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Abstract. The features of the construction of closed equations for the mean field of
acoustic waves with discontinuous profiles in a randomly inhomogeneous medium are
considered. Different approaches to obtaining such equations are compared. It is shown
that, despite the smoothing of profiles in the average, the presence of a discontinuity in
the profile should be considered before the averaging operation. An exact expression

for the mean field of the initial N-wave is obtained.
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INTRODUCTION
The problem of acoustic wave propagation in randomly inhomogeneous media

and the need to calculate the statistical characteristics of such waves arise in many

1



cases [1, 2], in particular, when sound propagates in a turbulent atmosphere [3-7]. In
this case, the medium parameters change with time, so that a small set of realizations
does not give a complete picture of the possible character of the wave evolution. A full-
fledged description is possible only on the basis of statistical characteristics such as
probability distributions or at least mean values, dispersions, etc. Let us also note the
tasks of probing and restoring the parameters of inhomogeneous media, in the
realization of which the noise and fluctuations present may be useful [8, 9]. At present,
the issues of propagation of nonlinear waves and beams [10] in randomly
inhomogeneous media, including acoustic shock waves with a narrow front from
promising civil supersonic airplanes [11, 12], as well as in medical applications [13],
are becoming topical. Therefore, it is necessary to develop methods for calculating the
statistical characteristics of shock and burst waves in a randomly inhomogeneous
medium.

The construction of exact dynamic solutions for nonlinear equations presents
great difficulties, all the more so for stochastic equations with random functions. One
of the effective approaches to calculation of statistical characteristics of wave fields is
the averaging of stochastic equations in order to obtain equations for moments - mean
field, dispersion, etc.

This paper is devoted to further refinement of the averaging procedure for
acoustic shock and burst waves with narrow shock fronts. As is known [14-16],
averaging in general leads to the appearance of so-called turbulent attenuation and,
consequently, smoothing of shock fronts. Consequently, one would expect that the

averaging of discontinuous profiles would have no peculiarities compared to the
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averaging of smooth profiles. However, it turns out that this is not the case, and the
presence of a discontinuity must be taken into account before the averaging procedure.
MEAN-FIELD METHOD

One of the common methods of obtaining closed-form equations for averaged
characteristics is the mean-field method, which has a long history [17]. It has proved
itself quite well when solving linear problems. When considering nonlinear problems,
the problem of closure of nonlinear summands arises. According to the mean-field
method, the mean value of the square of the acoustic field (e.g., pressure), is replaced
by the product of mean values. In fact, this means neglecting the mean square of
pressure fluctuations, which leads to certain errors [14, 18]. In addition, it is necessary
to determine how correctly it accounts for shock fronts and discontinuities in the wave
profile.

As an initial equation, consider a simple wave type equation including a random
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disorder of the sound Velocityc_;(z):?(c2(2)—c02) , caused by fluctuations of the

propagation medium parameters:

: (1

where p is the acoustic pressure, z is a coordinate,t1=¢-z/c, is time in the

accompanying coordinate system, c(z) is the random local sound velocity, cois the
characteristic average sound velocity,e is a nonlinear parameter, p is the density of the
medium.

Applying the mean-field method to equation (1), we obtain the Burgers equation

for the mean pressure:
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Here, the angle brackets denote ensemble averaging,s” makes sense of the dispersion

of the velocity tuning fluctuations (the correlation function(g(z,)q(z,))=075(z, - z,) ) is
specifically defined. As can be seen, the averaging has led to the appearance of so-
called turbulent damping, i.e., the field i1s damped on average. Equation (2) is

remarkable in that by replacing Hopf—ColeV=2Fa—5(;1nU it is reduced to a linear

equation:
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Dimensionless variables are introduced here
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where ppand 1oare the characteristic amplitude and duration of the pulse.
We will consider the N-wave as the initial signal,

T/ < Ty,
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0,
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<1,

representing a model version of characteristic profiles registered from supersonic
aircraft [3, 5]. For the initial profile (4) we obtain the solution of the Burgers equation

in dimensionless variables:
(p) 0 1 e—1j 1 (e+1j
ML Il 4+ =@ —— |—— | —— |+
Do 00 { 2 (2\/1“)( 2 \(24Tx

1 x+1-6 Cxtl40 ) 6-x-1 ()
Todar exr{ 4r(x+1)J{®(2\/§m j CD( 2JTx mﬂ}




where d( ““dr is the integral of errors.

)= T

From formula (5), one can see the dynamics of the obtained front - there is a
blurring of shock fronts proportional to both the dispersion of phase fluctuations and
the distance traveled. In particular, even discontinuous profiles within the framework
of this model are smoothed and do not contain features, which is the basis for the
assumption of applicability of standard approaches to averaging of waves with
discontinuities. Characteristic profiles of the solution (5) are shown in Fig. 1 for the
valueI'=0.05 . There is a blurring of the wave front, both due to diffusive blurring of
the initial front width and to a certain RMS drift of the mean position of the shock
front. Although the solution (5) contains significant information about nonlinearity of
the medium, it still does not satisfactorily describe the mean field because it is based
on an approximate averaging model [14, 18].

