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Abstract. In the point of view of liquid water as a real gas, the Van der Waals equation 

of state is modified for describing isotherms, isochores, and isobars of liquid water in 

a wide range of pressures and temperatures. The new thermal equation provides a 

standard transition to thermodynamics with the reproduction of internal energy U, free 

energy F, heat capacity CV and entropy S. 
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INTRODUCTION 

The van der Waals (VdW) equation of state, written in 1873. [1], is rooted in the 

courses of molecular physics, physical chemistry, thermodynamics and statistical 

physics as the basic one for the study of gases and liquids [2-5]. It postulates the 
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relationship between the quantities characterizing a real gas: external and internal 

pressures P and Pi, volume V and temperature T. The simple equation predicts an 

important phenomenon - the occurrence of liquid-gas phase transition in matter. The 

effect arises due to the cubicity of van der Waals isotherms: the cubic parabola P(V) 

has a loop, the position of which on the phase diagram by pressure P and the sweep by 

temperature T determine the vaporization curve. The curve breaks at the so-called 

critical point, beyond which the liquid-gas transition ceases to exist.  

The cubic behavior of the P(V) isotherms has been successful for describing the 

condensation process in a wide variety of substances: from simple gases to complex 

hydrocarbons. Cubic equations as refinements of the VdV equation form a large class 

[6-10]. Due to their simplicity, they allow physical analysis of parameters and 

development of the molecular theory of liquids and gases in the VdV paradigm. 

Attempts to extend the scope of application of the VdV equation and to improve the 

accuracy of data description continue for the third century [11]. Tens and hundreds of 

more complex equations of state: virial, polynomial, multiparametric - with the 

established designation EoS (equation of state) - have been written on condensation 

topic, which have their own advantages and disadvantages in specific applications. 

They are used for large databases and have a wide range of applications related to the 

balance of matter in the liquid-gas state [11-17]. The topics are diverse, ranging from 

the viscosity of petroleum products [18] to marine cloud formation [19,20] and shock 

waves in explosion [21,22]. Some of the applied problems are solved using the 

relatively simple Tate equation [22,23]. It is purely empirical in nature and is not 

interpreted at the basic physical level. 
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The most famous liquid-gas balance is inherent in water. It is the basis of many 

natural and technological processes and largely determines the picture of the 

surrounding world. It would seem that, as a vital and simple chemical compound, water 

could become a favorite object of application of the VdV model and a source of 

information about the structure of matter. However, this has not happened. Experience 

shows that the VdV equation does not apply well to water. The VdV parabola passing 

through the critical point in the liquid phase is very far from reality [24,25]. This fact 

is a long habitual fact and is not analyzed in detail in the literature. A rare analysis of 

the topic is carried out in [25]. By inertia, textbooks offer a large number of problems 

related to applications of the VdV equation to water, but all of them are considered for 

special cases and limited conditions [26]. A complete and physically clear equation of 

state for water does not exist [24], its search continues [9]. 

The lack of a satisfactory description of the thermodynamic properties of liquid 

water is accompanied by a lack of understanding of its microscopic properties. The 

molecular mechanism of the liquid-gas phase transition remains controversial. What 

microscopic mechanisms are behind the critical behavior? Is the liquid a real gas? One 

has to argue about the same things that at first glance seem simple and commonplace 

[27,28]. 

In the present work we actualize the question of applicability of the VdV model 

to liquid water in connection with an unexpected conclusion following from the 

analysis of its wide-range dielectric spectra [29,30]. The description of the spectra turns 

out to be more successful in envisioning water bound by the Coulomb fields of the 

single-charged ions H3O+ and OH(-) , than, as [31,32] is commonly believed, by 
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hydrogen bonds. In our ion-molecular model (IM model) molecules and ions are free, 

make thermal collisional motion and form a medium representing a real HdV gas. We 

see it possible to describe the properties of such a medium by the simplest possible 

water-specific equation of state. By the trial method (by comparing the calculation 

results with reference data) we find a modification of the VdV equation that allows us 

to calculate the thermodynamic parameters of liquid water with satisfactory accuracy. 

From the agreement of the calculated data with the reference data, we conclude that 

the gas approach for liquid water is correct, and the IM model is promising for further 

study. 

THERMAL EQUATION OF STATE 

We start from the VdV equation in its original form - for pressure P, temperature 

T and volume V for one mole of gas molecules: 

 2

RT aP
V b V

= −
−

, (1) 

where R = 8.314 J/(mol-K) is the universal gas constant, kB =  1.38-10(-) (23)J/K is the 

Boltzmann constant, b is the excluded volume (inaccessible for molecular motion) and 

a is the attraction coefficient (of intermolecular forces and forces from the molecules 

of the boundary layer of the medium). Calculations are performed for mass M= 1000 

kg (55.5 kmol) in SI system.  

