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Abstract. In the point of view of liquid water as a real gas, the Van der Waals equation
of state is modified for describing isotherms, isochores, and isobars of liquid water in
a wide range of pressures and temperatures. The new thermal equation provides a
standard transition to thermodynamics with the reproduction of internal energy U, free
energy F, heat capacity Cy and entropy S.
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INTRODUCTION
The van der Waals (VdW) equation of state, written in 1873. [1], is rooted in the
courses of molecular physics, physical chemistry, thermodynamics and statistical

physics as the basic one for the study of gases and liquids [2-5]. It postulates the
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relationship between the quantities characterizing a real gas: external and internal
pressures P and P;, volume V and temperature 7. The simple equation predicts an
important phenomenon - the occurrence of liquid-gas phase transition in matter. The
effect arises due to the cubicity of van der Waals isotherms: the cubic parabola P(V)
has a loop, the position of which on the phase diagram by pressure P and the sweep by
temperature 7 determine the vaporization curve. The curve breaks at the so-called
critical point, beyond which the liquid-gas transition ceases to exist.

The cubic behavior of the P(V) isotherms has been successful for describing the
condensation process in a wide variety of substances: from simple gases to complex
hydrocarbons. Cubic equations as refinements of the VdV equation form a large class
[6-10]. Due to their simplicity, they allow physical analysis of parameters and
development of the molecular theory of liquids and gases in the VdV paradigm.
Attempts to extend the scope of application of the VAV equation and to improve the
accuracy of data description continue for the third century [11]. Tens and hundreds of
more complex equations of state: virial, polynomial, multiparametric - with the
established designation EoS (equation of state) - have been written on condensation
topic, which have their own advantages and disadvantages in specific applications.
They are used for large databases and have a wide range of applications related to the
balance of matter in the liquid-gas state [11-17]. The topics are diverse, ranging from
the viscosity of petroleum products [18] to marine cloud formation [19,20] and shock
waves in explosion [21,22]. Some of the applied problems are solved using the
relatively simple Tate equation [22,23]. It is purely empirical in nature and is not

interpreted at the basic physical level.



The most famous liquid-gas balance is inherent in water. It is the basis of many
natural and technological processes and largely determines the picture of the
surrounding world. It would seem that, as a vital and simple chemical compound, water
could become a favorite object of application of the VdV model and a source of
information about the structure of matter. However, this has not happened. Experience
shows that the VAV equation does not apply well to water. The VdV parabola passing
through the critical point in the liquid phase is very far from reality [24,25]. This fact
is a long habitual fact and is not analyzed in detail in the literature. A rare analysis of
the topic is carried out in [25]. By inertia, textbooks offer a large number of problems
related to applications of the VAV equation to water, but all of them are considered for
special cases and limited conditions [26]. A complete and physically clear equation of
state for water does not exist [24], its search continues [9].

The lack of a satisfactory description of the thermodynamic properties of liquid
water is accompanied by a lack of understanding of its microscopic properties. The
molecular mechanism of the liquid-gas phase transition remains controversial. What
microscopic mechanisms are behind the critical behavior? Is the liquid a real gas? One
has to argue about the same things that at first glance seem simple and commonplace
[27,28].

In the present work we actualize the question of applicability of the VAV model
to liquid water in connection with an unexpected conclusion following from the
analysis of its wide-range dielectric spectra [29,30]. The description of the spectra turns
out to be more successful in envisioning water bound by the Coulomb fields of the
single-charged ions H;O" and OH") , than, as [31,32] is commonly believed, by
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hydrogen bonds. In our ion-molecular model (IM model) molecules and ions are free,
make thermal collisional motion and form a medium representing a real HdV gas. We
see it possible to describe the properties of such a medium by the simplest possible
water-specific equation of state. By the trial method (by comparing the calculation
results with reference data) we find a modification of the VAV equation that allows us
to calculate the thermodynamic parameters of liquid water with satisfactory accuracy.
From the agreement of the calculated data with the reference data, we conclude that
the gas approach for liquid water is correct, and the IM model is promising for further
study.
THERMAL EQUATION OF STATE

We start from the VAV equation in its original form - for pressure P, temperature

T and volume ¥V for one mole of gas molecules:

P RT a

NN )

where R = 8.314 J/(mol-K) is the universal gas constant, kg = 1.38-100 ®)J/K is the
Boltzmann constant, b is the excluded volume (inaccessible for molecular motion) and
a is the attraction coefficient (of intermolecular forces and forces from the molecules
of the boundary layer of the medium). Calculations are performed for mass M= 1000
kg (55.5 kmol) in SI system.

