SOME CHARACTERISTICS OF NONLINEAR POTENTIAL SURFACE

WAVES IN AN IDEAL LIQUID

© 2025A. A. Ochirov*, K. Yu. Lapshina
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences,
Moscow, Russia
*e-mail: otchirov@mail.ru
Received September 06, 2024
Revised September 16, 2024

Accepted September 30, 2024

Abstract. The potential wave motion along the free surface of a deep ideal liquid is
studied. Exact solutions of the equations of motion with physically justified boundary
conditions on a free surface are obtained. The shape of the free surface is studied
depending on the amplitude and the characteristics of the surface are highlighted. The
characteristics of waves depending on the nonlinearity parameter are investigated
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INTRODUCTION
Mankind has been attracted to the study of waves on the surface of liquids for

quite a long time. Even Leonardo da Vinci in the fifteenth century mentioned surface



waves in his works. With the advent of mathematical apparatus, research from simple
observation to analytical description, and the development of experimental techniques
has led to qualitatively new experimental descriptions of a variety of phenomena
occurring on the surface of the liquid. Studies of surface waves find their place in
classical treatises and textbooks [1-4] and in specialized monographs devoted to wave
motions of liquids [5-8].

In modern works the linearized problem of calculating the characteristics of
infinitesimal surface periodic flows in a liquid in various formulations is often solved
[9 - 11]. Along with linearized problems, nonlinear waves become the object of study
in theoretical works, and researchers in a wide variety of problem formulations obtain
exact solutions of nonlinear Euler, Korteweg-de Fries, Schrodinger, and Hopf
equations [12-16]. Interest in the study of surface waves has not died down until now,
and they become the subject of both theoretical [12,13,16] and experimental [17-21]
studies. The interest is related to the need to study the parameters of sea waves
described in oceanography textbooks [22-23] for a detailed description and prediction
of the behavior of wave and many related phenomena in the ocean. Despite the long
history of the issue, a complete theory to predict wave behavior from measured
characteristics has not yet been developed. In recent years, work on theoretical and
experimental characterization has intensified. Experimental methods for controlling
surface waves are also being developed (see, e.g., [24]).

To study and predict the behavior of waves at the sea surface, the registration of
wave elements, characteristics and parameters is necessary. In the present work, a

structurization of wave elements on the surface of the deep ocean described by Lambert



functions is proposed. The solution of the problem in the form of Lambert functions
was first obtained and discussed in [16]. The present work is aimed at investigating the
influence of the wave amplitude on its various characteristics and experimentally
measured parameters.
PROBLEM STATEMENT

Let us consider the propagation of periodic potential wave motions along the free
surface of an ideal deep liquid occupying the lower half-spacez <0 in the Cartesian
coordinate system. In the simplest case in the constant density approximation p = const
without taking into account surface tension in two-dimensional formulation, the
mathematical formulation of the problem includes the Euler and continuity equations
and 1s supplemented with standard boundary conditions on the free surface. When

transferring to the coordinate systemO¢&z , moving together with the wave with

velocityc , taking into account the relationship between horizontal coordinates

& =x—ct , the mathematical formulation of the problem is written as follows:

z<( p(—cd.ii +(iiV )i ) =—VP+ pg (1)
0,p+u-Vp+ pdivii =0 (2)
z=(": P=P, w—u0.¢ =—c0.¢ 3)

Here, the function = ¢'(&) describes the deviation of the free surface from the
equilibrium positionz =0 , the free-fall acceleration g =(0,—g) is directed vertically

downward against the direction of the axisOz , the variablesu andw denote the

horizontal and vertical velocity componentsz , and the pressure P is composed of

atmospheric £, , hydrostatic and dynamic pressure : P



P(é.2)=FB+pg({ —z)+ P(&.2) (4)
For a fluid with constant density, the continuity equation is reduced to the
incompressibility condition, and in the two-dimensional formulation we can introduce

a current functiony such thati =(u,w)=(0y,—0,y) . The solution for the current

function is sought in the form of a representation defining the exponential decay of
wave motion with distance from the free surface and the representation generalized for

the wave packet is as follows:
v (&,2)=[exp(k(z = (£)))$(k.&)dk (5)

From the kinematic boundary condition (3) and (5) we obtain for the current

function:

0

v (£,2)=c(¢ +a)[exp(k(z=¢(£))) f (k) dk
" (6)

[ £ (k)die =1
0
Without going into the specifics of the solution, which is not the main interest of
the present consideration and is considered and described in detail in [13], we note that

for the function describing the deviation of the free surface from the equilibrium value

we obtain the expression:

1 kA

(6 )= —;(W(—Texp(ikg)j+ W(—]%Aexp(—ikﬁ)j] 7

Here, the symbol 4 denotes the amplitude of the wave motion, andW(x) -W is

the Lambert function.



