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Abstract. The features of the construction of closed equations for the mean field of 

acoustic waves with discontinuous profiles in a randomly inhomogeneous medium are 

considered. Different approaches to obtaining such equations are compared. It is shown 

that, despite the smoothing of profiles in the average, the presence of a discontinuity in 

the profile should be considered before the averaging operation. An exact expression 

for the mean field of the initial N-wave is obtained. 
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INTRODUCTION 

The problem of acoustic wave propagation in randomly inhomogeneous media 

and the need to calculate the statistical characteristics of such waves arise in many 
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cases [1, 2], in particular, when sound propagates in a turbulent atmosphere [3-7]. In 

this case, the medium parameters change with time, so that a small set of realizations 

does not give a complete picture of the possible character of the wave evolution. A full-

fledged description is possible only on the basis of statistical characteristics such as 

probability distributions or at least mean values, dispersions, etc. Let us also note the 

tasks of probing and restoring the parameters of inhomogeneous media, in the 

realization of which the noise and fluctuations present may be useful [8, 9]. At present, 

the issues of propagation of nonlinear waves and beams [10] in randomly 

inhomogeneous media, including acoustic shock waves with a narrow front from 

promising civil supersonic airplanes [11, 12], as well as in medical applications [13], 

are becoming topical. Therefore, it is necessary to develop methods for calculating the 

statistical characteristics of shock and burst waves in a randomly inhomogeneous 

medium. 

The construction of exact dynamic solutions for nonlinear equations presents 

great difficulties, all the more so for stochastic equations with random functions. One 

of the effective approaches to calculation of statistical characteristics of wave fields is 

the averaging of stochastic equations in order to obtain equations for moments - mean 

field, dispersion, etc.  

This paper is devoted to further refinement of the averaging procedure for 

acoustic shock and burst waves with narrow shock fronts. As is known [14-16], 

averaging in general leads to the appearance of so-called turbulent attenuation and, 

consequently, smoothing of shock fronts. Consequently, one would expect that the 

averaging of discontinuous profiles would have no peculiarities compared to the 
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averaging of smooth profiles. However, it turns out that this is not the case, and the 

presence of a discontinuity must be taken into account before the averaging procedure. 

MEAN-FIELD METHOD 

One of the common methods of obtaining closed-form equations for averaged 

characteristics is the mean-field method, which has a long history [17]. It has proved 

itself quite well when solving linear problems. When considering nonlinear problems, 

the problem of closure of nonlinear summands arises. According to the mean-field 

method, the mean value of the square of the acoustic field (e.g., pressure), is replaced 

by the product of mean values. In fact, this means neglecting the mean square of 

pressure fluctuations, which leads to certain errors [14, 18]. In addition, it is necessary 

to determine how correctly it accounts for shock fronts and discontinuities in the wave 

profile. 

As an initial equation, consider a simple wave type equation including a random 

disorder of the sound velocity ( ) ( )( )2
0

2
2
0

2
ς −− −= czccz  , caused by fluctuations of the 

propagation medium parameters:  
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where p is the acoustic pressure, z is a coordinate, 0/τ czt −=  is time in the 

accompanying coordinate system, c(z) is the random local sound velocity, c0is the 

characteristic average sound velocity,ε is a nonlinear parameter, ρ is the density of the 

medium.  

Applying the mean-field method to equation (1), we obtain the Burgers equation 

for the mean pressure:  
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Here, the angle brackets denote ensemble averaging, 2σ  makes sense of the dispersion 

of the velocity tuning fluctuations (the correlation function ( )12
2

21 σ)ς()ς( zzzz −δ=  ) is 

specifically defined. As can be seen, the averaging has led to the appearance of so-

called turbulent damping, i.e., the field is damped on average. Equation (2) is 

remarkable in that by replacing Hopf-Cole UV ln
θ

2
∂
∂

Γ=  it is reduced to a linear 

equation: 
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Dimensionless variables are introduced here  
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where p0and τ0are the characteristic amplitude and duration of the pulse.  

We will consider the N-wave as the initial signal,  
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representing a model version of characteristic profiles registered from supersonic 

aircraft [3, 5]. For the initial profile (4) we obtain the solution of the Burgers equation 

in dimensionless variables: 
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where ( ) ∫ −=Φ
t

t dtet
0

2

π
2  is the integral of errors. 

