высокие значимые угловые гармоники, чем больше
𝑘0j∣𝑟∣. Таким образом, введение дискретных анало-
гов обеих функций (10) и (12) требует повышенно-
го внимания при численной реализации рассмат-
риваемого функционального алгоритма.

В-третьих, рассмотрение функций в терминах
угловых гармоник делает удобным контроль над
достаточностью объема дискретизованных значе-
ний функций, участвующих на каждом этапе про-
цедуры восстановления. Такой контроль, начи-
ная с объема исходных дискретизованных данных
𝑓 (φ, φ′; ωj), принципиален для обеспечения един-
ственности, устойчивости и, в конечном счете,
адекватности решения рассматриваемой обратной
задачи [8]. Об этом кратко будет упомянуто на эта-
пе численного моделирования.

Для преобразования интегрального члена урав-
нений (4) функцииℎ± (φ, φ″; ωj)и𝑓 (φ″, φ′; ωj)мож-
но представить, согласно (2), как

ℎ± (φ, φ″; ωj) =
∞

∑
𝑞″=−∞

ℎ̃± (φ, 𝑞″; ωj) exp (𝑖𝑞″φ″) ,

𝑓 (φ″, φ′; ωj) =
∞

∑
𝑞‴=−∞

𝑓 (𝑞‴, φ′; ωj) exp (𝑖𝑞‴φ″) .

Это приводит уравнения (4) к виду:

ℎ± (φ, φ′; ωj) − π𝑖
∞

∑
𝑞″=−∞

∞

∑
𝑞‴=−∞

ℎ̃± (φ, 𝑞″; ωj)×

×𝑓 (𝑞‴, φ′; ωj) 2π exp [𝑖 (𝑞″ + 𝑞‴)φ]×
× θ̃± [− (𝑞″ + 𝑞‴)] = 𝑓 (φ, φ′; ωj) .

Фурье-преобразование данного выражения по уг-
лу φ′ дает:

ℎ̃± (φ, 𝑞′; ωj) − 2𝑖π2
∞

∑
𝑞″=−∞

⎧⎪⎪⎨⎪⎪⎩

∞

∑
𝑞‴=−∞

θ̃± (−𝑞″ − 𝑞‴) ×

×
̃̃
𝑓 (𝑞‴, 𝑞′; ωj) exp (𝑖𝑞‴φ)

⎫⎪⎪⎬⎪⎪⎭
exp (𝑖𝑞″φ)×

× ℎ̃± (φ, 𝑞″; ωj) = 𝑓 (φ, 𝑞′; ωj) ; 𝑞′ ∈ ℤℤℤ.

(13)

Система уравнений (13), получающаяся пере-
бором 𝑞′ ∈ ℤℤℤ, решается относительно одинарных
угловых гармоник ℎ̃± (φ, 𝑞′; ωj) при каждом фикси-
рованном угле φ. В правой части (13) стоит одинар-
ный угловой спектр классической амплитуды рас-
сеяния

𝑓 (φ, 𝑞′; ωj) =
1

2π

2π

∫
0

𝑓 (φ, φ′; ωj) exp (−𝑖𝑞′φ′) 𝑑φ′,

𝑞′ ∈ ℤℤℤ.
(14)

а в левой части — двойной угловой спектр

̃̃
𝑓 (𝑞, 𝑞′; ωj) =

1
(2π)2

2π

∫
0

𝑑φ

2π

∫
0

𝑑φ′ ×

×𝑓 (φ, φ′; ωj) exp (−𝑖𝑞φ) exp (−𝑖𝑞′φ′) ,
𝑞, 𝑞′ ∈ ℤℤℤ.

(15)

После нахождения ℎ̃± (φ, 𝑞′; ωj) вычисляется
двойной угловой спектр

̃̃
ℎ (𝑞, 𝑞′; ωj) =

1
2π

2π

∫
0

ℎ̃± (φ, 𝑞′; ωj) exp(−𝑖𝑞φ)𝑑φ. (16)

С другой стороны, можно находить сразу двой-
ные угловые гармоники ̃̃ℎ± (𝑞, 𝑞′; ωj) из системы,
которая получается фурье-преобразованием урав-
нений (13) по углу φ с последующей заменой пере-
менных:

̃̃
ℎ± (𝑞, 𝑞′; ωj)−2𝑖π2

∞

∑
𝑞″=−∞

⎧⎪⎪⎨⎪⎪⎩

∞

∑
𝑞‴=−∞

̃̃
𝑓 (−𝑞‴+𝑞−𝑞″, 𝑞′; ωj)×

× θ̃± (𝑞‴ − 𝑞)
⎫⎪⎪⎬⎪⎪⎭
̃̃
ℎ± (𝑞‴, 𝑞″; ωj) =

̃̃
𝑓 (𝑞, 𝑞′; ωj) ;

𝑞, 𝑞′ ∈ ℤℤℤ.

