Dynamics of spinor exciton-polariton condensates in double potential traps in a GaAs/AlAs microcavity under resonant picosecond excitation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temporal evolution of the polarized emission spectra of spinor exciton-polariton condensates in double tunnel-coupled potential traps in a high-Q GaAs/AlAs microcavity at 2 K under resonant laser pumping with picosecond pulses has been studied in the time range up to 1.5 ns. An estimate of the spin relaxation time of the condensate τS ∼ 10 ns is obtained. The influence of the symmetry of the trap potential on the energy spectrum of the polariton modes and on the polarization dynamics of the spinor condensate in the tunnel-coupled potential traps is discussed.

Sobre autores

A. Demenev

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Email: demenev@issp.ac.ru
Chernogolovka, Russia

S. Tereshko

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

N. Gippius

Skolkovo Institute of Science and Technology

Moscow, Russia

V. Kulakovskii

Osipyan Institute of Solid State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

Bibliografia

  1. Weisbuch C., Nishioka M., Ishikawa A., Arakawa Y. // Phys. Rev. Lett. 1992. V. 69. P. 3314.
  2. Deveaud B. The physics of semiconductor microcavities. Weinheim: Wiley-VCH, 2007.
  3. Kavokin A.V., Baumberg J.J., Malpuech G., Laussy F.P. Microcavities. Oxford: Oxford University Press, 2007.
  4. Sanvitto D., Timofeev V. Exciton polaritons in microcavities. Berlin: Springer-Verlag, 2012.
  5. Zasedatelev A.V., Baranikov A.V., Urbonas D. et al. // Nature Photon. 2019. V. 13. P. 378.
  6. Maksimov A.A., Filatov E.V., Tartakovskii I.I. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 176.
  7. Demenev A.A., Kulakovskii V.D., Schneider C. et al. // Appl. Phys. Lett. 2016. V. 109. P. 171106.
  8. Demenev A.A., Kovalchuk A.V., Polushkin E.A., Shapoval S.Y. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 159.
  9. Kavokin A., Liew T.C.H., Schneider C. et al. // Nature Rev. Rhys. 2022. V. 4. P. 435.
  10. Cataliotti F.S., Burger S., Fort C. et al. // Science. 2001. V. 293. P. 843.
  11. Gati R., Albiez M., Folling J. et al. // Appl. Phys. B. 2006. V. 82. P. 207.
  12. Levy S., Lahoud E., Shomroni I., Steinhauer J. // Nature. 2007. V. 449. P. 579.
  13. Albiez M., Gati R., Folling J. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 010402.
  14. Shelykh I.A., Solnyshkov D.D., Pavlovic G., Malpuech G. // Phys. Rev. B. 2008. V. 78. Art. No. 041302(R).
  15. Demenev A.A., Kulakovskii V.D., Tereshko S.N., Gippius N.A. // JETP. 2022. V. 135. No. 4. P. 440.
  16. Wouters M. // Phys. Rev. B. 2008. V. 77. Art. No. 121302(R).
  17. Sarchi D., Carusotto I., Wouters M., Savona V. // Phys. Rev. B. 2008. V. 77. Art. No. 125324.
  18. Read D., Rubo Yuri G., Kavokin A.V. // Phys. Rev. B. 2010. V. 81. Art. No. 235315.
  19. Lagoudakis K.G., Pietka B., Wouters M. et al. / Phys. Rev. Lett. 2010. V. 105. P. 120403.
  20. Abbarchi M., Amo A., Sala V. et al. // Nature Phys. 2013. V. 9. P. 275.
  21. Lebedev M.E., Dolinina D.A., Hong KB. et al. // Sci. Reports. 2017. V. 7. P. 9515.
  22. Abdalla S., Zou B., Zhang Y. // Opt. Express. 2020. V. 28. P. 9136.
  23. Bello F., Eastham P.R. // Phys. Rev. B. 2017. V. 95. Art. No. 245312.
  24. Zhang C., Jin G. // Phys. Rev. B. 2011. V. 84. Art. No. 115324.
  25. Klopotowski L., Martin M.D., Amo A. et al. // Solid State Commun. 2006. V. 139. P. 511.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).