From formula (5), one can see the dynamics of the obtained front - there is a 

blurring of shock fronts proportional to both the dispersion of phase fluctuations and 

the distance traveled. In particular, even discontinuous profiles within the framework 

of this model are smoothed and do not contain features, which is the basis for the 

assumption of applicability of standard approaches to averaging of waves with 

discontinuities. Characteristic profiles of the solution (5) are shown in Fig. 1 for the 

value 05.0=Γ  . There is a blurring of the wave front, both due to diffusive blurring of 

the initial front width and to a certain RMS drift of the mean position of the shock 

front. Although the solution (5) contains significant information about nonlinearity of 

the medium, it still does not satisfactorily describe the mean field because it is based 

on an approximate averaging model [14, 18].  

AVERAGING OF THE EXACT DYNAMIC SOLUTION 

To evaluate the accuracy of the methods described above, let us return to 

equation (1). It is convenient for analysis because we can construct its exact analytical 

solution even in the presence of fluctuations. Averaging of this solution will show the 

accuracy and closeness to the correct result of the solutions obtained by approximate 

methods.  

Let's replace the variables  

( )∫ ′′+=
z

zdz
c 00

1 ς1ττ  

and reduce equation (1) to the standard simple wave equation: 
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The solution of equation (6) with an arbitrary initial profile ( ) ( )10 τFzp ==  is given in 

implicit form: 
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Introducing the notation ( )∫ ′′=
z

zdz
c 00

ς1η  , we write the solution of equation (1) 

containing fluctuations in the following form: 

 








++= pz

c
Fp 3

0ρ
εητ .  (8) 

The solution (8) is given in implicit form and does not allow us to average it 

directly. Therefore, we go to the spectrum of the wave and average it, and then find 

profile of the averaged wave. It is known that before the formation of a discontinuity, 

the spectrum of a simple wave (7) is described by the Bessel-Fubini expansion [19]. 

By performing similar calculations for the solution (8), we obtain an expression for its 

spectrum: 
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Let's take into account that the variance of the value η  is equal to

( ) ( )∫ −=
z

dssKsz
c 0

ς2
0

2 2η  , and at 

δ -correlation of fluctuations , ( ) ( )sDsK δς = 2
0

2η
c
Dz

=  . The mean value of 0η =  , if the 

mean value of the velocity fluctuations is zero. If the fluctuations ς  are a Gaussian 
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process, then η  will also be a Gaussian process. Then we can write an expression for 

the characteristic function 2
0

2
2

2

2
ω

η
2

ω
ωη c

Dz
i eee

−−− ==  . Now the averaged spectrum is equal 

to: 
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Applying the inverse Fourier transform, we find the mean field: 
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In (10) it is convenient to first calculate the derivative of the mean field
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For the N-wave (4), the solution (10) in dimensionless variables (3) has the form:  

 

( ) ( )

( ) ( )

,
π

1
π

1
β

1θ
β

1θ
β

1θ
β

1θ

β
)1(θexp

π
1

β
)1(θexp

π
1

β
)1(θ

β
)1(θ

β
)1(θ

β
)1(θ

1
1

2
β

2

2

2

2

β
1θ

β
1θ

2

2

2

2

0







−+






 +
Φ

+
−







 −
Φ

−
+

+












 +−
−−







 ++
−+











+







 +−
Φ

+−
−







 ++
Φ

++
+

=

+
−

−
−

ee

xx

xxxx
xxp

p

   (12) 

Where . ( ) xD
c

Dzz 0
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ββ ≡===  

However, the obtained solution (10) incorrectly describes the evolution of the N-

wave (4). This can be easily verified by considering in (12) the limiting transition to 

the absence of fluctuations at : ( )00β →→ D  
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The time profiles of the solution (11) are plotted in Fig. 2 for different distances. 

It can be seen that the obtained solution describes the blurring of the shock front, which 

does not correspond to the dynamics of the N-shaped shock pulse in a nonlinear 

medium. Thus, when averaging waves with discontinuities, it is necessary to obtain an 

explicit discontinuous solution for the profile beforehand.  

 

EQUATION OF RUPTURE MOTION IN A MEDIUM WITH 

FLUCTUATIONS 

Let us analyze the dynamics of the discontinuity motion in the wave described 

by equation (1). For the N-wave, the solution (8) can be written explicitly for the 

inverse function: 
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c
p . 

Let us determine the position of the leading front during wave propagation. Let 

us introduce the following notations: 1p  is the minimum value of the pressure in the 

rupture, 2p  is the maximum pressure. Then for the leading front we can write: 

 01 =p , . 0232
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 (14) 

The equation of motion of the discontinuity coordinate pτ  can be obtained from 

the law of conservation of momentum: 
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We calculate: ς
ρ

ε
τ

ς
τρ

ετττ
33 −−=








+−=−= p

cd
dp

d
dpp

cdp
d

dz
dp

dp
d

dz
d , and from (15) we 

obtain: 

 ( ) ς
ρ2
ετ

123 −+−= pp
cdz

d p .  (16) 

Equations (14) and (16) fully describe the rupture motion. Solving them together, 

we obtain expressions for the amplitude and position of the rupture
: 
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Finally, we obtain an explicit solution for the N-wave profile: 
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where ( ) xxT += 1τ0  , distance x is defined in (3) Expression (17) allows us to correctly 

average the solution for a discontinuous wave. Using the spectral representation of the 

solution (17), we obtain an expression for the mean field: 
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For the N-wave in dimensionless variables we finally obtain: 
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At 00 →D  we obtain the following solution: 
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Expression (20) correctly describes the N-wave evolution in a homogeneous 

nonlinear medium. 

