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Abstract. The potential wave motion along the free surface of a deep ideal liquid is 

studied. Exact solutions of the equations of motion with physically justified boundary 

conditions on a free surface are obtained. The shape of the free surface is studied 

depending on the amplitude and the characteristics of the surface are highlighted. The 

characteristics of waves depending on the nonlinearity parameter are investigated 

Keywords: ideal fluid, potential flow, wave motion, Lambert W function, nonlinear 

waves, characteristics of wave motion 

INTRODUCTION 

Mankind has been attracted to the study of waves on the surface of liquids for 

quite a long time. Even Leonardo da Vinci in the fifteenth century mentioned surface 
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waves in his works. With the advent of mathematical apparatus, research from simple 

observation to analytical description, and the development of experimental techniques 

has led to qualitatively new experimental descriptions of a variety of phenomena 

occurring on the surface of the liquid. Studies of surface waves find their place in 

classical treatises and textbooks [1-4] and in specialized monographs devoted to wave 

motions of liquids [5-8].  

In modern works the linearized problem of calculating the characteristics of 

infinitesimal surface periodic flows in a liquid in various formulations is often solved 

[9 - 11]. Along with linearized problems, nonlinear waves become the object of study 

in theoretical works, and researchers in a wide variety of problem formulations obtain 

exact solutions of nonlinear Euler, Korteweg-de Fries, Schrödinger, and Hopf 

equations [12-16]. Interest in the study of surface waves has not died down until now, 

and they become the subject of both theoretical [12,13,16] and experimental [17-21] 

studies. The interest is related to the need to study the parameters of sea waves 

described in oceanography textbooks [22-23] for a detailed description and prediction 

of the behavior of wave and many related phenomena in the ocean. Despite the long 

history of the issue, a complete theory to predict wave behavior from measured 

characteristics has not yet been developed. In recent years, work on theoretical and 

experimental characterization has intensified. Experimental methods for controlling 

surface waves are also being developed (see, e.g., [24]). 

To study and predict the behavior of waves at the sea surface, the registration of 

wave elements, characteristics and parameters is necessary. In the present work, a 

structurization of wave elements on the surface of the deep ocean described by Lambert 
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functions is proposed. The solution of the problem in the form of Lambert functions 

was first obtained and discussed in [16]. The present work is aimed at investigating the 

influence of the wave amplitude on its various characteristics and experimentally 

measured parameters. 

PROBLEM STATEMENT 

Let us consider the propagation of periodic potential wave motions along the free 

surface of an ideal deep liquid occupying the lower half-space 0z <  in the Cartesian 

coordinate system. In the simplest case in the constant density approximation constρ =  

without taking into account surface tension in two-dimensional formulation, the 

mathematical formulation of the problem includes the Euler and continuity equations 

and is supplemented with standard boundary conditions on the free surface. When 

transferring to the coordinate systemO zξ  , moving together with the wave with 

velocityc  , taking into account the relationship between horizontal coordinates

x ctξ = −  , the mathematical formulation of the problem is written as follows: 

:z ζ<  ( )( )c u u u P gξρ ρ− ∂ + ∇ = −∇ +
     (1) 

 div 0t u uρ ρ ρ∂ + ⋅∇ + =
   (2) 

:z ζ=  0 ,P P w u cξ ξζ ζ= − ∂ = − ∂  (3) 

Here, the function ( )ζ ζ ξ=  describes the deviation of the free surface from the 

equilibrium position 0z =  , the free-fall acceleration ( )0,g g= −
  is directed vertically 

downward against the direction of the axisOz  , the variablesu  and w  denote the 

horizontal and vertical velocity componentsu  , and the pressure P  is composed of 

atmospheric 0P  , hydrostatic and dynamic pressure : P  
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 ( ) ( ) ( )0, ,P z P g z P zξ ρ ζ ξ= + − +   (4) 

For a fluid with constant density, the continuity equation is reduced to the 

incompressibility condition, and in the two-dimensional formulation we can introduce 

a current functionψ  such that ( ) ( ), ,z xu u w ψ ψ= = ∂ −∂
  . The solution for the current 

function is sought in the form of a representation defining the exponential decay of 

wave motion with distance from the free surface and the representation generalized for 

the wave packet is as follows: 

 ( ) ( )( )( ) ( )
0

, exp ,z k z k dkψ ξ ζ ξ φ ξ
∞

= −∫  (5) 

From the kinematic boundary condition (3) and (5) we obtain for the current 

function: 

 
( ) ( ) ( )( )( ) ( )

( )

0

0

, exp

1

z c a k z f k dk

f k dk

ψ ξ ζ ζ ξ
∞

∞

= + −

=

∫

∫
 (6) 

Without going into the specifics of the solution, which is not the main interest of 

the present consideration and is considered and described in detail in [13], we note that 

for the function describing the deviation of the free surface from the equilibrium value 

we obtain the expression: 

