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ВВЕДЕНИЕ
Человечество на протяжении довольно дли-

тельного времени привлекает исследование волн
на поверхности жидкости. Еще Леонардо да Вин-
чи в пятнадцатом веке в своих трудах упоминал по-
верхностные волны. С появлением математическо-
го аппарата исследования от простых наблюдений
переходят к аналитическому описанию, а разви-
тие техники эксперимента привело к качественно
новым экспериментальным описаниям разнооб-
разнейших явлений, возникающих на поверхности
жидкости. Исследования поверхностных волн на-
ходят свое место и в классических трактатах и учеб-
никах [1–4] и в специализированных монографи-
ях, посвященных волновым движениям жидкости
[5–8].

В современных работах часто решается линеа-
ризованная задача о расчете характеристик инфи-
нитезимальных поверхностных периодических те-
чений в жидкости в различных постановках [9–11].
Наряду с линеаризованными задачами в теоре-
тических работах объектом исследования стано-
вятся нелинейные волны, и исследователи в са-
мых разнообразных постановках задачи получают
точные решения нелинейных уравнений Эйлера,
Кортевега–де Фриза, Шредингера, Хопфа [12–16].
Интерес к изучению поверхностных волн не угас
до сих пор, и они становятся предметом как тео-
ретического [12, 13, 16] так и экспериментально-
го [17–21] изучения. Интерес связан с необходимо-

стью изучения параметров морских волн, описан-
ных в учебных пособиях по океанографии [22, 23]
для подробного описания и предсказания поведе-
ния волновых и многих смежных явлений в океане.
Несмотря на давнюю историю вопроса до сих пор
не разработана полная теория, позволяющая по из-
меренным характеристикам предсказывать пове-
дение волн. В последние годы активизировалась
работа по теоретическому и экспериментальному
описанию. Также происходит развитие экспери-
ментальных методов контроля поверхностных волн
(см. например, [24]).

Для изучения и предсказания поведения волн
на поверхности моря необходима регистрация эле-
ментов, характеристик и параметров волн. В на-
стоящей работе предлагается структуризация эле-
ментов волн на поверхности глубокого океана,
описываемых функциями Ламберта. Решение за-
дачи в виде функций Ламберта впервые получе-
но и обсуждалось в [16]. Настоящая работа на-
правлена на исследование влияния амплитуды вол-
ны на ее различные характеристики и измеряемые
в эксперименте параметры.

ПОСТАНОВКА ЗАДАЧИ
Рассмотрим распространение периодических

потенциальных волновых движений вдоль свобод-
ной поверхности идеальной глубокой жидкости,
занимающей нижнее полупространство 𝑧 < 0 в де-
картовой системе координат. В простейшем слу-
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чае в приближении постоянной плотности ρ = 𝑐𝑜𝑛𝑠𝑡
без учета поверхностного натяжения в двумерной
постановке математическая формулировка задачи
включает в себя уравнения Эйлера и неразрыв-
ности и дополняется стандартными граничными
условиями на свободной поверхности. При пере-
ходе в систему координат 𝑂ξ𝑧, движущуюся вместе
с волной со скоростью 𝑐, учитывая связь между го-
ризонтальными координатами ξ = 𝑥 − 𝑐𝑡, математи-
ческая формулировка задачи записывается следую-
щим образом:

𝑧 < ζ ∶ ρ (−𝑐𝜕ξ𝑢 + (𝑢∇)𝑢) = −∇𝑃 + ρ𝑔, (1)
𝜕𝑖ρ + 𝑢 ⋅ ∇ρ + ρ div 𝑢 = 0, (2)

𝑧 = ζ ∶ 𝑃 = 𝑃0, 𝑤 − 𝑢𝜕ξζ = −𝑐𝜕ξζ. (3)

Здесь функция ζ = ζ(ξ) описывает откло-
нение свободной поверхности от равновесного
положения 𝑧 = 0, ускорение свободного падения
𝑔 = (0,−ℎ) направлено вертикально вниз против
направления оси 𝑂𝑧, переменными 𝑢 и 𝑤 обозна-
чены горизонтальная и вертикальная компоненты
скорости 𝑢, а давление 𝑃 складывается из атмо-
сферного 𝑃0, гидростатического и динамического
давления ̃𝑃:

𝑃(ξ, 𝑧) = 𝑃0 + ρ𝑔(ζ − 𝑧 + ̃𝑃(ξ, 𝑧)). (4)