The coefficients a and b are the hallmark of the VdV equation. They are derived 

from the critical temperature and pressure so that by definition they do not depend on 

temperature. For water, a = 5.53 bar-(m(3)/kmol2) and b = 0.03 m3/kmol [33], the same 

in all books and reviews. The calculated VdV isotherms with these parameters are 
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shown in Fig. 1a. They are shown as thin lines on the right and, as can be seen, are far 

from the reference points on the left, taken from the IAPWS database [12]. 

We aim to align the model lines with the reference points. For this purpose, we 

assume that the internal pressure P(i) (thesecond summand in formula (1)) depends on 

temperature. We set the second numerator in binomial form with respect to T and 

change the denominator degree exponent from 2 to 1.4. This variant of modification is 

not the only one, but it is the simplest of the tested ones. By the method of successive 

approximations we approximate the new equation to reference data from the IAPWS 

database [12] and arrive at the optimal formula 

 
2

1.4

RT CT BTP
V b V

−
= −

−
 [MPa], (2) 

where b, C and B are the optimal parameters presented in Table 1. The operation of 

formula (2) for isotherms and isochores is shown in Fig. 1. The dependences of P(V) 

and P(T) were calculated by the method of successive fixations of T and V in equation 

(2). As can be seen, the curves lie well on the array of reference points, huge in number 

and scatter of absolute values. The isobars V(T) are also well transferred by formula 

(2) (not shown graphically) with the peculiarity that due to the inherent weak 

compressibility of liquid water at temperatures from the triple to the critical point, they 

lie on one common curve.  For convenience of calculations we set this dependence by 

a simplified formula 

 ( ) ( )73 / 700 0.82V T T= − +  [м(3) ], (3) 

transmitting isobar behavior with deviations from the reference data within 5% (see 

Fig. 3a in [34]). 
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CALORIC EQUATIONS OF STATE 

The thermal equation (2), like the original VdV equation (1), admits a textbook 

transition to thermodynamics, taking into account the first and second laws of 

thermodynamics [4,5]. It involves a series of differential-integral operations with the 

thermal equation of state of the form P(V,T) (expression for pressure) to obtain energy 

(caloric) equations of state of the form E(V,T) (expressions for free F and internal U 

energies).  

We carry out with equation (2) the procedure according to the scheme from 

textbooks [4,5]:  

1) we take the pressure P as the sum of thermal and internal pressures 

 ( ) ( )/
V T

P T P / T U V= ∂ ∂ − ∂ ∂  (4) 

and as a partial derivative of the free energy 

 ( )/
T

P F V= − ∂ ∂ ; (5) 

2) we take into account the relation between internal energy U and heat capacity 

CV 

 ( )/V V
C U T= ∂ ∂ , (6) 

relation between free energy F and entropy S 

 ( )/
P

S F T= − ∂ ∂  (7) 

and the relationship between free F and internal U energies: 

 U F TS= + . (8) 
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We obtain a system of equations (4)-(8), with respect to which we set the 

problem to express thermodynamic quantities U, F, CVand S through the parameters b, 

B and C found for equation (2).  

Transposition of the dependencies V(T) and T(V) in equation (3) allows to 

manipulate equations (4)-(8) (integrate, differentiate and plot) in two variants 

separately: when the values U, F, CVand S depend only on pressure P and when they 

depend only on temperature T. Under these conditions, the three caloric equations of 

state for U, F, and TS with integration constants c(U) (V,T)and c(F) (V,T)directly follow 

from the thermal equation (2): 

 2 0.42.5 /U BT V с= − + U , (9) 

 ( ) ( )2 0.4ln 2.5 / FF RT V b BT CT V c= − − + − + , (10) 

 ( ) ( )2 0.4ln 2.5 / U FTS RT V b 2BT CT V c c= − − − + − , (11) 

as well as expressions for heat capacity CVand entropy S: 

 0.45 / /V UC BT V с T= − + ∂ ∂ , (12) 

 ( ) ( ) ( )0.4ln 2.5 / /U FS R V b 2BT C V c c T= − − − + − . (13) 

Fitting equations (9)-(13) to the reference data from the IAPWS database [12] 

yields the integration constants, which in binomial terms are presented in Tables 2 and 

3. Illustrative material of the fitting is presented in Figs. 2 and 3. The calculated 

dependencies are in good agreement with the reference data. 