( ) ( ) ( )1, exp exp
2 2

kA kAA W ik W ik
k

ζ ξ ξ ξ    = − − + − −        
 (7) 

Here, the symbol A  denotes the amplitude of the wave motion, and ( )W x  -W is 

the Lambert function. 
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In [16] it is shown that the function ( )f k  in expression (6) is the Dirac delta 

function ( )*k kδ −  and in that case, applying the Lambert function property

( ) ( )( )expW x W x x=    can be written for the current function: 

( ) ( ) ( )( )* * * * *
* *

*

, e exp e e e eik ik k z ik k zcz W k A W k A cA
k

ξ ξ ξψ ξ ± ± ±
± = − − − =  (8) 

The present work is devoted to the analysis of the shape and some characteristics 

of the free surface, in the problem of surface wave propagation, the exact solution of 

which is defined by Lambert waves. 

FREE SURFACE SHAPE ANALYSIS 

Let us analyze the behavior of the free surface shape (7). For infinitesimal 

waves𝑘𝑘𝑘𝑘 ≪ 1  and the expression describing the shape of the free surface (), taking into 

account the decomposition of the Lambert function by the small parameter

( ) ( )2 3 33
2

W x x x x o x= − + +  at|𝑥𝑥| ≪ 1 , takes the form: 

( ) ( ) ( )

( ) ( ) ( )

1, exp exp
2 2

1 exp exp cos
2 2

kA kAA W ik W ik
k
kA kAik ik A k

k

ζ ξ ξ ξ

ξ ξ ξ

    = − − + − − =        
 = − − − − = 
 

 (9) 

Thus, at small amplitudes the shape of the free surface is close to harmonic. Let 

us plot the shape of the free surface for different nonlinearity parameters 2A gε ω=  , 

characterizing the ratio of the wave motion amplitude A  to the wavelength. With the 

growth of the nonlinearity parameter the crest of the wave is stretched out and at some 

critical value 2 ecrε =  a singularity appears at the top of the wave and the surface shape 

ceases to be smooth. The waves satisfying the condition crε ε<  will be called smooth 
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or pre-critical waves, and the waves satisfying crε ε≥  will be called sharp or subcritical. 

Figure 1a shows typical surface shapes for precritical and zacritical waves. Surface 

waves are characterized by a large set of parameters that can be monitored in 

experimental studies. Figs. 1b and 1c show the surface shapes for smooth and sharp 

waves, indicating the characteristics of surface wave motion, the estimation of which 

can be obtained by processing optical wave data on the surface of fluid. Table 1 lists 

the characteristics and describes them. It is interesting that some parameters in the 

transition from the subcritical to the subcritical region lose their meaning, and some, 

on the contrary, appear more clearly. As an example, the angle between the lines of the 

steepest shear and wave frontγ  and the level of the midline sζ  , which determines the 

position above and below which the areas swept by the wave are the same. The angle

γ  for subcritical waves is the same as the angleβ  at the top of the wave crest, while 

these angles are different for subcritical waves. The position of the midline sζ  for 

precritical waves is close to the equilibrium position 0z =  , however, for subcritical 

waves this level is noticeably higher than the equilibrium level. 

Let us consider how the increase of the wave amplitude affects some 

characteristics of surface waves. In Fig. 2 we plot the dependences of the duration of 

the wave section, related to its length, exceeding the equilibrium level (having positive 

values of abscissas) λλ λ λ+ +=  , not exceeding (having negative values of abscissas)

λλ λ λ− −=  and their difference ( )λ λ λλ λ λ λ λ λ− + − +∆ = − = −  . For convenience, the 

plots are made in values related to the wavelength for different nonlinearity parameters

ε  . At small amplitudes, the wavelengths above and below the equilibrium level are 

almost identical, however, as the amplitude increases, the section above the equilibrium 
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level shortens compared to the section below the equilibrium level. Although the 

duration λλ +  decreases with increasing amplitude, the free surface length of the wave 

behaves in a nonlinear manner. The length of the free surface together with the position 

of the level sζ  characterizes the potential energy: an increase in these quantities leads 

to an increase in the potential energy of the wave motion. 

Fig. 3 shows the dependences on the nonlinearity parameter of the surface 

lengths of the wave sections related to the wavelength for the section exceeding the 

equilibrium level L λ+  (Fig. 3a), not exceeding the equilibrium level L λ−  (Fig. 3b) 

and the total free surface length ( )L L Lλ λ+ −= +  . It can be seen that for pre-critical 

smooth waves with increasing amplitude there is a smooth insignificant increase in the 

surface length of the wave section below the equilibrium level and a relatively sharp 

increase in the surface length of the section above the equilibrium level. As the critical 

value of the nonlinearity parameter is exceeded, there is a less abrupt decrease in the 

free surface length of this section. Near the critical value of the nonlinearity parameter, 

there is a region of parameters for which the free surface length of the upper part of the 

wave exceeds the free surface length in the lower part of the wave. The same region is 

characterized by the largest surface length of the wave (see Fig. 3c) and, consequently, 

by the largest available surface potential energy. 