Для жидкости с постоянной плотностью урав-
нение неразрывности сводится к условию несжи-
маемости, и в двумерной постановке можно ввести
функцию тока ψ такую, что 𝑢 = (𝑢, 𝑤) = (𝜕zψ − 𝜕xψ).
Решение для функции тока ищется в виде представ-
ления, определяющего экспоненциальное затуха-
ние волнового движения с удалением от свободной
поверхности и обобщенное для волнового пакета
представление, выглядит следующим образом:

ψ(ξ, 𝑧) =
∞

∫
0

exp (𝑘(𝑧 − ζ(ξ))) ϕ(𝑘, ξ) 𝑑𝑘, (5)

Из кинематического граничного условия (3)
и (5) получим для функции тока:

ψ(ξ, 𝑧) = 𝑐(ζ + 𝑎)
∞

∫
0

exp (𝑘(𝑧 − ζ(ξ))) 𝑓(𝑘) 𝑑𝑘,

∞

∫
0

𝑓(𝑘) 𝑑𝑘 = 1.

(6)

Не вдаваясь в особенности решения, которое
не является основным интересом настоящего рас-
смотрения и подробно рассмотрено, и описано
в работе [13], отметим, что для функции, описыва-
ющей отклонение свободной поверхности от рав-
новесного значения получается выражение:

ζ(ξ, 𝐴) = −1
𝑘
(𝑊 (−𝑘𝐴

2
exp(𝑖𝑘ξ)) +

+ 𝑊 (−𝑘𝐴
2

exp(−𝑖𝑘ξ))) .
(7)

Здесь символом 𝐴 обозначена амплитуда вол-
нового движения, а𝑊(𝑥)−𝑊— функция Ламберта.

В [16] показано, что функция 𝑓(𝑘) в выраже-
нии (6) является дельта-функцией Дирака δ(𝑘 − 𝑘

∗
)

и в таком случае, применяя свойство функции Лам-
берта 𝑊(𝑥) exp(𝑊(𝑥)) можно записать для функ-
ции тока:

ψ±(ξ, 𝑧) = −
𝑐

𝑘
∗

𝑊 (−𝑘
∗
𝐴𝑒±𝑖𝑘∗ξ)×

× exp (𝑊 (−𝑘
∗
𝐴𝑒±𝑖𝑘∗ξ)) 𝑒𝑘∗𝑧 = 𝑐𝐴𝑒±𝑖𝑘∗ξ𝑒𝑘∗𝑧.

(8)

Настоящая работа посвящена анализу формы
и некоторых характеристик свободной поверхно-
сти, в задаче о распространении поверхностных
волн, точное решение которой определяется волна-
ми Ламберта.

АНАЛИЗ ФОРМЫ СВОБОДНОЙ
ПОВЕРХНОСТИ

Проанализируем поведение формы свободной
поверхности (7). Для инфинитезимальных волн
𝑘𝐴 ≪ 1 и выражение, описывающее форму свобод-
ной поверхности (), принимая во внимание раз-
ложение функции Ламберта по малому параметру
𝑊(𝑥) = 𝑥 − 𝑥2 + 3

2
𝑥3 + 𝑜 (𝑥3) при ∣𝑥∣ ≪ 1, принимает

вид:

ζ(ξ, 𝐴) = −1
𝑘
(𝑊 (−𝑘𝐴

2
exp(𝑖𝑘ξ)) +

+𝑊 (−𝑘𝐴
2

exp(−𝑖𝑘ξ))) = (9)

= −1
𝑘
(−𝑘𝐴

2
exp(𝑖𝑘ξ) − 𝑘𝐴

2
exp(−𝑖𝑘ξ)) = 𝐴 cos(𝑘ξ).

Таким образом, при малых амплитудах форма
свободной поверхности близка к гармонической.
Выполним построение формы свободной поверх-
ности для различных параметров нелинейности
ε = 𝐴ω2/𝑔, характеризующего отношение амплиту-
ды волнового движения 𝐴 к длине волны. С ро-
стом параметра нелинейности гребень волны вы-
тягивается и при некотором критическом значении
εcr = 2/𝑒 на вершине волны возникает сингуляр-
ность и форма поверхности перестает быть глад-
кой. Волны, удовлетворяющие условию ε < εcr бу-
дем называть гладкими или докритическими вол-
нами, а волны, удовлетворяющие ε ⩾ εcr будем на-
зывать острыми или закритическими. На рис. 1а
представлены типичные формы поверхности для
докритических и закритических волн. Поверхност-
ные волны характеризуются большим набором па-
раметров, которые можно отслеживать в экспери-
ментальных исследованиях. На рис. 1б и 1в пред-
ставлены формы поверхности для гладкой и острой
волны с указанием характеристик поверхностно-
го волнового движения, оценка которых может
быть получена при обработке оптических данных
волн на поверхности жидкости. В табл. 1 пере-
числены характеристики и приведено их описание.
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Рис. 1. Профили поверхностных волн: общий вид для различных параметров нелинейности докритического, критиче-
ского и закритического (а); волна с докритическим параметром нелинейности с указанием характеристик волнового
движения (б); волна с закритическим параметром нелинейности с указанием характеристик волнового движения (в).