The presence of the shift parameter Z in the integration constants c(U) (V,T) and 

c(F) (V,T) makes it possible to calculate the energy spectrum of liquid water in absolute 

terms by distributing the energy curves referenced to the triple point 0 ºC in Fig. 2a 
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vertically with respect to the absolute temperature 0 K in Fig. 2b. We use the fact, 

discovered by us earlier, that the evaporation energy EICPis uniquely related to the 

density ρ [34,36]: 

 
5/3

ИСП 4/3 5/3
0

ρ
2 πε

qpE
m

=  [kJ-kg(-1) ], (14) 

where m = 3.1-10-26kg and p = 6.14-10-30Cl-m are the mass and dipole moment of the 

H(2) Omolecule, q = 1.6-10(-19) Cl is the elementary charge, ε0= 8.85-10(-12)F-m(-) (1)is the 

dielectric constant of vacuum. Fig. 2a shows that the dependence F(T), shifted upward 

by 1250 kJ/kg well, within the error ±5%, lies on the curve ½E(ICP) (T). On this basis 

we establish 

 ИСП / 2F E= , (15) 

and the energy 1250 kJ/kg is set as the zero level for all energy curves. Accordingly, 

we recalculate the constants cUand c(F) ofthe first column of Table 2, containing the 

parameter Z, into the constants of the second column. The curves with the new cUand 

cF, expressed in absolute units, are shown in Fig. 2b. The recalculated entropy curve 

S(T) in absolute terms is shown in Fig. 3c.  

From equations (10), (14) and (15), an expression for the density ρ of liquid 

water follows: 

 
3/56

010 περ 4 Fm
qp

 
=  

 
 [kg-m(-3) ]. (16) 

In graphical representation, it is shown in Fig. 3а. As can be seen, the calculated 

curve corresponds to the reference points with high accuracy.  
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The transformation of equation (1) into equations (2) gives a new analytical 

expression for the internal pressure P(i) (second summand). A comparison of the new 

Piwith the generally accepted one [37] is presented in Fig. 4. As can be seen, the curves 

P(i) (T) are close in the range of intermediate temperatures 400-600 K, but the 

dependence P(i) (T) of equation (2) goes further to the right beyond the critical point 

and provides an opportunity to calculate isochores already in the gas phase. The 

calculated phase diagram is qualitatively close to the reference one and completely 

coincides with it at low pressures. 

DISCUSSION 

The central result of the present work is that the gas approach used, simple 

against the background of other research methods, gives a definitely positive result - 

the possibility to predict the thermal and caloric characteristics of liquid water by 

simple algebraic expressions proceeding from one general formula (2). Equation (2) 

turns out to be simple and comprehensive. 

For the first time, the hypothesis (15) based on the virial theorem [38] was 

applied to describe the properties of liquid water. The reason for the application of this 

theorem was obtained from the analysis of dielectric spectra of liquid water [30,34]. 

We found that liquid water can be considered to consist of free particles (molecules 

and ions) that make thermal collision motion and are pulled together in volume V by 

electrostatic ion-dipole interaction. The picture meets the requirements of the virial 

theorem, according to which at internal coupling of particles in a bounded space the 

average kinetic energy of particles EKINis related to the average potential energy 

E(POT)as EKIN=  n/2‧EPOT, where n is the degree of potential energy as a homogeneous 
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algebraic function of coordinates [39]. When, for example, n = 2, the average kinetic 

energy is equal to the average potential energy, and each of them is equal to half of the 

total energy - this is the result for a linear oscillator.  

For liquid water, the potential energy of its particles EPOTis reliably demonstrated 

by the temperature curve of water evaporation (decomposition)E(ICP) [2]. We established 

the functional expression E(COI) (T) in the form of equation (14) earlier in [34,36]. Now 

we take half of the decay energy E(COI) (T) as the energy of mutual attraction of 

molecules. This energy, competing with the energy of thermal expansion of molecules 

~ k(B) T, provides a steady state of liquid water: the free energy F(T) in the form (10) 

has the fundamentally required minimum (we do not demonstrate it graphically). In 

favor of the legitimacy of using the virial theorem in application to water is evidenced 

by the accurate description (without additional fitting) of the density of liquid water 

ρ(T) by means of the model curve (16), as shown in Fig. 3а. Equation (16) is 

particularly valuable in that it relates the density of liquid water ρ(T) to the microscopic 

parameters of the particles: mass m, charge q, and dipole moment p. 

The agreement of the calculated ρ(T) curve in Fig. 3a with the reference data 

extends over a wide temperature range of 300-630 K, but the famous density anomaly 

in the region of 4 °C is not conveyed by the model. To this it should be said that 

although the anomaly is textbook due to its vital importance [40-42], it unfolds in a 

very narrow temperature range (less than± 1 K) and can be correctly interpreted only 

when the large-scale course of the entire ρ(T)  dependence is understood.   

Hypothesis (15) allows us to plot the energy spectrum of liquid water in absolute 

terms, as shown in Fig. 2b. The model curves naturally behave in the limit of low 
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temperatures: the entropic part of the free energy TS tends to zero, and the values of U 

and F equalize [4]. A shift of ΔF = 1250 kJ/kg gives two curve crossings, both at 0 °C. 