Consider the angles characterizing the free surface of the wave. Fig. 4 shows the 

dependences of the angles characterizing different parts of the wave depending on the 

nonlinearity parameter. Fig. 4a presents the dependence of the angle at the bottom of 

the waveα  . With increasing wave amplitude, the angle at the sole of the wave 

practically does not change and is close to180°  . For the angle at the top of the wave
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β  (see Fig. 4b), a similar trend is observed only for smooth pre-critical waves; 

however, as the nonlinearity parameter approaches the critical value, there is a sharp 

decrease in the value of the angle and a subsequent smooth growth with increasing 

amplitude for subcritical waves. The angle between the lines with the maximum 

steepness of the front and the cutoffγ  for zacritic waves coincides with the angle at the 

topβ  , and in the region of pre-critical values of the nonlinearity parameter there is a 

smoother decrease in the value compared to the angleβ  . The angle formed by the lines 

connecting the top of the wave with two neighboring solesϕ  (or between the lines 

connecting the soles with two neighboring vertices) also decreases with increasing 

amplitude in the region of pre-critical values of the nonlinearity parameter, reaches a 

minimum value (about100°  ) at the critical value, and for subcritical waves smoothly 

increases with increasing amplitude. 

The described characteristics, as well as other quantities depicted in Fig. 1b, c 

can be tracked when setting up experiments to determine the parameters of the wave 

motion, the exact solution of which is described by Lambert functions. 

CONCLUSION 

The solution of the nonlinear problem of gravitational wave propagation along 

the free surface of an ideal deep incompressible fluid is obtained. Wave parameters, 

which can be used in the experiment, to characterize the waves, are constructed. With 

the increase of the amplitude of the wave motion there is a sharpening of the wave tops 

and at some critical value of the amplitude a special point appears at the top. The critical 

value of amplitude differentiates smooth pre-critical waves from sharpened subcritical 

waves. The effect of varying the amplitude of wave motion on the duration and surface 
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length of Lambert wave sections for the precritical and zacritical amplitudes is 

investigated. The angles formed by tangents to the free surface at the top, bottom of 

the wave, as well as at points on the shear and front of the wave characterized by 

maximum values of steepness are investigated. The coordinates of these positions are 

obtained and it is shown that for subcritical waves these coordinates coincide with the 

coordinates of the wave top. The proposed description is given in observed and possible 

values for fixing in the experiment. 
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FIGURE CAPTIONS 

Fig. 1. Surface wave profiles: general view for different nonlinearity parameters of pre-

critical, critical, and subcritical (a); wave with pre-critical nonlinearity parameter with 

indication of wave motion characteristics (b); wave with subcritical nonlinearity 

parameter with indication of wave motion characteristics (c). 

 

Fig. 2. Wavelength-weighted duration of the wave segment as a function of the 

nonlinearity parameter above the equilibrium level λλ +  , below the equilibrium level

λλ +  , and the difference in duration below the equilibrium level and above the 

equilibrium level . λ λ λλ λ λ− +∆ = −  

 

Fig. 3. Relative surface length of the wave section as a function of the nonlinearity 

parameter above the equilibrium level L λ+  (a); below the equilibrium level L λ−  (b). 

Total length of the surface section L λ  (c); relative elongation of the free surface

( )L λ λ−  (d). 

 

Fig. 4. Characteristic angles of the wave as a function of the nonlinearity parameter: 

angle at the soleα  (a), angle at the topβ  (b), angle between the lines with maximum 

steepness of the front and cutoffγ  (c), angle between the lines connecting the top and 

neighboring solesϕ  (d). 
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Table 1. Characteristics of the surface wave disturbance. 

Designation Characterization 

λ  Wavelength 

A  Wave amplitude 

,h h+ −  Elevation and depth of the wave 

sζ  
Mid-wave level, the level that cuts off equal areas and characterizes 

the position of the center of mass 

mζ  
The middle level defining the position equidistant from the summit 

and the bottom 

,sh crλ λ  Duration of the trough and crest of the wave 

,d uλ λ  Duration of the section below and above the average wave level mζ  

,λ λ− +  
Duration of the wave segment below and above the equilibrium 

position 0z =  

α  Angle at the bottom of the wave 

β  Angle at the top of the wave 
γ  Angle between lines with maximum steepness of front and cutoff 

ϕ  
The angle between the lines connecting the top and adjacent soles, 

characterizing the steepness of the wave 

maxx , minx  
Values of abscissas, at which the maximum steepness of the wave 

front and cutoff is reached  
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Fig. 2 
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