Gold nanoparticles as SERS-substrates for MTT assay

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Several variants of gold nanoparticles were proposed for the detection of formazan formed because of enzymatic reduction of the MTT reagent by E. coli enzymes. It is shown that gold nanostars coated with a micellar stabilizer are the most promising SERS-substrate for the detection of formazan in biological mixtures, reducing the required titer of bacteria by at least an order of magnitude.

作者简介

V. Mushenkov

Lomonosov Moscow State University

Email: vladimir.mushenkov@mail.ru
Moscow, Russia

A. Burov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

Saratov, Russia

V. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

E. Zavyalova

Lomonosov Moscow State University

Moscow, Russia

参考

  1. Cook M.A., Wright G.D. // Sci. Transl. Med. 2020. V. 14. No. 657. Art. No. eabo7793.
  2. Prospero E., Barbadoro P., Marigliano A. et al. // Epidemiol. Infect. 2011. V. 139. No. 9. P. 1326.
  3. Davies J., Davies D. // Microbiol. Mol. Biol. Rev. 2010. V. 74. No. 3. P. 417.
  4. Walsh T.R., Gales A.C., Laxminarayan R. et al. // PLoS Med. 2023. V. 20. No. 7. Art. No. e1004264.
  5. Kim C., Holm M., Frost I. et al. // BMJ Glob Health. 2023. V. 8. No. 7. Art. No. e011341. https://apo.org.au/node/63983.
  6. Zasowski E.J., Bassetti M., Blasi F. et al. // Chest. 2020. V. 158. No. 3. P. 929.
  7. Autore G., Neglia C., Di Costanzo M. et al. // Children. 2022. V. 9. No. 2. P. 128.
  8. Garnacho-Montero J., Ortiz-Leyba C., HerreraMelero I. et al. // J. Antimicrob. Chemother. 2008. V. 61. No. 2. P. 436.
  9. Syal K., Mo M., Yu H. et al. // Theranostics. 2017. V. 7. No. 7. P. 1795.
  10. Puttaswamy S., Gupta S.K., Regunath H. et al. // Arch. Clin. Microbiol. 2018. V. 9. No. 3. P. 83.
  11. Steingart K.R., Sohn H., Schiller I. et al. // Cochrane Database Syst. Rev. 2014. V. 2014. No. 1. Art. No. CD009593.
  12. Burckhardt I., Zimmermann S. // Front. Microbiol. 2018. V. 9. P. 1744.
  13. Khan Z.A., Siddiqui M.F., Park S. // Diagnostics. 2019. V. 9. No. 2. P. 49.
  14. Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005. V. 11. P. 127.
  15. Kumar P., Nagarajan A., Uchil P.D. // Cold Spring Harb Protoc. 2018. V. 2018. No. 6. Art. No. pdbprot095505.
  16. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  17. Shi L., Ge H.-M., Tan S.-H. et al. // Eur. J. Med. Chem. 2007. V. 42. No. 4. P. 558.
  18. Nuryastuti T., van der Mei H.C., Busscher H.J. et al. // Appl. Environ. Microbiol. 2009. V. 75. No. 21. P. 6850.
  19. Schillaci D., Arizza V., Dayton T. et al. // Lett. Appl. Microbiol. 2008. V. 47. No. 5. P. 433.
  20. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  21. https://www.edmundoptics.com/knowledgecenter/application-notes/lasers/basic-principles-oframan-scattering-and-spectroscopy/.
  22. Das R.S., Agrawal Y.K. // Vibr. Spectrosc. 2011. V. 57. No. 2. P. 163.
  23. Harvey S.D., Vucelick M.E., Lee R.N. et al. // Forensic. Sci. Int. 2002. V. 125. No. 1. P. 12.
  24. Hodges C.M., Akhavan J. // Spectrochim. Acta A. 1990. V. 46. No. 2. P. 303.
  25. Ianoul A., Coleman T., Asher S.A. // Analyt. Chem. 2002. V. 74. No. 6. P. 1458.
  26. Yang D., Ying Y. // Appl. Spectrosc. Rev. 2011. V. 46. No. 7. P. 539.
  27. Depciuch J., Kaznowska E., Zawlik I. et al. // Appl. Spectrosc. 2016. V. 70. No. 2. P. 251.
  28. Devitt G., Howard K., Mudher A. et al. // ACS Chem. Neurosci. 2018. V. 9. No. 3. P. 404.
  29. MacRitchie N., Grassia G., Noonan J. et al. // Heart. 2018. V. 104. No. 6. P. 460.
  30. https://www.promega.com.br/resources/pubhub/isyour-mtt-assay-really-the-best-choice.
  31. Hering K., Cialla D., Ackermann K. et al. // Analyt. Bioanalyt. Chem. 2008. V. 390. P. 113.
  32. Mao Z., Liu Z., Chen L. et al. // Analyt. Chem. 2013. V. 85. No. 15. P. 7361.
  33. Robert B. // Photosynth. Res. 2009. V. 101. P. 147.
  34. Gerlier D., Thomasset N. // J. Immunol. Meth. 1986. V. 94. No. 1–2. P. 57.
  35. Eilers P.H.C. // Analyt. Chem. 2003. V. 75. No. 14. P. 3631.
  36. Baek S.-J., Park A., Ahn Y.-J. et al. // Analyst. 2015. V. 140. No. 1. P. 250.
  37. Gribanyov D.A., Rudakova E.V., Zavyalova E.G. // Bull. Russ. Acad. Sci. Phys 2023. V. 87. No. 2. P. 165.
  38. Zhdanov G.A., Gribanyov D.A., Gambaryan A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 434.
  39. Мушенков В.А., Лукьянов Д.А., Мещерякова Н.Ф. и др. // Молек. биол. 2024. Т. 58. № 6. С. 1031.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).