The coefficients a and b are the hallmark of the VdV equation. They are derived
from the critical temperature and pressure so that by definition they do not depend on
temperature. For water, a = 5.53 bar-(m(*/kmol?) and b = 0.03 m?/kmol [33], the same

in all books and reviews. The calculated VdV isotherms with these parameters are



shown in Fig. 1a. They are shown as thin lines on the right and, as can be seen, are far
from the reference points on the left, taken from the IAPWS database [12].

We aim to align the model lines with the reference points. For this purpose, we
assume that the internal pressure P mesecond summand in formula (1)) depends on
temperature. We set the second numerator in binomial form with respect to 7 and
change the denominator degree exponent from 2 to 1.4. This variant of modification is
not the only one, but it is the simplest of the tested ones. By the method of successive
approximations we approximate the new equation to reference data from the IAPWS

database [12] and arrive at the optimal formula

RT CT-BT?
P = V _b - V1.4 [MPa]9 (2)

where b, C and B are the optimal parameters presented in Table 1. The operation of
formula (2) for isotherms and isochores is shown in Fig. 1. The dependences of P(})
and P(T) were calculated by the method of successive fixations of 7"and V in equation
(2). As can be seen, the curves lie well on the array of reference points, huge in number
and scatter of absolute values. The isobars V(T) are also well transferred by formula
(2) (not shown graphically) with the peculiarity that due to the inherent weak
compressibility of liquid water at temperatures from the triple to the critical point, they
lie on one common curve. For convenience of calculations we set this dependence by

a simplified formula
V(T):73/(700—T)+O.82 M3 3)

transmitting isobar behavior with deviations from the reference data within 5% (see

Fig. 3a in [34]).



CALORIC EQUATIONS OF STATE

The thermal equation (2), like the original VdV equation (1), admits a textbook
transition to thermodynamics, taking into account the first and second laws of
thermodynamics [4,5]. It involves a series of differential-integral operations with the
thermal equation of state of the form P(V,T) (expression for pressure) to obtain energy
(caloric) equations of state of the form E(V,T) (expressions for free F' and internal U
energies).

We carry out with equation (2) the procedure according to the scheme from
textbooks [4,5]:

1) we take the pressure P as the sum of thermal and internal pressures
PzT(@P/@T)V —(OU/OV)T 4)
and as a partial derivative of the free energy
P=—(cF/oV),; (5)
2) we take into account the relation between internal energy U and heat capacity
Cy
C = (8U/6T)V, (6)
relation between free energy F and entropy S
§=-(0F/oT), (7)

and the relationship between free F' and internal U energies:

U=F+TS. (8)



We obtain a system of equations (4)-(8), with respect to which we set the
problem to express thermodynamic quantities U, F,, Cyand S through the parameters b,
B and C found for equation (2).

Transposition of the dependencies V(7T) and 7(V) in equation (3) allows to
manipulate equations (4)-(8) (integrate, differentiate and plot) in two variants
separately: when the values U, F, Cyand § depend only on pressure P and when they
depend only on temperature 7. Under these conditions, the three caloric equations of
state for U, F, and TS with integration constants c.) [V, T)and ¢ V,T)directly follow

from the thermal equation (2):

U=-2.5BT*/V"+¢,, 9)
F ==RTIn(V -b)+2.5(BT* -CT)/V* +c,, (10)
TS =RTn(V -b)-25(2BT* ~CT)/V** +¢, -c,, (11)

as well as expressions for heat capacity Cyand entropy S:

C, ==5BT V" +oc, /0T, (12)
S=Rln(V-b)-25(2BT-C)/V** +(c, —¢; )/IT. (13)

Fitting equations (9)-(13) to the reference data from the IAPWS database [12]
yields the integration constants, which in binomial terms are presented in Tables 2 and
3. Illustrative material of the fitting is presented in Figs. 2 and 3. The calculated
dependencies are in good agreement with the reference data.