AVERAGING OF THE EXACT DYNAMIC SOLUTION

To evaluate the accuracy of the methods described above, let us return to
equation (1). It is convenient for analysis because we can construct its exact analytical
solution even in the presence of fluctuations. Averaging of this solution will show the
accuracy and closeness to the correct result of the solutions obtained by approximate
methods.

Let's replace the variables
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and reduce equation (1) to the standard simple wave equation:
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The solution of equation (6) with an arbitrary initial profile p(z =0)= F(z,) is given in

implicit form:

p:F(Tl+p%sz. (7)
0

z

Introducing the notationn:L I o(z')dz" , we write the solution of equation (1)
€0

containing fluctuations in the following form:

p=F(r+n+ 83pzj. (8)

Cy
The solution (8) is given in implicit form and does not allow us to average it
directly. Therefore, we go to the spectrum of the wave and average it, and then find
profile of the averaged wave. It is known that before the formation of a discontinuity,
the spectrum of a simple wave (7) is described by the Bessel-Fubini expansion [19].
By performing similar calculations for the solution (8), we obtain an expression for its

spectrum:

Let's take into account that the variance of the wvaluen 1is equal to

(1) =2 ]z - s)K.(s)ds , and at
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mean value of the velocity fluctuations is zero. If the fluctuationsg are a Gaussian



process, thenn will also be a Gaussian process. Then we can write an expression for

the characteristic function <e”"””> e . Now the averaged spectrum is equal

to:

(S(o)) = m]ge_w_ m2<n2>[em"”3ﬁ— IJ dr . 9)

Applying the inverse Fourier transform, we find the mean field:
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In (10) it is convenient to first calculate the derivative of the mean field
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For the N-wave (4), the solution (10) in dimensionless variables (3) has the form:
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However, the obtained solution (10) incorrectly describes the evolution of the N-
wave (4). This can be easily verified by considering in (12) the limiting transition to

the absence of fluctuations at :p — 0 (D — 0)
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The time profiles of the solution (11) are plotted in Fig. 2 for different distances.
It can be seen that the obtained solution describes the blurring of the shock front, which
does not correspond to the dynamics of the N-shaped shock pulse in a nonlinear
medium. Thus, when averaging waves with discontinuities, it is necessary to obtain an

explicit discontinuous solution for the profile beforehand.

EQUATION OF RUPTURE MOTION IN A MEDIUM WITH
FLUCTUATIONS
Let us analyze the dynamics of the discontinuity motion in the wave described
by equation (1). For the N-wave, the solution (8) can be written explicitly for the

inverse function:

Let us determine the position of the leading front during wave propagation. Let

us introduce the following notations: p, is the minimum value of the pressure in the

rupture, p, is the maximum pressure. Then for the leading front we can write:
T, €
p=0,. Tz=——Pz—p7PzZ—n+To (14)

The equation of motion of the discontinuity coordinatet, can be obtained from

the law of conservation of momentum:
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Equations (14) and (16) fully describe the rupture motion. Solving them together,

we obtain expressions for the amplitude and position of the rupture
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Finally, we obtain an explicit solution for the N-wave profile:
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whereT'(x)=t,+/1+x , distance x is defined in (3) Expression (17) allows us to correctly

average the solution for a discontinuous wave. Using the spectral representation of the
solution (17), we obtain an expression for the mean field:
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For the N-wave in dimensionless variables we finally obtain:
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AtD, — 0 we obtain the following solution:
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Expression (20) correctly describes the N-wave evolution in a homogeneous
nonlinear medium.

Thus, the presence of a discontinuity in the wave profile must be taken into
account before the averaging procedure, despite the fact that it itself introduces
turbulent attenuation and smooths the shock fronts. However, this smoothing does not
take into account the broadening of the pulse duration due to nonlinear effects, and
leads only to blurring of the shock front in the region of its initial position. In fact, there

is a competition of two processes - nonlinear broadening and turbulent damping.

EVOLUTION OF THE INITTIAL TRIANGULAR PULSE
It is also interesting to trace the dynamics of the initial triangular pulse, in which

the gap is not yet present:

Po(T+7)/75, =T, STL0,
F(T)z Po(—=T+71,)/10,0<T< 1, (21)
0,

T > 1,.

Let us use formulas (10) and (11) obtained on the basis of averaging the spectral

representation. Substituting in them the profile (21), we find:
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The profile of the solution (22) calculated at vanishing viscosity has the form:

<p£0> _ %{(e sen(0-1) (0 + sgn(o + 1) O Ohgnler OO0 Dsgn(o 1),
. (x+0)sgn(x+6)—(0—1)sgn(6 - 1)}
x+1

(23)

The profile (23) is shown in Fig. 3 for different distances. As can be seen, at
distances before the rupture formation, the profile distortion corresponds to the laws of
nonlinear acoustics (curves 1-3). After the rupture formation, the profile calculation
based on the spectral representation incorrectly describes the dynamics of the shock
front - it blurs instead of shifting.