(17)

Однако в отличие от системы (13), которая решает-
ся при каждом фиксированном φ, система(17) тре-
бует нахождения ̃̃ℎ± (𝑞, 𝑞′; ω𝑗) сразу для всех зна-
чений (𝑞, 𝑞′), т. е. ни один из аргументов 𝑞 или 𝑞′
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зафиксировать нельзя. Тем самым, переход от (13)
к (17) не всегда целесообразен, поскольку могут
возникнуть трудности из-за матриц огромной раз-
мерности при решении системы (17) — подобно си-
туации, описанной в [12].

Вместо выполнения последовательности
действий (5) и (6), выражение (5) можно преобра-
зовать сразу в терминах угловых гармоник. Учиты-
вая (1), (3) и (12), имеем: 𝐸 (𝑟, φ, φ′; ωj) = exp(−𝑖𝑘𝑟)×
× exp(𝑖𝑙⃗𝑟) ≡ 𝑃 (𝑟, φ + π; ωj) 𝑃 (𝑟, φ′; ωj). Здесь для
удобства введено обозначение 𝑢0 (𝑟, 𝑘; ωj) ≡
≡ 𝑃 (𝑟, φ; ωj) = exp(𝑖𝑘𝑟), и тогда

−𝑘 = {𝑘0j, φ + π} , 𝑃 (𝑟, φ + π; ωj) ≡ exp(−𝑖𝑘𝑟);
𝑙⃗ = {𝑘0j, φ

′} , 𝑃 (𝑟, φ′; ωj) ≡ exp(𝑖𝑙⃗𝑟).
Выражение (5) переписывается как

𝑄± (𝑟, φ, φ′; ωj) = ℎ± (φ, φ′; ωj) exp {𝑖(𝑙⃗ − 𝑘)𝑟}×
×θ± (φ′ − φ) ≡ ℎ± (φ, φ′; ωj)×

×𝑃 (𝑟, φ + π; ωj) 𝑃 (𝑟, φ′; ωj) θ± (φ′ − φ) .
(18)

Каждая из функций ℎ± и 𝑃 в (18) представляется
в виде суммы угловых гармоник:

ℎ± (φ, φ′; ωj) =
∞

∑
𝑞1=−∞

∞

∑
𝑞2=−∞

̃̃
ℎ± (𝑞1, 𝑞2; ωj)×

× exp(𝑖𝑞1φ) exp(𝑖𝑞2φ
′),

𝑃 (𝑟, φ + π; ωj) =
∞

∑
𝑞3=−∞

𝑃 (𝑟, 𝑞3; ωj) exp {𝑖𝑞3(φ + π)} ,

𝑃 (𝑟, φ′; ωj) =
∞

∑
𝑞4=−∞

𝑃 (𝑟, 𝑞4; ωj) exp (𝑖𝑞4φ
′) , (19)

и выполняется двойное фурье-преобразование вы-
ражения (18) по углам φ и φ′, согласно (6). Это при-
водит (18) к виду:

̃̃
𝑄± (𝑟, 𝑞, 𝑞′; ωj) =

∞

∑
𝑞1=−∞

∞

∑
𝑞2=−∞

⎧⎪⎪⎨⎪⎪⎩

∞

∑
𝑞3=−∞

(−1)𝑞−𝑞1+𝑞3 ×

× 𝑃 (𝑟, 𝑞 − 𝑞1 + 𝑞3; ωj) 𝑃 (𝑟, 𝑞′ − 𝑞2 − 𝑞3; ωj) θ̃± (𝑞3)
⎫⎪⎪⎬⎪⎪⎭
×

×
̃̃
ℎ± (𝑞1, 𝑞2; ωj) .