The presence of the shift parameter Z in the integration constants ¢ (V,7) and
cwr) V,T) makes it possible to calculate the energy spectrum of liquid water in absolute

terms by distributing the energy curves referenced to the triple point 0 °C in Fig. 2a
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vertically with respect to the absolute temperature 0 K in Fig. 2b. We use the fact,
discovered by us earlier, that the evaporation energy Eicpis uniquely related to the

density p [34,36]:

5/3
E—_9P [kJ-kgD1, (14)

UCIT ~— A4/3 5/3
2" e m

where m = 3.1-102°kg and p = 6.14-10°Cl-m are the mass and dipole moment of the
H omolecule, g = 1.6-10¢1%) Cl is the elementary charge, &= 8.85-10C'2F-m® s the
dielectric constant of vacuum. Fig. 2a shows that the dependence F(7), shifted upward
by 1250 kJ/kg well, within the error £5%, lies on the curve /2Ecp) (T). On this basis
we establish
F=E,/2, (15)
and the energy 1250 kJ/kg is set as the zero level for all energy curves. Accordingly,
we recalculate the constants cpand c) othe first column of Table 2, containing the
parameter Z, into the constants of the second column. The curves with the new cyand
cr, expressed in absolute units, are shown in Fig. 2b. The recalculated entropy curve
S(7) in absolute terms is shown in Fig. 3c.
From equations (10), (14) and (15), an expression for the density p of liquid

water follows:

106 F 3/5
p:4m[ ™ ] [kg-m]. (16)

In graphical representation, it is shown in Fig. 3a. As can be seen, the calculated

curve corresponds to the reference points with high accuracy.



The transformation of equation (1) into equations (2) gives a new analytical
expression for the internal pressure P second summand). A comparison of the new
P;with the generally accepted one [37] is presented in Fig. 4. As can be seen, the curves
Py () are close in the range of intermediate temperatures 400-600 K, but the
dependence P (I) of equation (2) goes further to the right beyond the critical point
and provides an opportunity to calculate isochores already in the gas phase. The
calculated phase diagram is qualitatively close to the reference one and completely
coincides with it at low pressures.

DISCUSSION

The central result of the present work is that the gas approach used, simple
against the background of other research methods, gives a definitely positive result -
the possibility to predict the thermal and caloric characteristics of liquid water by
simple algebraic expressions proceeding from one general formula (2). Equation (2)
turns out to be simple and comprehensive.

For the first time, the hypothesis (15) based on the virial theorem [38] was
applied to describe the properties of liquid water. The reason for the application of this
theorem was obtained from the analysis of dielectric spectra of liquid water [30,34].
We found that liquid water can be considered to consist of free particles (molecules
and ions) that make thermal collision motion and are pulled together in volume V by
electrostatic ion-dipole interaction. The picture meets the requirements of the virial
theorem, according to which at internal coupling of particles in a bounded space the
average kinetic energy of particles Exnis related to the average potential energy

Eporyas Exin= n/2-Epor, Where n is the degree of potential energy as a homogeneous
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algebraic function of coordinates [39]. When, for example, n = 2, the average kinetic
energy is equal to the average potential energy, and each of them is equal to half of the
total energy - this is the result for a linear oscillator.

For liquid water, the potential energy of its particles Eporis reliably demonstrated
by the temperature curve of water evaporation (decompositionyEicp)2]. We established
the functional expression Ecor (I) in the form of equation (14) earlier in [34,36]. Now
we take half of the decay energy Ecorn (I) as the energy of mutual attraction of
molecules. This energy, competing with the energy of thermal expansion of molecules
~ k@)1, provides a steady state of liquid water: the free energy F(7) in the form (10)
has the fundamentally required minimum (we do not demonstrate it graphically). In
favor of the legitimacy of using the virial theorem in application to water is evidenced
by the accurate description (without additional fitting) of the density of liquid water
p(T) by means of the model curve (16), as shown in Fig. 3a. Equation (16) is
particularly valuable in that it relates the density of liquid water p(7) to the microscopic
parameters of the particles: mass m, charge ¢, and dipole moment p.

The agreement of the calculated p(7) curve in Fig. 3a with the reference data
extends over a wide temperature range of 300-630 K, but the famous density anomaly
in the region of 4 °C is not conveyed by the model. To this it should be said that
although the anomaly is textbook due to its vital importance [40-42], it unfolds in a
very narrow temperature range (less than+ 1 K) and can be correctly interpreted only
when the large-scale course of the entire p(7) dependence is understood.

Hypothesis (15) allows us to plot the energy spectrum of liquid water in absolute

terms, as shown in Fig. 2b. The model curves naturally behave in the limit of low
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temperatures: the entropic part of the free energy 7S tends to zero, and the values of U
and F equalize [4]. A shift of AF = 1250 kJ/kg gives two curve crossings, both at 0 °C.
The temperature 0 °C turns out to be the point of equality of the two parts of internal
energy. The same temperature becomes the point of equality of kinetic and potential
energies, as well as the beginning of their change with increasing temperature.