The averaged profiles for the triangular pulse after rupture formation based on
the expression for the properly averaged field are shown in Fig. 4. Here one should
also pay attention to the shape of the pulse. At a relatively small dispersion of
fluctuations (Fig. 4a), the pulse has a characteristic shape with a twist and a clearly
visible shock front, corresponding to its broadening due to nonlinear effects. The
smoothing effect of turbulent attenuation is superimposed on this shape. Thus, we
indeed obtain averaged discontinuity wave profiles. As the dispersion increases (Fig.
4b), this torsion disappears and the profile appears smoothed. If we return to Fig. 1 for

the profiles obtained by the mean-field method, we can see that the twisting at the
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shock fronts i1s weakly pronounced at comparable values of dispersion to the plots in
Fig. 4a.

Thus, we can conclude that the mean-field method does not accurately describe
the most essential part of the averaged profile - the shock front and the degree of its
steepness, underestimating these values. Thus, estimates based on this method may
underestimate the expected acoustic fields in the turbulent atmosphere, which may
have a negative impact on the environment.

CONCLUSION

Thus, the methods of obtaining closed equations for mean fields of acoustic
waves in randomly inhomogeneous media and the results of calculations for wave
profiles with discontinuities are considered. It is shown that the mean-field method
does not accurately describe the transformation of the shock front under conditions of
strong nonlinearity. At the same time, averaging of the exact dynamic solution also
requires accuracy; first it is necessary to determine the position of the discontinuity in
the profile.

REFERENCES
1. Rudenko O.V.// UVN. 1986. T. 149. Ne 3. C. 413; Rudenko O.V. // Sov. Phys. Usp.
1986. V. 29. No. 3. P. 620.
2. Gurbatov S.N., Rudenko O.V., Tyurina A.V. // Acoust. Phys. 2018. V. 64. No. 5. P.
555.
3. Blanc-Benon R., Lipkens B., Dallois L. et al. // J. Acoust. Acoust. Soc. Amer. 2002.
V. 111. No. 1. P. 487.

4. Gusev V.A., Rudenko O.V. // Acoust. Phys. 2006. V. 52. No. 1. P. 24.

12



5. Rudenko O.V., Makov Yu.N. // Acoust. Phys. 2021. V. 67. No. 1. P. 1.

6. Kosyakov S.I., Kulichkov S.N., Chkhetiani O.G., Tsybul'skaya N.D. // Acoust. Phys.
2019. V. 65. No. 6. P. 731.

7. Kurdyaeva Y.A., Kshevetskii S.P. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3.
P. 343.

8. Ivanov M.A., Mukhanov P.Yu., Shurup A.S. // Bull. Russ. Acad. Sci. Phys. 2024. V.
88. No. 1. P. 103.

9. Dmitriev K.V. // Izv. RAS. Ser. phys. 2023. T. 87. Ne 1. C. 79; Dmitriev K. V. // Bull.
Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 66.

10. Gusev V.A., Zharkov D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 524.
11. Korunov A.O., Gusev V.A., Gorbovskoy V.S. // Acoust. Phys. 2024. V. 70. No. 4.
12. Lonzaga J.B. // J. Acoust. Soc. Amer. 2023. V. 154. No. 5. P. 3078.

13. Pestova PA., Yuldashev PV., Khokhlova V.A., Karzova M.M. // Bull. Russ. Acad.
Sci. Phys. 2024. V. 88. No. 1. P. 108.

14. Gurbatov S.N., Pelinovsky E.N., Saichev A.1. // 1zv. of Vuzov. Radiophys. 1978. T.
21. Ne 10. C. 1485.

15. Gusev V.A., Rudenko O.V. // Vest. Mosk. un-ta. Ser. 3. Phys. Astron. 2001. Ne 6. C.
37.

16. Gusev V.A. // Proc. Int. Symp. Nonlinear Acoustics ISNA-16. V. 1. (Moscow,
2002). P. 315.

17. Kaner E.A. // 1zv. of higher educational institutions. Radiophys. 1959. T. 2. C. 827.
18. Benilov E.S., Pelinovsky E.N. // ZhETF. 1988. T. 94. Ne 1. C. 175.

19. Gurbatov S.N., Rudenko O.V. Acoustics in tasks. Moscow: Fizmatlit, 2009.

13



FIGURE CAPTIONS
Figure 1. Time profiles of mean pressure obtained by the mean-field method for
the phase dispersion valueI' = 0.05 at distances x = 0.0001, 0.15, 0.7, 2, 5 (curves
1-5).
Fig. 2. Limit profiles at vanishingly small fluctuations of the medium obtained by
averaging the spectral decomposition. Curves 1-6 correspond to distances x =
0.001, 0.3,0.54,0.8, 1.2, 2.
Fig. 3. Limit profiles of the initial triangular pulse at vanishingly small fluctuations
of the medium obtained by averaging the spectral decomposition for distances x =
0.001, 0.3,0.54, 0.8, 1.2, 2 (curves 1-6).
Fig. 4. Averaged profiles of the initial triangular pulse for fluctuation dispersion

values D, =0.1 (a), 0.5 (b) at distances x = 0.1, 0.8, 2, 5, 10 (curves 1-5).
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