The temperature 0 °C turns out to be the point of equality of the two parts of internal 

energy. The same temperature becomes the point of equality of kinetic and potential 

energies, as well as the beginning of their change with increasing temperature.  

In the modified equation (2), the internal pressure P(i) (second summand) takes a 

new analytical form compared to Piin the original equation (1). The value of Pihas an 

independent important value, because it is directly related to other properties of water: 

isobaric expandability, isothermal compressibility, and surface tension [4]. In Fig. 4 

the found dependence P(i) (T) is compared with the generally accepted dependence [37]. 

The two dependences are close in the intermediate temperature range of 400-600 K, 

but the new one passes further to the right beyond the critical point in the phase 

diagram. This allows us to calculate the isochorus pattern using equation (2), which, as 

can be seen, is qualitatively similar to the reference one. Interestingly, although the 

modeling goes beyond the initial assumptions (equation (3) is violated), the predictive 

ability of equation (2) is preserved.  

In Fig. 1b, in the region of high pressures, the curves noticeably deviate from the 

reference points. The agreement can be improved by increasing the constant R in 

equation (2), but we do not do it, leaving the first term purely "gas", van der Waals, to 

escape from the known problem of the difference of the gas constant R for critical and 

room temperatures [26,43]. The latter for water is one and a half times larger than the 

former. This is interpreted as follows: since the value of R is by definition proportional 

to the number of "structural units" in a mole of a substance, water molecules are 
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partially bound into complexes in the critical state (in a strongly compressed gas at 

high temperature). The problem of supramolecular structuring of liquid water - 

clustering, ice-like, coexistence of phases of high-low density, etc. - is extensive and 

hotly debated [44-49]. It is independent, and we do not discuss it in this paper. 

CONCLUSION 

With the present work we continued the discussion on the appropriateness of 

applying the gas-ion-molecular approach to the study of the properties of liquid water. 

The central result of the work was the very fact of successful prediction of reference 

data by a real gas model. The gas approach for liquid water is fundamentally new. It 

opens a simple algebraic access to thermodynamics, the possibility of fast and 

systematic handling of myriads of tabular data, the possibility of tracking the 

parameters encrypted in them. We have proposed algebraic relations that consistently 

and adequately betray the thermodynamic parameters of liquid water. The formulas are 

convenient for further modeling and detailed analysis of the revealed regularities.  
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Table 1. Parameters of the original VdV equation (1) [26] and the modified version 

(2). 

Parameter VdV [26] Modif. ver. 

R, J/(kg-K)  460 460 (const) 

b, dmh/kg 1.7 0.74 (const) 

a, MPa-m6/kg2 1700 - 

Degree indicator 2 1.4 (const) 

B, J/(kg-K2) -(dms/kg)0.4 - 2.5 ± 0.3 

C, J/(kg-K)-(dms/kg)(0.4) - 2500 ± 300 

 

 

Table 2. Integration constants cUand cFfor the dependences U(T) and F(T): 1) 

referenced to the 0 °C triple point; 2) calibrated by equation (15). 

  1. RH. 0 °C 2. abs. from equation 

(15) 

cU, kJ/kg XT2 +  YT - Z XT2 +  YT + 1050 
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cF, kJ/kg -3.7XT2 +  YT -3.7XT2 +  YT + 1250 

c(U) -c(F), kJ/kg 4.7XT2- Z 4.7XT2- 200 

 

 

Table 3. Coefficients of the integration constants cUand cF, presented in Table 2. 

X, kJ/(kg-K2) 0.0027 ± 0.0002 

Y, kJ/(kg-K) 6.5 ± 0.2 

Z, kJ/kg 1450 ± 100 

 

FIGURE CAPTIONS 

Fig. 1. Isotherms (a) and isochores (b) of liquid water. Thin lines at the top right are 

calculations using the VdV model (1). Dots - IAPWS reference data [12], lines above 

the dots - calculation by the modified model (2). 

 

Fig. 2. Temperature dependences of the internal energy of liquid water U, entropic part 

TS, evaporation energy EICPand free energy F: a) referenced to the triple point 0 ºC) 

and b) in absolute terms (distributed in the spectrum vertically). Dots - IAPWS 

reference data [12], lines - calculation by formulas (9)-(11). 

 

Fig. 3. Temperature dependences of density ρ (a), isochoric heat capacity C(V) (b) and 

entropy S (c) of liquid water. Dots are reference data [12,35], lines are calculations 

using formulas (16), (12) and (13), respectively. For completeness of the picture, the 

isobaric heat capacity CP) (bis also given. 
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Fig. 4. Phase diagram of water in isochoric representation. Dotted lines - internal 

pressure P(i) (T)according to formula (2) and from [37]. Solid dark lines - IAPWS 

reference data [12], light lines - calculation by formula (2). 
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