In the modified equation (2), the internal pressure P second summand) takes a
new analytical form compared to Piin the original equation (1). The value of P/has an
independent important value, because it is directly related to other properties of water:
isobaric expandability, isothermal compressibility, and surface tension [4]. In Fig. 4
the found dependence P; T) is compared with the generally accepted dependence [37].
The two dependences are close in the intermediate temperature range of 400-600 K,
but the new one passes further to the right beyond the critical point in the phase
diagram. This allows us to calculate the isochorus pattern using equation (2), which, as
can be seen, is qualitatively similar to the reference one. Interestingly, although the
modeling goes beyond the initial assumptions (equation (3) is violated), the predictive
ability of equation (2) is preserved.

In Fig. 1b, in the region of high pressures, the curves noticeably deviate from the
reference points. The agreement can be improved by increasing the constant R in
equation (2), but we do not do it, leaving the first term purely "gas", van der Waals, to
escape from the known problem of the difference of the gas constant R for critical and
room temperatures [26,43]. The latter for water is one and a half times larger than the
former. This is interpreted as follows: since the value of R is by definition proportional

to the number of "structural units" in a mole of a substance, water molecules are
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partially bound into complexes in the critical state (in a strongly compressed gas at
high temperature). The problem of supramolecular structuring of liquid water -
clustering, ice-like, coexistence of phases of high-low density, etc. - is extensive and
hotly debated [44-49]. It is independent, and we do not discuss it in this paper.
CONCLUSION

With the present work we continued the discussion on the appropriateness of
applying the gas-ion-molecular approach to the study of the properties of liquid water.
The central result of the work was the very fact of successful prediction of reference
data by a real gas model. The gas approach for liquid water is fundamentally new. It
opens a simple algebraic access to thermodynamics, the possibility of fast and
systematic handling of myriads of tabular data, the possibility of tracking the
parameters encrypted in them. We have proposed algebraic relations that consistently
and adequately betray the thermodynamic parameters of liquid water. The formulas are

convenient for further modeling and detailed analysis of the revealed regularities.
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Table 1. Parameters of the original VdV equation (1) [26] and the modified version
).

Parameter VdV [26] Modif. ver.
R, J/(kg-K) 460 460 (const)
b, dm"/kg 1.7 0.74 (const)
a, MPa-m%/kg? 1700 -

Degree indicator 2 1.4 (const)
B, J/(kg-K? -(dm*/kg)*4 - 25+0.3

C, J/(kg-K)-(dm*/kg®¥ - 2500 + 300

Table 2. Integration constants cyand cqfor the dependences U(T) and F(T): 1)
referenced to the 0 °C triple point; 2) calibrated by equation (15).
1.RH. 0°C 2. abs. from equation

(15)

cu, kI/kg XT*+ YT-Z | XT*+ YT+ 1050

15



cr, kl/kg 37X+ YT |-3.7XT>+ YT+ 1250

c(U) -c(F), kJ/kg 4.7XTQ— VA 4.7XTQ— 200

Table 3. Coefficients of the integration constants cyand cr, presented in Table 2.

X, kl/(kg-K?) 0.0027 = 0.0002
Y, kl/(kg-K) 6.5+02
Z, kl/kg 1450 £ 100
FIGURE CAPTIONS

Fig. 1. Isotherms (a) and isochores (b) of liquid water. Thin lines at the top right are
calculations using the VAV model (1). Dots - IAPWS reference data [12], lines above

the dots - calculation by the modified model (2).

Fig. 2. Temperature dependences of the internal energy of liquid water U, entropic part
TS, evaporation energy Ejcpand free energy F: a) referenced to the triple point 0 °C)
and b) in absolute terms (distributed in the spectrum vertically). Dots - TAPWS

reference data [12], lines - calculation by formulas (9)-(11).

Fig. 3. Temperature dependences of density p (a), isochoric heat capacity Cy) ) and
entropy S (c) of liquid water. Dots are reference data [12,35], lines are calculations
using formulas (16), (12) and (13), respectively. For completeness of the picture, the

isobaric heat capacity Cp) »1s also given.
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Fig. 4. Phase diagram of water in isochoric representation. Dotted lines - internal
pressure P (T)according to formula (2) and from [37]. Solid dark lines - IJAPWS

reference data [12], light lines - calculation by formula (2).
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