In [16] it is shown that the function (k) in expression (6) is the Dirac delta

functions(k —k.) and in that case, applying the Lambert function property

W(x) exp(W(x)) =Xx can be written for the current function:

v.(¢.2)= _kiW(—k*A e ) GXP(W(—k*A e ))ek*z =cAe™ e (8)

%

The present work 1s devoted to the analysis of the shape and some characteristics
of the free surface, in the problem of surface wave propagation, the exact solution of
which is defined by Lambert waves.

FREE SURFACE SHAPE ANALYSIS

Let us analyze the behavior of the free surface shape (7). For infinitesimal

waveskA « 1 and the expression describing the shape of the free surface (), taking into

account the decomposition of the Lambert function by the small parameter

W(x)=x—-x +%x3 +0(x3) at|x| « 1, takes the form:

§(&.4)= —%(W{—%exp(ikﬁ)) + W(—k;exp(—ikg)jj =

= _%(_I%Aexp(ik‘f) — I%Aexp(—ikcf)j = ACOS(kgE)

©)

Thus, at small amplitudes the shape of the free surface is close to harmonic. Let
us plot the shape of the free surface for different nonlinearity parameters ¢ = Aw*/g ,
characterizing the ratio of the wave motion amplitude 4 to the wavelength. With the
growth of the nonlinearity parameter the crest of the wave is stretched out and at some
critical value s, = 2/e a singularity appears at the top of the wave and the surface shape
ceases to be smooth. The waves satisfying the conditione < ¢,. will be called smooth
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or pre-critical waves, and the waves satisfying & > ¢ . will be called sharp or subcritical.

Figure 1a shows typical surface shapes for precritical and zacritical waves. Surface
waves are characterized by a large set of parameters that can be monitored in
experimental studies. Figs. 1b and 1c¢ show the surface shapes for smooth and sharp
waves, indicating the characteristics of surface wave motion, the estimation of which
can be obtained by processing optical wave data on the surface of fluid. Table 1 lists
the characteristics and describes them. It is interesting that some parameters in the
transition from the subcritical to the subcritical region lose their meaning, and some,
on the contrary, appear more clearly. As an example, the angle between the lines of the

steepest shear and wave fronty and the level of the midline ¢, , which determines the

position above and below which the areas swept by the wave are the same. The angle

y for subcritical waves is the same as the angle § at the top of the wave crest, while
these angles are different for subcritical waves. The position of the midlineg, for

precritical waves is close to the equilibrium positionz =0 , however, for subcritical
waves this level is noticeably higher than the equilibrium level.

Let us consider how the increase of the wave amplitude affects some
characteristics of surface waves. In Fig. 2 we plot the dependences of the duration of
the wave section, related to its length, exceeding the equilibrium level (having positive

values of abscissas) A, =1, /4 , not exceeding (having negative values of abscissas)
A,_=A_/2 and their differenceAd, =4, — 4, =(A_—4,)/4 . For convenience, the

plots are made in values related to the wavelength for different nonlinearity parameters
£ . At small amplitudes, the wavelengths above and below the equilibrium level are

almost identical, however, as the amplitude increases, the section above the equilibrium
6



level shortens compared to the section below the equilibrium level. Although the

duration 1,, decreases with increasing amplitude, the free surface length of the wave

behaves in a nonlinear manner. The length of the free surface together with the position

of the level £, characterizes the potential energy: an increase in these quantities leads

to an increase in the potential energy of the wave motion.
Fig. 3 shows the dependences on the nonlinearity parameter of the surface
lengths of the wave sections related to the wavelength for the section exceeding the

equilibrium level L, /A (Fig. 3a), not exceeding the equilibrium level L /1 (Fig. 3b)
and the total free surface length /A =(L, + L_)/A . It can be seen that for pre-critical

smooth waves with increasing amplitude there is a smooth insignificant increase in the
surface length of the wave section below the equilibrium level and a relatively sharp
increase in the surface length of the section above the equilibrium level. As the critical
value of the nonlinearity parameter is exceeded, there is a less abrupt decrease in the
free surface length of this section. Near the critical value of the nonlinearity parameter,
there is a region of parameters for which the free surface length of the upper part of the
wave exceeds the free surface length in the lower part of the wave. The same region is
characterized by the largest surface length of the wave (see Fig. 3c¢) and, consequently,
by the largest available surface potential energy.

