The response time of a silicon-based plasmonic detector

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The response time of a silicon-based plasmonic detector of electromagnetic radiation was investigated. For this purpose, frequency mixing experiments were carried out in the microwave frequency range. The sensitive element of the detector was embedded in the slits of a matched coplanar waveguide. The response time τ = 60±10 ps was estimated from the attenuation of the signal amplitude with increasing the difference frequency.

作者简介

A. Shchepetilnikov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Chernogolovka, Russia

A. Khisameeva

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

Ya. Fedotova

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

A. Dremin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

I. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

参考

  1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. Miyamoto T., Kondo A., Inaba T. et al. // Nature Commun. 2023. V. 14. No. 1. P. 6229.
  3. Mertens M., Chavoshi M., Peytral-Rieu O. et al. // IEEE Microwave. Mag. 2023. V. 24. No. 4. P. 49.
  4. Wang P., Lou J., Fang G., Chang C. // IEEE Trans. Microwave. Theory Tech. 2022. V. 70. No. 11. P. 5117.
  5. Pearson J.C., Drouin B.J., Yu S. //IEEE J. Microw. 2021. V. 1. No. 1. P. 43.
  6. Tamburini F., Licata I. // Particles. 2024. V. 7. No. 3. P. 576.
  7. Yang X., Liu Y., Liu W. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  8. Khan S., Acharyya A., Inokawa H. et al. // Photonics. 2023. V. 10. No. 7. P. 800.
  9. Tzydynzhapov G., Gusikhin P., Muravev V. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  10. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Optics. 2021. V. 60. No. 33. P. 10448.
  11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  12. Jelali M., Papadopoulos K. // Processes. 2024. V. 12. No. 4. P. 712.
  13. Nsengiyumva W., Zhong Sh., Zheng L. et al. // IEEE Trans. Instrum. Meas. 2023. V. 72. P. 1.
  14. Torkaman P., Yadav G.S., Wang P.-Ch. et al. // IEEE Access. 2022. V. 10. P. 65572.
  15. Ghavidel A., Myllymaki S., Kokkonen M. et al. // Engin. Reports. 2022. V. 4. No. 3. Art. No. e12474.
  16. Moon S.R., Kim E.S., Sung M. et al. // J. Lightwave Technol. 2022. V. 40. No. 2. P. 499.
  17. Lyu Y., Kyosti P., Fan W. // China Commun. 2023. V. 20. No. 6. P. 26.
  18. Khisameeva A.R., Shchepetilnikov A.V., Fedotova Ya.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 145.
  19. Koenig S., Lopez-Diaz D., Antes J. et al. // Nature Photon. 2013. V. 7. No. 12. P. 977.
  20. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  21. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406(R).
  22. Muravev V.M., Kukushkin I.V. //Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  23. Muravev V.M., Solov’ev V.V., Fortunatov A.A. et al. // JETP Lett. 2016. V. 103. No. 12. P. 792.
  24. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).