Thus, the presence of a discontinuity in the wave profile must be taken into 

account before the averaging procedure, despite the fact that it itself introduces 

turbulent attenuation and smooths the shock fronts. However, this smoothing does not 

take into account the broadening of the pulse duration due to nonlinear effects, and 

leads only to blurring of the shock front in the region of its initial position. In fact, there 

is a competition of two processes - nonlinear broadening and turbulent damping.  

 

EVOLUTION OF THE INITIAL TRIANGULAR PULSE 

It is also interesting to trace the dynamics of the initial triangular pulse, in which 

the gap is not yet present: 

 

( )








>

≤<+−
≤≤−+

=

.ττ,0
,ττ0,τ)ττ(
,0ττ,τ)ττ(

τ

0

0000

0000

p
p

F   (21) 

Let us use formulas (10) and (11) obtained on the basis of averaging the spectral 

representation. Substituting in them the profile (21), we find: 
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The profile of the solution (22) calculated at vanishing viscosity has the form: 
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The profile (23) is shown in Fig. 3 for different distances. As can be seen, at 

distances before the rupture formation, the profile distortion corresponds to the laws of 

nonlinear acoustics (curves 1-3). After the rupture formation, the profile calculation 

based on the spectral representation incorrectly describes the dynamics of the shock 

front - it blurs instead of shifting. 

The averaged profiles for the triangular pulse after rupture formation based on 

the expression for the properly averaged field are shown in Fig. 4. Here one should 

also pay attention to the shape of the pulse. At a relatively small dispersion of 

fluctuations (Fig. 4a), the pulse has a characteristic shape with a twist and a clearly 

visible shock front, corresponding to its broadening due to nonlinear effects. The 

smoothing effect of turbulent attenuation is superimposed on this shape. Thus, we 

indeed obtain averaged discontinuity wave profiles. As the dispersion increases (Fig. 

4b), this torsion disappears and the profile appears smoothed. If we return to Fig. 1 for 

the profiles obtained by the mean-field method, we can see that the twisting at the 
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shock fronts is weakly pronounced at comparable values of dispersion to the plots in 

Fig. 4а.  

Thus, we can conclude that the mean-field method does not accurately describe 

the most essential part of the averaged profile - the shock front and the degree of its 

steepness, underestimating these values. Thus, estimates based on this method may 

underestimate the expected acoustic fields in the turbulent atmosphere, which may 

have a negative impact on the environment.  

CONCLUSION 

Thus, the methods of obtaining closed equations for mean fields of acoustic 

waves in randomly inhomogeneous media and the results of calculations for wave 

profiles with discontinuities are considered. It is shown that the mean-field method 

does not accurately describe the transformation of the shock front under conditions of 

strong nonlinearity. At the same time, averaging of the exact dynamic solution also 

requires accuracy; first it is necessary to determine the position of the discontinuity in 

the profile. 
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FIGURE CAPTIONS 

Figure 1. Time profiles of mean pressure obtained by the mean-field method for 

the phase dispersion value 05.0=Γ  at distances x = 0.0001, 0.15, 0.7, 2, 5 (curves 

1-5). 

Fig. 2. Limit profiles at vanishingly small fluctuations of the medium obtained by 

averaging the spectral decomposition. Curves 1-6 correspond to distances x = 

0.001, 0.3, 0.54, 0.8, 1.2, 2. 

Fig. 3. Limit profiles of the initial triangular pulse at vanishingly small fluctuations 

of the medium obtained by averaging the spectral decomposition for distances x = 

0.001, 0.3, 0.54, 0.8, 1.2, 2 (curves 1-6). 

Fig. 4. Averaged profiles of the initial triangular pulse for fluctuation dispersion 

values 1.00 =D  (a), 0.5 (b) at distances x = 0.1, 0.8, 2, 5, 10 (curves 1-5).  

 

 

 

 

 

 



15 
 

 

Fig. 1  

 

 

 

 

Fig. 2 

 



16 
 

 

Fig. 3  

 

 

а                                                                           б 

  

Fig. 4  

 

 

 