Consider the angles characterizing the free surface of the wave. Fig. 4 shows the
dependences of the angles characterizing different parts of the wave depending on the
nonlinearity parameter. Fig. 4a presents the dependence of the angle at the bottom of
the wavea . With increasing wave amplitude, the angle at the sole of the wave

practically does not change and is close to180° . For the angle at the top of the wave
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S (see Fig. 4b), a similar trend is observed only for smooth pre-critical waves;

however, as the nonlinearity parameter approaches the critical value, there is a sharp
decrease in the value of the angle and a subsequent smooth growth with increasing
amplitude for subcritical waves. The angle between the lines with the maximum

steepness of the front and the cutoffy for zacritic waves coincides with the angle at the
top S , and in the region of pre-critical values of the nonlinearity parameter there is a
smoother decrease in the value compared to the angle § . The angle formed by the lines
connecting the top of the wave with two neighboring soles¢ (or between the lines

connecting the soles with two neighboring vertices) also decreases with increasing
amplitude in the region of pre-critical values of the nonlinearity parameter, reaches a
minimum value (about100° ) at the critical value, and for subcritical waves smoothly
increases with increasing amplitude.

The described characteristics, as well as other quantities depicted in Fig. 1b, ¢
can be tracked when setting up experiments to determine the parameters of the wave
motion, the exact solution of which is described by Lambert functions.

CONCLUSION

The solution of the nonlinear problem of gravitational wave propagation along
the free surface of an ideal deep incompressible fluid is obtained. Wave parameters,
which can be used in the experiment, to characterize the waves, are constructed. With
the increase of the amplitude of the wave motion there is a sharpening of the wave tops
and at some critical value of the amplitude a special point appears at the top. The critical
value of amplitude differentiates smooth pre-critical waves from sharpened subcritical

waves. The effect of varying the amplitude of wave motion on the duration and surface
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length of Lambert wave sections for the precritical and zacritical amplitudes is
investigated. The angles formed by tangents to the free surface at the top, bottom of
the wave, as well as at points on the shear and front of the wave characterized by
maximum values of steepness are investigated. The coordinates of these positions are
obtained and it is shown that for subcritical waves these coordinates coincide with the
coordinates of the wave top. The proposed description is given in observed and possible
values for fixing in the experiment.
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FIGURE CAPTIONS
Fig. 1. Surface wave profiles: general view for different nonlinearity parameters of pre-
critical, critical, and subcritical (a); wave with pre-critical nonlinearity parameter with
indication of wave motion characteristics (b); wave with subcritical nonlinearity

parameter with indication of wave motion characteristics (c).

Fig. 2. Wavelength-weighted duration of the wave segment as a function of the

nonlinearity parameter above the equilibrium level 4,, , below the equilibrium level

A

A+ 0

and the difference in duration below the equilibrium level and above the
equilibrium level . AL, =4, — 1,

+

Fig. 3. Relative surface length of the wave section as a function of the nonlinearity

parameter above the equilibrium level L, /4 (a); below the equilibrium level L /4 (b).

Total length of the surface sectionZ/A (c); relative elongation of the free surface

(L-2)/2 (d).

Fig. 4. Characteristic angles of the wave as a function of the nonlinearity parameter:

angle at the solea (a), angle at the top # (b), angle between the lines with maximum
steepness of the front and cutoffy (c), angle between the lines connecting the top and

neighboring soles @ (d).
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Table 1. Characteristics of the surface wave disturbance.

Designation Characterization
A Wavelength
A Wave amplitude
h,,h_ Elevation and depth of the wave
Mid-wave level, the level that cuts off equal areas and characterizes
2 the position of the center of mass
The middle level defining the position equidistant from the summit
o and the bottom
> e Duration of the trough and crest of the wave
Ags Ay Duration of the section below and above the average wave level &,
1 Duration of the wave segment below and above the equilibrium
o position z=0
a Angle at the bottom of the wave
S Angle at the top of the wave
v Angle between lines with maximum steepness of front and cutoff
The angle between the lines connecting the top and adjacent soles,
Y characterizing the steepness of the wave
. Values of abscissas, at which the maximum steepness of the wave

front and cutoff is reached
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