(20)
Поскольку в полярной системе координат
𝑟 = {∣𝑟∣, φ𝑟}, то

𝑃 (𝑟, φ; ωj) ≡ exp(𝑖𝑘𝑟) = exp {𝑖𝑘0j∣𝑟∣ cos (φ𝑟 − φ)} =

=
∞

∑
𝑞=−∞

𝑖𝑞𝐽𝑞 (𝑘0j∣𝑟∣) exp [𝑖𝑞 (φ − φ𝑟) ],
(21)

где 𝐽𝑞 — функция Бесселя 𝑞-го порядка. Из сравне-
ния (19) и (21) следует, что

𝑃 (𝑟, 𝑞; ωj) = 𝑖𝑞 exp (−𝑖𝑞φ𝑟) 𝐽𝑞 (𝑘0j∣𝑟∣) . (22)

Подстановка (22) в (20) приводит к окончательному
выражению:
̃̃
𝑄± (𝑟, 𝑞, 𝑞′; ωj) = (−𝑖)𝑞−𝑞

′

exp { − 𝑖φ𝑟 (𝑞 + 𝑞′) }×

×

∞

∑
𝑞1=−∞

∞

∑
𝑞2=−∞

(−𝑖)𝑞2−𝑞1 exp {𝑖φ𝑟 (𝑞1 + 𝑞2) }×

×κ± (𝑞 − 𝑞1, 𝑞
′ − 𝑞2, 𝑘0j∣𝑟∣)

̃̃
ℎ± (𝑞1, 𝑞2; ωj) ,

(23)

где

κ± (𝑛, 𝑛′, 𝑘0j∣𝑟∣) ≡
∞

∑
𝑞3=−∞

(−1)𝑞3𝐽𝑛+𝑞3
(𝑘0j∣𝑟∣)×

× 𝐽𝑛′−𝑞3
(𝑘0j∣𝑟∣) ⋅ θ̃± (𝑞3) ; 𝑛, 𝑛′ ∈ ℤℤℤ.

(24)

Выражение для θ̃±(𝑞)приведено в (11). Оно поз-
воляет преобразовать выражение (24) с учетом то-
го, что θ̃±(𝑞) = 0 при ∣𝑞∣ = 2, 4, 6, 8, …:

κ± (𝑛, 𝑛′, 𝑘0j∣𝑟∣) =
1
2
𝐽𝑛 (𝑘0j∣𝑟∣) 𝐽𝑛′ (𝑘0j∣𝑟∣)±

±
𝑖

π

∞

∑
𝑚=−∞

1
2𝑚 + 1

𝐽𝑛+2𝑚+1 (𝑘0j∣𝑟∣)×

× 𝐽𝑛′−2𝑚−1 (𝑘0j∣𝑟∣) ; 𝑛, 𝑛′, 𝑚 ∈ ℤℤℤ.

(25)

Из (25) непосредственно видно, что
κ− (𝑛, 𝑛′, 𝑘0j∣𝑟∣) = {κ+ (𝑛, 𝑛′, 𝑘0j∣𝑟∣)}

∗, ∀𝑛, 𝑛′ ∈ ℤℤℤ.
Таким образом, последовательность действий

при восстановлении функции рассеивателя с помо-
щью аппарата угловых гармоник имеет вид, пред-
ставленный на схеме 1.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ
Проверка эффективности предложенного но-

вого варианта численной реализации двумерно-
го функционального алгоритма выполнялась пу-
тем восстановления модельного акустического рас-
сеивателя. Для задания модели рассеивателя бы-
ли взяты два МРТ-изображения двумерных сече-
ний молочной железы [13]. Одно из изображе-
ний стало условно интерпретироваться как зна-
чения скорости звука 𝑐(𝑟) (рис. 1а), другое изоб-
ражение — значения коэффициента поглощения
α (𝑟, ωj) (рис. 1б). В фоновой непоглощающей сре-
де (воде), окружающей молочную железу, полага-
лось 𝑐0 = 1500 м/с; тогда длина волны λ0 ≡ 2π/𝑘0 =
= 10−3 м при выбранной частоте 1.5 МГц. Шаг дис-
кретизации рассматриваемых изображений зада-
вался равным 0.5λ0. При этом вся область томогра-
фирования составляла 106λ0 вдоль каждой декар-
товой оси, а линейный размер собственно сечения
молочной железы составлял ≈ 80λ0. Количествен-
ные значения на изображениях задавались на осно-
ве характерных диапазонов 𝑐(𝑟) и α (𝑟, ωj) [14, 15]:
полагалось 1460–1535 м/с для 𝑐 и 15–34 Нп/м, т. е.
1.3–3.0 Дб/см, для α. Значения 𝑐 и α наибольшие
в коже, а в подкожной жировой ткани — значитель-
но меньше.
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𝑓 (φ, φ′; ωj)
(14), (15)

𝑓 (φ, 𝑞′; ωj),
̃̃
𝑓 (𝑞, 𝑞′; ωj)

(13)
ℎ̃± (φ, 𝑞′; ωj)

(17)

̃̃
ℎ± (𝑞, 𝑞′; ωj)

(16)

(25), (23)
̃̃
𝑄± (𝑟, 𝑞, 𝑞′; ωj)

(7), (8)
μ̃cl (𝑟, 𝑞; ωj)

(9)
𝑣 (𝑟, ωj)

Схема 1.
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Рис. 1. Исходная модель акустического рассеивателя: пространственные распределения скорости звука (а) и коэффи-
циента поглощения (б) в двумерном сечении молочной железы.