Таблица 1. Характеристики поверхностного волнового возмущения

Обозначение Характеристика

λ Длина волны
𝐴 Амплитуда волны
ℎ
+

, ℎ
−

Возвышение и заглубление волны
ζs Серединный уровень волны, уровень, отсекающий равные площади и характеризующий по-

ложение центра масс
ζm Средний уровень, определяющий положение, равноудаленное от вершины и подошвы
λsh, λcr Длительность ложбины и гребня волны
λd, λu Длительность участка ниже и выше среднего уровня волны ξm

λ
−

, λ
+

Длительность участка волны ниже и выше равновесного положения 𝑧 = 0
α Угол при подошве волны
β Угол при вершине волны
γ Угол между линиями с максимальной крутизной фронта и среза
φ Угол между линиями, соединяющими вершину и соседние подошвы, характеризующий кру-

тизну волны
𝑥max, 𝑥min Значения абсцисс, при которых достигается максимальная крутизна фронта и среза волны
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Интересно, что некоторые параметры при перехо-
де от докритической к закритической области те-
ряют свой смысл, а некоторые наоборот — про-
являются явственнее. В качестве примера можно
выделить угол между линиями наибольшей крутиз-
ны среза и фронта волны γ и уровень серединной
линии ζs, определяющий положение выше и ниже
которого площади, заметаемые волной одинаковы.
Угол γ для закритических волн совпадает с углом β
при вершине гребня волны, а для докритических
волн эти углы различны. Положение серединной
линии ζs для докритических волн близко к поло-
жению равновесия 𝑧 = 0, однако, для закритиче-
ских волн этот уровень заметно превышает равно-
весный.

Рассмотрим, как влияет увеличение ампли-
туды волны на некоторые характеристики по-
верхностных волн. На рис. 2 построены зави-
симости длительности участка волны, отнесен-
ные к ее длине, превышающих равновесный уро-
вень (имеющих положительные значения абсцисс)
λλ
+

= λ
+
/λ, не превышающих (имеющих отрица-

тельные значения абсцисс) λλ− = λ−/λ и их раз-
ность Δλλ = λλ

−

− λλ
+

= (λ
−
− λ
+
) /λ. Для удобства

построения выполнены в величинах, отнесенных
к длине волны для различных параметров нели-
нейности ε. При малых амплитудах длительности
волны над и под равновесным уровнем практиче-
ски совпадают, однако, с увеличением амплитуды
участок над равновесным уровнем укорачивается
по сравнению с участком под равновесным уров-
нем. Несмотря на то, что длительность λλ

+

умень-
шается с увеличением амплитуды, длина свобод-
ной поверхности волны ведет себя нелинейным об-
разом. Длина свободной поверхности вместе с по-
ложением уровня ζs характеризует потенциальную
энергию: увеличение этих величин приводит к уве-
личению потенциальной энергии волнового дви-
жения.

На рис. 3 изображены зависимости от пара-
метра нелинейности длины поверхностей участков
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Рис. 2. Отнесенная к длине волны длительность участ-
ка волны в зависимости от параметра нелинейности
над равновесным уровнемλλ+, под равновесным уров-
нем λλ+ и разница длительности под равновесным
уровнем и над равновесным уровнем Δλλ = λλ−−λλ+

.

волны, отнесенные к длине волны для участка пре-
вышающей равновесный уровень 𝐿

+
/λ (рис. 3а),

не превышающей равновесный уровень 𝐿
−
/λ

(рис. 3б) и общая длина свободной поверхности
𝐿/λ = (𝐿

+
+ 𝐿

−
) /λ. Видно, что для докритических

гладких волн с увеличением амплитуды про-
исходит плавный незначительный рост длины
поверхности участка волны, находящегося под
равновесным уровнем и относительно резкий
рост длины поверхности участка над равновесным
уровнем. С превышением критического значения
параметра нелинейности происходит менее резкое
уменьшение длины свободной поверхности этого
участка. Вблизи критического значения параметра
нелинейности существует область параметров, для
которых длина свободной поверхности верхней
части волны превышает длину свободной по-
верхности в нижней части волны. Эта же область
характеризуется наибольшей длиной поверхности
волны (см. рис. 3в) и, следовательно, наиболь-
шей доступной поверхностной потенциальной
энергией.

Рассмотрим углы, характеризующие свободную
поверхность волны. На рис. 4 представлены зави-
симости углов, характеризующих различные участ-
ки волны в зависимости от параметра нелиней-
ности. На рис. 4а представлена зависимость угла
при подошве волны α. С увеличением амплитуды
волны угол при подошве практически не меняет-
ся и близок к 180○. Для угла при вершине вол-
ны β (см. рис. 4б) похожая тенденция наблюдает-
ся только для гладких докритических волн, однако
с приближением параметра нелинейности к кри-
тическому значению происходит резкое уменьше-
ние значения угла и последующий плавный рост
с увеличением амплитуды для закритических волн.
Угол между линиями с максимальной крутизной
фронта и среза γ для закритических волн совпада-
ет с углом при вершине β, а в области докритиче-
ских значений параметра нелинейности происхо-
дит более плавное по сравнению с углом β умень-
шение значения. Угол, образованный линиями, со-
единяющими вершину волны с двумя соседними
подошвами φ (или между линиями, соединяющи-
ми подошву с двумя соседними вершинами) так-
же уменьшается с увеличением амплитуды в об-
ласти докритических значений параметра нели-
нейности, при критическом значении достигает
минимального значения (около 100○) и для за-
критических волн плавно растет с увеличением
амплитуды.

Описанные характеристики, а также другие ве-
личины, изображенные на рис. 1б,в можно отсле-
живать при постановке экспериментов для опре-
деления параметров волнового движения, точное
решение которого описывается функциями Лам-
берта.
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L+/λ
L–/λ

ба

εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0

L/λ (L–λ)/λ

в г

εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0

Рис. 3. Отнесенная к длине волны длина поверхности участка волны в зависимости от параметра нелинейности над
равновесным уровнем 𝐿

+
/λ (а); под равновесным уровнем 𝐿

−
/λ (б). Суммарная длина участка поверхности 𝐿/λ (в);

относительное удлинение свободной поверхности (𝐿 − λ)/λ (г).

β,
 гр

ад

α
, г

ра
д

ба

εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0

γ, 
гр

ад

ϕ
, г

ра
д

в г

εcr ε0.50.25 1.751.51.251.0 εcr ε0.50.25 1.751.51.251.0
Рис. 4. Характерные углы волны в зависимости от параметра нелинейности: угол при подошве α (а), угол при вер-
шинеβ (б), угол между линиями с максимальной крутизной фронта и среза γ (в), угол между линиями, соединяющими
вершину и соседние подошвы φ (г).

ЗАКЛЮЧЕНИЕ

Получено решение нелинейной задачи о рас-
пространении гравитационных волн вдоль свобод-
ной поверхности идеальной глубокой несжимае-
мой жидкости. Построены параметры волн, кото-

рые возможно использовать в эксперименте, что-
бы характеризовать волны. С увеличением ампли-
туды волнового движения происходит заострение
вершин волн и при некотором критическом значе-
нии амплитуды на вершине возникает особая точ-
ка. Критическое значение амплитуды разграничи-
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вает плавные докритические волны от заострен-
ных закритических. Исследовано влияние измене-
ния амплитуды волнового движения на длитель-
ность и длину поверхности участков волн Лам-
берта для докритических и закритических ампли-
туд. Исследованы углы, образующиеся касательны-
ми к свободной поверхности на вершине, подошве
волны, а также в точках на срезе и фронте волны,
характеризующимися максимальными значениями
крутизны. Получены координаты этих положений
и показано, что для закритических волн эти коор-
динаты совпадают с координатами вершины вол-
ны. Предложенное описание приведено в наблю-
даемых и возможных для фиксирования в экспери-
менте величинах.

Работа выполнена по теме государственного за-
дания (№ 124012500442-3).
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Some characteristics of nonlinear potential surface waves in an ideal liquid
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The potential wave motion along the free surface of a deep ideal liquid is studied. Exact solutions of the
equations of motion with physically justified boundary conditions on a free surface are obtained. The
shape of the free surface is studied depending on the amplitude and the characteristics of the surface are
highlighted. The characteristics of waves depending on the nonlinearity parameter are investigated.

Keywords: ideal fluid, potential flow, wave motion, Lambert W function, nonlinear waves, characteristics of
wave motion
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