При прохождении волны вдоль траекторий,
параллельных оси абсцисс и оси ординат, наи-
больший положительный дополнительный набег
фазы волны Δψ > 0 приобретается на участ-
ках с 𝑐(𝑟) > 𝑐0 [4, 8, 12] вдоль сечения 𝑦 = −λ0
и составляет Δψ ≈ 1.25π. Наибольший (по моду-
лю) отрицательный набег Δψ < 0 приобретается
на участках с 𝑐(𝑟) < 𝑐0 [4, 8, 12] вдоль сечения
𝑦 = −31λ0 и составляет Δψ ≈ −1.27π. Максималь-
ное поглощение наблюдается вдоль сечения
𝑥 = −16.5λ0, при этом амплитуда волны уменьша-
ется в ≈8 раз. Таким образом, эффекты много-
кратного рассеяния волн выражены достаточно
сильно.

Приемоизлучающие квазиточечные преобра-
зователи в количестве 800 располагались равномер-
но на окружности радиуса 0.1536 м вокруг области
томографирования. Из таких данных пересчиты-
валась амплитуда рассеяния 𝑓 (φ, φ′; ωj) с угловым
шагом дискретизации 2π/800. Надо отметить, что
количество преобразователей в современных уль-
тразвуковых томографах, которые предназначены,
в первую очередь, для послойной диагностики мо-
лочной железы, может достигать полторы-две ты-
сячи [16, 17]. Более того, дополнительное враще-
ние антенной решетки позволяет, в принципе, су-
щественно увеличить эффективный объем экспе-
риментальной информации [8].

Двойной угловой спектр амплитуды рассеяния
̃̃
𝑓 (𝑞, 𝑞′; ωj) сконцентрирован около антидиагонали
𝑞′ = −𝑞. Угловой спектр спадает с высокой точно-
стью к практически нулевым значениям при наи-
больших ∣𝑞∣ и ∣𝑞′∣ (рис. 2а). Это означает, что упомя-
нутый объем дискретизованных данных 𝑓 (φ, φ′; ωj)
заключает в себе практически всю информацию
об объекте, которую можно получить за счет из-
мерений поля вне объекта при заданной частоте
ωj. Такого объема данных оказывается достаточным
для восстановления с хорошим качеством слож-
ной пространственной структуры рассматриваемо-
го рассеивателя, а также значений скорости зву-
ка (рис. 2б) и коэффициента поглощения (рис. 2в).
Одномерное сечение молочной железы приведено
на рис. 2б и 2в для наглядной иллюстрации высо-
кой точности восстановления.

ЗАКЛЮЧЕНИЕ
Таким образом, численная реализация функци-

онального алгоритма с помощью аппарата угловых
гармоник оказалась эффективной. В то же время,
на практике линейный размер рассеивателя может
быть еще больше, а контраст скорости звука и ко-
эффициента поглощения еще сильнее, чем в рас-
смотренной модели. В свою очередь, это еще боль-
ше усиливает эффекты многократного рассеяния
волн. Тогда для обеспечения устойчивого восста-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ ТОМ 89 № 1 2025



112 ЗОТОВ и др.

q

q' | f (q, q')|
≈

0 300150–300 –150

0

300

150

–300

–150

а

0.02

0.04

0.03

0.01

0.05

y/λ0

4020–40 –20 0

1520

1480

1500

1490

1510

б

м/
с

0

10

30

20

y/λ0

4020–40 –20 0

в

Н
п/
м

Рис. 2. Двойной угловой спектр амплитуды рассея-
ния (а) и результат восстановления (толстая пунктир-
ная линия) скорости звука (б) и коэффициента погло-
щения (в) при 𝑥 = 0 в сравнении с истинными значе-
ниями (сплошная тонкая линия).

новления рассеивателя требуется, в общем случае,
многочастотный режим [5].

Исследование выполнено за счет гранта Рос-
сийского научного фонда № 24-22-00192, https://
rscf.ru/project/24-22-00192/.
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Reconstructing the spatial distribution of acoustic characteristics by technique
of angle harmonics
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Improved numerical implementation of the two-dimensional functional analytical algorithm is proposed.
The algorithm is designed to reconstruct spatial distributions of sound speed and absorption coefficient
in a tomography region. The high accuracy of obtained tomograms is illustrated even with large wave sizes
and complicated internal structure of object under study.
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